bcachefs-tools/libbcachefs/btree_update_leaf.c

666 lines
17 KiB
C
Raw Normal View History

#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "debug.h"
#include "extents.h"
#include "journal.h"
#include "keylist.h"
#include <linux/sort.h>
#include <trace/events/bcachefs.h>
/* Inserting into a given leaf node (last stage of insert): */
/* Handle overwrites and do insert, for non extents: */
bool bch2_btree_bset_insert_key(struct btree_iter *iter,
struct btree *b,
struct btree_node_iter *node_iter,
struct bkey_i *insert)
{
const struct bkey_format *f = &b->format;
struct bkey_packed *k;
struct bset_tree *t;
unsigned clobber_u64s;
EBUG_ON(btree_node_just_written(b));
EBUG_ON(bset_written(b, btree_bset_last(b)));
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
bkey_cmp(insert->k.p, b->data->max_key) > 0);
k = bch2_btree_node_iter_peek_all(node_iter, b);
if (k && !bkey_cmp_packed(b, k, &insert->k)) {
BUG_ON(bkey_whiteout(k));
t = bch2_bkey_to_bset(b, k);
if (bset_unwritten(b, bset(b, t)) &&
bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k)) {
BUG_ON(bkey_whiteout(k) != bkey_whiteout(&insert->k));
k->type = insert->k.type;
memcpy_u64s(bkeyp_val(f, k), &insert->v,
bkey_val_u64s(&insert->k));
return true;
}
insert->k.needs_whiteout = k->needs_whiteout;
btree_keys_account_key_drop(&b->nr, t - b->set, k);
if (t == bset_tree_last(b)) {
clobber_u64s = k->u64s;
/*
* If we're deleting, and the key we're deleting doesn't
* need a whiteout (it wasn't overwriting a key that had
* been written to disk) - just delete it:
*/
if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
bch2_bset_delete(b, k, clobber_u64s);
bch2_btree_node_iter_fix(iter, b, node_iter, t,
k, clobber_u64s, 0);
return true;
}
goto overwrite;
}
k->type = KEY_TYPE_DELETED;
bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
k->u64s, k->u64s);
if (bkey_whiteout(&insert->k)) {
reserve_whiteout(b, t, k);
return true;
} else {
k->needs_whiteout = false;
}
} else {
/*
* Deleting, but the key to delete wasn't found - nothing to do:
*/
if (bkey_whiteout(&insert->k))
return false;
insert->k.needs_whiteout = false;
}
t = bset_tree_last(b);
k = bch2_btree_node_iter_bset_pos(node_iter, b, t);
clobber_u64s = 0;
overwrite:
bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
clobber_u64s, k->u64s);
return true;
}
static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
unsigned i, u64 seq)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct btree_write *w = container_of(pin, struct btree_write, journal);
struct btree *b = container_of(w, struct btree, writes[i]);
six_lock_read(&b->lock);
bch2_btree_node_write_cond(c, b,
(btree_current_write(b) == w &&
w->journal.pin_list == journal_seq_pin(j, seq)));
six_unlock_read(&b->lock);
}
static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 0, seq);
}
static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 1, seq);
}
void bch2_btree_journal_key(struct btree_insert *trans,
struct btree_iter *iter,
struct bkey_i *insert)
{
struct bch_fs *c = trans->c;
struct journal *j = &c->journal;
struct btree *b = iter->nodes[0];
struct btree_write *w = btree_current_write(b);
EBUG_ON(iter->level || b->level);
EBUG_ON(trans->journal_res.ref !=
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY));
if (!journal_pin_active(&w->journal))
bch2_journal_pin_add(j, &trans->journal_res,
&w->journal,
btree_node_write_idx(b) == 0
? btree_node_flush0
: btree_node_flush1);
if (trans->journal_res.ref) {
u64 seq = trans->journal_res.seq;
bool needs_whiteout = insert->k.needs_whiteout;
/* ick */
insert->k.needs_whiteout = false;
bch2_journal_add_keys(j, &trans->journal_res,
b->btree_id, insert);
insert->k.needs_whiteout = needs_whiteout;
bch2_journal_set_has_inode(j, &trans->journal_res,
insert->k.p.inode);
if (trans->journal_seq)
*trans->journal_seq = seq;
btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
}
if (!btree_node_dirty(b))
set_btree_node_dirty(b);
}
static enum btree_insert_ret
bch2_insert_fixup_key(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct btree_iter *iter = insert->iter;
BUG_ON(iter->level);
BUG_ON(insert->k->k.u64s >
bch_btree_keys_u64s_remaining(trans->c, iter->nodes[0]));
if (bch2_btree_bset_insert_key(iter, iter->nodes[0],
&iter->node_iters[0],
insert->k))
bch2_btree_journal_key(trans, iter, insert->k);
trans->did_work = true;
return BTREE_INSERT_OK;
}
static int inline foreground_maybe_merge(struct bch_fs *c,
struct btree_iter *iter,
enum btree_node_sibling sib)
{
struct btree *b;
if (!btree_node_locked(iter, iter->level))
return 0;
b = iter->nodes[iter->level];
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
return 0;
return bch2_foreground_maybe_merge(c, iter, sib);
}
/**
* btree_insert_key - insert a key one key into a leaf node
*/
static enum btree_insert_ret
btree_insert_key(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree *b = iter->nodes[0];
enum btree_insert_ret ret;
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
iter->flags &= ~BTREE_ITER_UPTODATE;
ret = !btree_node_is_extents(b)
? bch2_insert_fixup_key(trans, insert)
: bch2_insert_fixup_extent(trans, insert);
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch2_maybe_compact_whiteouts(c, b))
bch2_btree_iter_reinit_node(iter, b);
trace_btree_insert_key(c, b, insert->k);
return ret;
}
static bool same_leaf_as_prev(struct btree_insert *trans,
struct btree_insert_entry *i)
{
/*
* Because we sorted the transaction entries, if multiple iterators
* point to the same leaf node they'll always be adjacent now:
*/
return i != trans->entries &&
i[0].iter->nodes[0] == i[-1].iter->nodes[0];
}
#define trans_for_each_entry(trans, i) \
for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
bch2_btree_node_lock_write(b, iter);
if (btree_node_just_written(b) &&
bch2_btree_post_write_cleanup(c, b))
bch2_btree_iter_reinit_node(iter, b);
/*
* If the last bset has been written, or if it's gotten too big - start
* a new bset to insert into:
*/
if (want_new_bset(c, b))
bch2_btree_init_next(c, b, iter);
}
static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans)
{
struct btree_insert_entry *i;
trans_for_each_entry(trans, i)
if (!same_leaf_as_prev(trans, i))
bch2_btree_node_lock_for_insert(c, i->iter->nodes[0], i->iter);
}
static void multi_unlock_write(struct btree_insert *trans)
{
struct btree_insert_entry *i;
trans_for_each_entry(trans, i)
if (!same_leaf_as_prev(trans, i))
bch2_btree_node_unlock_write(i->iter->nodes[0], i->iter);
}
static int btree_trans_entry_cmp(const void *_l, const void *_r)
{
const struct btree_insert_entry *l = _l;
const struct btree_insert_entry *r = _r;
return btree_iter_cmp(l->iter, r->iter);
}
/* Normal update interface: */
/**
* __bch_btree_insert_at - insert keys at given iterator positions
*
* This is main entry point for btree updates.
*
* Return values:
* -EINTR: locking changed, this function should be called again. Only returned
* if passed BTREE_INSERT_ATOMIC.
* -EROFS: filesystem read only
* -EIO: journal or btree node IO error
*/
int __bch2_btree_insert_at(struct btree_insert *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
struct btree_iter *split = NULL;
bool cycle_gc_lock = false;
unsigned u64s;
int ret;
trans_for_each_entry(trans, i) {
BUG_ON(i->iter->level);
BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
BUG_ON(debug_check_bkeys(c) &&
bch2_bkey_invalid(c, i->iter->btree_id,
bkey_i_to_s_c(i->k)));
}
sort(trans->entries, trans->nr, sizeof(trans->entries[0]),
btree_trans_entry_cmp, NULL);
if (unlikely(!percpu_ref_tryget(&c->writes)))
return -EROFS;
retry_locks:
ret = -EINTR;
trans_for_each_entry(trans, i)
if (!bch2_btree_iter_set_locks_want(i->iter, 1))
goto err;
retry:
trans->did_work = false;
u64s = 0;
trans_for_each_entry(trans, i)
if (!i->done)
u64s += jset_u64s(i->k->k.u64s + i->extra_res);
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
? bch2_journal_res_get(&c->journal,
&trans->journal_res,
u64s, u64s)
: 0;
if (ret)
goto err;
multi_lock_write(c, trans);
if (race_fault()) {
ret = -EINTR;
goto unlock;
}
u64s = 0;
trans_for_each_entry(trans, i) {
/* Multiple inserts might go to same leaf: */
if (!same_leaf_as_prev(trans, i))
u64s = 0;
/*
* bch2_btree_node_insert_fits() must be called under write lock:
* with only an intent lock, another thread can still call
* bch2_btree_node_write(), converting an unwritten bset to a
* written one
*/
if (!i->done) {
u64s += i->k->k.u64s + i->extra_res;
if (!bch2_btree_node_insert_fits(c,
i->iter->nodes[0], u64s)) {
split = i->iter;
goto unlock;
}
}
}
ret = 0;
split = NULL;
cycle_gc_lock = false;
trans_for_each_entry(trans, i) {
if (i->done)
continue;
switch (btree_insert_key(trans, i)) {
case BTREE_INSERT_OK:
i->done = true;
break;
case BTREE_INSERT_JOURNAL_RES_FULL:
case BTREE_INSERT_NEED_TRAVERSE:
ret = -EINTR;
break;
case BTREE_INSERT_NEED_RESCHED:
ret = -EAGAIN;
break;
case BTREE_INSERT_BTREE_NODE_FULL:
split = i->iter;
break;
case BTREE_INSERT_ENOSPC:
ret = -ENOSPC;
break;
case BTREE_INSERT_NEED_GC_LOCK:
cycle_gc_lock = true;
ret = -EINTR;
break;
default:
BUG();
}
if (!trans->did_work && (ret || split))
break;
}
unlock:
multi_unlock_write(trans);
bch2_journal_res_put(&c->journal, &trans->journal_res);
if (split)
goto split;
if (ret)
goto err;
/*
* hack: iterators are inconsistent when they hit end of leaf, until
* traversed again
*/
trans_for_each_entry(trans, i)
if (i->iter->flags & BTREE_ITER_AT_END_OF_LEAF)
goto out;
trans_for_each_entry(trans, i)
if (!same_leaf_as_prev(trans, i)) {
foreground_maybe_merge(c, i->iter, btree_prev_sib);
foreground_maybe_merge(c, i->iter, btree_next_sib);
}
out:
/* make sure we didn't lose an error: */
if (!ret && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
trans_for_each_entry(trans, i)
BUG_ON(!i->done);
percpu_ref_put(&c->writes);
return ret;
split:
/*
* have to drop journal res before splitting, because splitting means
* allocating new btree nodes, and holding a journal reservation
* potentially blocks the allocator:
*/
ret = bch2_btree_split_leaf(c, split, trans->flags);
if (ret)
goto err;
/*
* if the split didn't have to drop locks the insert will still be
* atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked()
* and is overwriting won't have changed)
*/
goto retry_locks;
err:
if (cycle_gc_lock) {
down_read(&c->gc_lock);
up_read(&c->gc_lock);
}
if (ret == -EINTR) {
trans_for_each_entry(trans, i) {
int ret2 = bch2_btree_iter_traverse(i->iter);
if (ret2) {
ret = ret2;
goto out;
}
}
/*
* BTREE_ITER_ATOMIC means we have to return -EINTR if we
* dropped locks:
*/
if (!(trans->flags & BTREE_INSERT_ATOMIC))
goto retry;
}
goto out;
}
int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags)
{
struct bkey_i k;
bkey_init(&k.k);
k.k.p = iter->pos;
return bch2_btree_insert_at(iter->c, NULL, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE|flags,
BTREE_INSERT_ENTRY(iter, &k));
}
int bch2_btree_insert_list_at(struct btree_iter *iter,
struct keylist *keys,
struct disk_reservation *disk_res,
struct extent_insert_hook *hook,
u64 *journal_seq, unsigned flags)
{
BUG_ON(flags & BTREE_INSERT_ATOMIC);
BUG_ON(bch2_keylist_empty(keys));
bch2_verify_keylist_sorted(keys);
while (!bch2_keylist_empty(keys)) {
/* need to traverse between each insert */
int ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
ret = bch2_btree_insert_at(iter->c, disk_res, hook,
journal_seq, flags,
BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys)));
if (ret)
return ret;
bch2_keylist_pop_front(keys);
}
return 0;
}
/**
* bch_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
struct extent_insert_hook *hook,
u64 *journal_seq, int flags)
{
struct btree_iter iter;
int ret, ret2;
bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k),
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter);
if (unlikely(ret))
goto out;
ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags,
BTREE_INSERT_ENTRY(&iter, k));
out: ret2 = bch2_btree_iter_unlock(&iter);
return ret ?: ret2;
}
/**
* bch_btree_update - like bch2_btree_insert(), but asserts that we're
* overwriting an existing key
*/
int bch2_btree_update(struct bch_fs *c, enum btree_id id,
struct bkey_i *k, u64 *journal_seq)
{
struct btree_iter iter;
struct bkey_s_c u;
int ret;
EBUG_ON(id == BTREE_ID_EXTENTS);
bch2_btree_iter_init(&iter, c, id, k->k.p,
BTREE_ITER_INTENT);
u = bch2_btree_iter_peek_with_holes(&iter);
ret = btree_iter_err(u);
if (ret)
return ret;
if (bkey_deleted(u.k)) {
bch2_btree_iter_unlock(&iter);
return -ENOENT;
}
ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, 0,
BTREE_INSERT_ENTRY(&iter, k));
bch2_btree_iter_unlock(&iter);
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start,
struct bpos end,
struct bversion version,
struct disk_reservation *disk_res,
struct extent_insert_hook *hook,
u64 *journal_seq)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_btree_iter_init(&iter, c, id, start,
BTREE_ITER_INTENT);
while ((k = bch2_btree_iter_peek(&iter)).k &&
!(ret = btree_iter_err(k))) {
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
/* really shouldn't be using a bare, unpadded bkey_i */
struct bkey_i delete;
if (bkey_cmp(iter.pos, end) >= 0)
break;
bkey_init(&delete.k);
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
delete.k.version = version;
if (iter.flags & BTREE_ITER_IS_EXTENTS) {
/*
* The extents btree is special - KEY_TYPE_DISCARD is
* used for deletions, not KEY_TYPE_DELETED. This is an
* internal implementation detail that probably
* shouldn't be exposed (internally, KEY_TYPE_DELETED is
* used as a proxy for k->size == 0):
*/
delete.k.type = KEY_TYPE_DISCARD;
/* create the biggest key we can */
bch2_key_resize(&delete.k, max_sectors);
bch2_cut_back(end, &delete.k);
}
ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq,
BTREE_INSERT_NOFAIL,
BTREE_INSERT_ENTRY(&iter, &delete));
if (ret)
break;
bch2_btree_iter_cond_resched(&iter);
}
bch2_btree_iter_unlock(&iter);
return ret;
}