Update bcachefs sources to 717b356d1d bcachefs: Convert journal validation to bkey_invalid_flags

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This commit is contained in:
Kent Overstreet 2023-08-05 18:06:22 -04:00
parent caeeba5152
commit 15b24c7327
52 changed files with 5772 additions and 5464 deletions

View File

@ -1 +1 @@
5b8c4a1366df20bc043404cb882230ce86296590
717b356d1dfdf178ac46e217c81bb710b7e77032

View File

@ -16,6 +16,7 @@
#include "libbcachefs/bcachefs_ioctl.h"
#include "libbcachefs/errcode.h"
#include "libbcachefs/journal.h"
#include "libbcachefs/sb-members.h"
#include "libbcachefs/super-io.h"
#include "cmds.h"
#include "libbcachefs.h"

View File

@ -13,6 +13,7 @@
#include "libbcachefs/btree_iter.h"
#include "libbcachefs/error.h"
#include "libbcachefs/extents.h"
#include "libbcachefs/sb-members.h"
#include "libbcachefs/super.h"
static void dump_usage(void)

View File

@ -11,6 +11,7 @@
#include "libbcachefs/btree_iter.h"
#include "libbcachefs/errcode.h"
#include "libbcachefs/error.h"
#include "libbcachefs/sb-members.h"
#include "libbcachefs/super.h"
static void kill_btree_node_usage(void)

View File

@ -5,7 +5,7 @@
#include "bcachefs.h"
#include "alloc_types.h"
#include "extents.h"
#include "super.h"
#include "sb-members.h"
#include <linux/hash.h>

View File

@ -294,8 +294,8 @@ do { \
#define bch_err_fn(_c, _ret) \
bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret))
#define bch_err_msg(_c, _ret, _msg) \
bch_err(_c, "%s(): error " _msg " %s", __func__, bch2_err_str(_ret))
#define bch_err_msg(_c, _ret, _msg, ...) \
bch_err(_c, "%s(): error " _msg " %s", __func__, ##__VA_ARGS__, bch2_err_str(_ret))
#define bch_verbose(c, fmt, ...) \
do { \
@ -995,6 +995,7 @@ struct bch_fs {
enum bch_recovery_pass curr_recovery_pass;
/* bitmap of explicitly enabled recovery passes: */
u64 recovery_passes_explicit;
u64 recovery_passes_complete;
/* DEBUG JUNK */
struct dentry *fs_debug_dir;
@ -1139,22 +1140,6 @@ static inline bool bch2_dev_exists2(const struct bch_fs *c, unsigned dev)
return dev < c->sb.nr_devices && c->devs[dev];
}
/*
* For when we need to rewind recovery passes and run a pass we skipped:
*/
static inline int bch2_run_explicit_recovery_pass(struct bch_fs *c,
enum bch_recovery_pass pass)
{
c->recovery_passes_explicit |= BIT_ULL(pass);
if (c->curr_recovery_pass >= pass) {
c->curr_recovery_pass = pass;
return -BCH_ERR_restart_recovery;
} else {
return 0;
}
}
#define BKEY_PADDED_ONSTACK(key, pad) \
struct { struct bkey_i key; __u64 key ## _pad[pad]; }

View File

@ -7,14 +7,6 @@
#include "bset.h"
#include "util.h"
#undef EBUG_ON
#ifdef DEBUG_BKEYS
#define EBUG_ON(cond) BUG_ON(cond)
#else
#define EBUG_ON(cond)
#endif
const struct bkey_format bch2_bkey_format_current = BKEY_FORMAT_CURRENT;
void bch2_bkey_packed_to_binary_text(struct printbuf *out,
@ -184,6 +176,28 @@ static u64 get_inc_field(struct unpack_state *state, unsigned field)
return v + offset;
}
__always_inline
static void __set_inc_field(struct pack_state *state, unsigned field, u64 v)
{
unsigned bits = state->format->bits_per_field[field];
if (bits) {
if (bits > state->bits) {
bits -= state->bits;
/* avoid shift by 64 if bits is 64 - bits is never 0 here: */
state->w |= (v >> 1) >> (bits - 1);
*state->p = state->w;
state->p = next_word(state->p);
state->w = 0;
state->bits = 64;
}
state->bits -= bits;
state->w |= v << state->bits;
}
}
__always_inline
static bool set_inc_field(struct pack_state *state, unsigned field, u64 v)
{
@ -198,20 +212,7 @@ static bool set_inc_field(struct pack_state *state, unsigned field, u64 v)
if (fls64(v) > bits)
return false;
if (bits > state->bits) {
bits -= state->bits;
/* avoid shift by 64 if bits is 0 - bits is never 64 here: */
state->w |= (v >> 1) >> (bits - 1);
*state->p = state->w;
state->p = next_word(state->p);
state->w = 0;
state->bits = 64;
}
state->bits -= bits;
state->w |= v << state->bits;
__set_inc_field(state, field, v);
return true;
}
@ -380,19 +381,7 @@ static bool set_inc_field_lossy(struct pack_state *state, unsigned field, u64 v)
ret = false;
}
if (bits > state->bits) {
bits -= state->bits;
state->w |= (v >> 1) >> (bits - 1);
*state->p = state->w;
state->p = next_word(state->p);
state->w = 0;
state->bits = 64;
}
state->bits -= bits;
state->w |= v << state->bits;
__set_inc_field(state, field, v);
return ret;
}
@ -435,6 +424,24 @@ static bool bkey_packed_successor(struct bkey_packed *out,
return false;
}
static bool bkey_format_has_too_big_fields(const struct bkey_format *f)
{
for (unsigned i = 0; i < f->nr_fields; i++) {
unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i];
u64 unpacked_max = ~((~0ULL << 1) << (unpacked_bits - 1));
u64 packed_max = f->bits_per_field[i]
? ~((~0ULL << 1) << (f->bits_per_field[i] - 1))
: 0;
u64 field_offset = le64_to_cpu(f->field_offset[i]);
if (packed_max + field_offset < packed_max ||
packed_max + field_offset > unpacked_max)
return true;
}
return false;
}
#endif
/*
@ -515,7 +522,8 @@ enum bkey_pack_pos_ret bch2_bkey_pack_pos_lossy(struct bkey_packed *out,
BUG_ON(bkey_cmp_left_packed(b, out, &orig) >= 0);
BUG_ON(bkey_packed_successor(&successor, b, *out) &&
bkey_cmp_left_packed(b, &successor, &orig) < 0);
bkey_cmp_left_packed(b, &successor, &orig) < 0 &&
!bkey_format_has_too_big_fields(f));
}
#endif
@ -604,40 +612,74 @@ struct bkey_format bch2_bkey_format_done(struct bkey_format_state *s)
}
}
EBUG_ON(bch2_bkey_format_validate(&ret));
#ifdef CONFIG_BCACHEFS_DEBUG
{
struct printbuf buf = PRINTBUF;
BUG_ON(bch2_bkey_format_invalid(NULL, &ret, 0, &buf));
printbuf_exit(&buf);
}
#endif
return ret;
}
const char *bch2_bkey_format_validate(struct bkey_format *f)
int bch2_bkey_format_invalid(struct bch_fs *c,
struct bkey_format *f,
enum bkey_invalid_flags flags,
struct printbuf *err)
{
unsigned i, bits = KEY_PACKED_BITS_START;
if (f->nr_fields != BKEY_NR_FIELDS)
return "incorrect number of fields";
if (f->nr_fields != BKEY_NR_FIELDS) {
prt_printf(err, "incorrect number of fields: got %u, should be %u",
f->nr_fields, BKEY_NR_FIELDS);
return -BCH_ERR_invalid;
}
/*
* Verify that the packed format can't represent fields larger than the
* unpacked format:
*/
for (i = 0; i < f->nr_fields; i++) {
unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i];
u64 unpacked_max = ~((~0ULL << 1) << (unpacked_bits - 1));
u64 packed_max = f->bits_per_field[i]
? ~((~0ULL << 1) << (f->bits_per_field[i] - 1))
: 0;
u64 field_offset = le64_to_cpu(f->field_offset[i]);
if (!c || c->sb.version_min >= bcachefs_metadata_version_snapshot) {
unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i];
u64 unpacked_max = ~((~0ULL << 1) << (unpacked_bits - 1));
u64 packed_max = f->bits_per_field[i]
? ~((~0ULL << 1) << (f->bits_per_field[i] - 1))
: 0;
u64 field_offset = le64_to_cpu(f->field_offset[i]);
if (packed_max + field_offset < packed_max ||
packed_max + field_offset > unpacked_max)
return "field too large";
if (packed_max + field_offset < packed_max ||
packed_max + field_offset > unpacked_max) {
prt_printf(err, "field %u too large: %llu + %llu > %llu",
i, packed_max, field_offset, unpacked_max);
return -BCH_ERR_invalid;
}
}
bits += f->bits_per_field[i];
}
if (f->key_u64s != DIV_ROUND_UP(bits, 64))
return "incorrect key_u64s";
if (f->key_u64s != DIV_ROUND_UP(bits, 64)) {
prt_printf(err, "incorrect key_u64s: got %u, should be %u",
f->key_u64s, DIV_ROUND_UP(bits, 64));
return -BCH_ERR_invalid;
}
return NULL;
return 0;
}
void bch2_bkey_format_to_text(struct printbuf *out, const struct bkey_format *f)
{
prt_printf(out, "u64s %u fields ", f->key_u64s);
for (unsigned i = 0; i < ARRAY_SIZE(f->bits_per_field); i++) {
if (i)
prt_str(out, ", ");
prt_printf(out, "%u:%llu",
f->bits_per_field[i],
le64_to_cpu(f->field_offset[i]));
}
}
/*

View File

@ -9,6 +9,12 @@
#include "util.h"
#include "vstructs.h"
enum bkey_invalid_flags {
BKEY_INVALID_WRITE = (1U << 0),
BKEY_INVALID_COMMIT = (1U << 1),
BKEY_INVALID_JOURNAL = (1U << 2),
};
#if 0
/*
@ -769,6 +775,8 @@ static inline void bch2_bkey_format_add_key(struct bkey_format_state *s, const s
void bch2_bkey_format_add_pos(struct bkey_format_state *, struct bpos);
struct bkey_format bch2_bkey_format_done(struct bkey_format_state *);
const char *bch2_bkey_format_validate(struct bkey_format *);
int bch2_bkey_format_invalid(struct bch_fs *, struct bkey_format *,
enum bkey_invalid_flags, struct printbuf *);
void bch2_bkey_format_to_text(struct printbuf *, const struct bkey_format *);
#endif /* _BCACHEFS_BKEY_H */

View File

@ -13,12 +13,6 @@ enum btree_node_type;
extern const char * const bch2_bkey_types[];
extern const struct bkey_ops bch2_bkey_null_ops;
enum bkey_invalid_flags {
BKEY_INVALID_WRITE = (1U << 0),
BKEY_INVALID_COMMIT = (1U << 1),
BKEY_INVALID_JOURNAL = (1U << 2),
};
/*
* key_invalid: checks validity of @k, returns 0 if good or -EINVAL if bad. If
* invalid, entire key will be deleted.

View File

@ -1214,7 +1214,6 @@ wait_on_io:
void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
const struct btree *b)
{
const struct bkey_format *f = &b->format;
struct bset_stats stats;
memset(&stats, 0, sizeof(stats));
@ -1228,9 +1227,13 @@ void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
prt_printf(out, ":\n"
" ptrs: ");
bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
prt_newline(out);
prt_printf(out, "\n"
" format: u64s %u fields %u %u %u %u %u\n"
prt_printf(out,
" format: ");
bch2_bkey_format_to_text(out, &b->format);
prt_printf(out,
" unpack fn len: %u\n"
" bytes used %zu/%zu (%zu%% full)\n"
" sib u64s: %u, %u (merge threshold %u)\n"
@ -1238,12 +1241,6 @@ void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
" nr unpacked keys %u\n"
" floats %zu\n"
" failed unpacked %zu\n",
f->key_u64s,
f->bits_per_field[0],
f->bits_per_field[1],
f->bits_per_field[2],
f->bits_per_field[3],
f->bits_per_field[4],
b->unpack_fn_len,
b->nr.live_u64s * sizeof(u64),
btree_bytes(c) - sizeof(struct btree_node),

View File

@ -9,6 +9,7 @@
#include "alloc_foreground.h"
#include "bkey_methods.h"
#include "bkey_buf.h"
#include "btree_journal_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_update_interior.h"
@ -43,7 +44,7 @@
static bool should_restart_for_topology_repair(struct bch_fs *c)
{
return c->opts.fix_errors != FSCK_FIX_no &&
!(c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology));
!(c->recovery_passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology));
}
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)

View File

@ -2,6 +2,7 @@
#ifndef _BCACHEFS_BTREE_GC_H
#define _BCACHEFS_BTREE_GC_H
#include "bkey.h"
#include "btree_types.h"
int bch2_check_topology(struct bch_fs *);

View File

@ -17,6 +17,7 @@
#include "io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "recovery.h"
#include "super-io.h"
#include "trace.h"
@ -543,31 +544,7 @@ static void btree_err_msg(struct printbuf *out, struct bch_fs *c,
prt_str(out, ": ");
}
enum btree_err_type {
/*
* We can repair this locally, and we're after the checksum check so
* there's no need to try another replica:
*/
BTREE_ERR_FIXABLE,
/*
* We can repair this if we have to, but we should try reading another
* replica if we can:
*/
BTREE_ERR_WANT_RETRY,
/*
* Read another replica if we have one, otherwise consider the whole
* node bad:
*/
BTREE_ERR_MUST_RETRY,
BTREE_ERR_BAD_NODE,
BTREE_ERR_INCOMPATIBLE,
};
enum btree_validate_ret {
BTREE_RETRY_READ = 64,
};
static int __btree_err(enum btree_err_type type,
static int __btree_err(int ret,
struct bch_fs *c,
struct bch_dev *ca,
struct btree *b,
@ -578,7 +555,6 @@ static int __btree_err(enum btree_err_type type,
{
struct printbuf out = PRINTBUF;
va_list args;
int ret = -BCH_ERR_fsck_fix;
btree_err_msg(&out, c, ca, b, i, b->written, write);
@ -594,27 +570,26 @@ static int __btree_err(enum btree_err_type type,
goto out;
}
if (!have_retry && type == BTREE_ERR_WANT_RETRY)
type = BTREE_ERR_FIXABLE;
if (!have_retry && type == BTREE_ERR_MUST_RETRY)
type = BTREE_ERR_BAD_NODE;
if (!have_retry && ret == -BCH_ERR_btree_node_read_err_want_retry)
ret = -BCH_ERR_btree_node_read_err_fixable;
if (!have_retry && ret == -BCH_ERR_btree_node_read_err_must_retry)
ret = -BCH_ERR_btree_node_read_err_bad_node;
switch (type) {
case BTREE_ERR_FIXABLE:
switch (ret) {
case -BCH_ERR_btree_node_read_err_fixable:
mustfix_fsck_err(c, "%s", out.buf);
ret = -BCH_ERR_fsck_fix;
break;
case BTREE_ERR_WANT_RETRY:
case BTREE_ERR_MUST_RETRY:
case -BCH_ERR_btree_node_read_err_want_retry:
case -BCH_ERR_btree_node_read_err_must_retry:
bch2_print_string_as_lines(KERN_ERR, out.buf);
ret = BTREE_RETRY_READ;
break;
case BTREE_ERR_BAD_NODE:
case -BCH_ERR_btree_node_read_err_bad_node:
bch2_print_string_as_lines(KERN_ERR, out.buf);
bch2_topology_error(c);
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology) ?: -EIO;
break;
case BTREE_ERR_INCOMPATIBLE:
case -BCH_ERR_btree_node_read_err_incompatible:
bch2_print_string_as_lines(KERN_ERR, out.buf);
ret = -BCH_ERR_fsck_errors_not_fixed;
break;
@ -631,8 +606,11 @@ fsck_err:
({ \
int _ret = __btree_err(type, c, ca, b, i, write, have_retry, msg, ##__VA_ARGS__);\
\
if (_ret != -BCH_ERR_fsck_fix) \
if (_ret != -BCH_ERR_fsck_fix) { \
ret = _ret; \
goto fsck_err; \
} \
\
*saw_error = true; \
})
@ -696,19 +674,18 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
int write, bool have_retry, bool *saw_error)
{
unsigned version = le16_to_cpu(i->version);
const char *err;
struct printbuf buf1 = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret = 0;
btree_err_on(!bch2_version_compatible(version),
BTREE_ERR_INCOMPATIBLE, c, ca, b, i,
-BCH_ERR_btree_node_read_err_incompatible, c, ca, b, i,
"unsupported bset version %u.%u",
BCH_VERSION_MAJOR(version),
BCH_VERSION_MINOR(version));
if (btree_err_on(version < c->sb.version_min,
BTREE_ERR_FIXABLE, c, NULL, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i,
"bset version %u older than superblock version_min %u",
version, c->sb.version_min)) {
mutex_lock(&c->sb_lock);
@ -719,7 +696,7 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
if (btree_err_on(BCH_VERSION_MAJOR(version) >
BCH_VERSION_MAJOR(c->sb.version),
BTREE_ERR_FIXABLE, c, NULL, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i,
"bset version %u newer than superblock version %u",
version, c->sb.version)) {
mutex_lock(&c->sb_lock);
@ -729,11 +706,11 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
}
btree_err_on(BSET_SEPARATE_WHITEOUTS(i),
BTREE_ERR_INCOMPATIBLE, c, ca, b, i,
-BCH_ERR_btree_node_read_err_incompatible, c, ca, b, i,
"BSET_SEPARATE_WHITEOUTS no longer supported");
if (btree_err_on(offset + sectors > btree_sectors(c),
BTREE_ERR_FIXABLE, c, ca, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, ca, b, i,
"bset past end of btree node")) {
i->u64s = 0;
ret = 0;
@ -741,12 +718,12 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
}
btree_err_on(offset && !i->u64s,
BTREE_ERR_FIXABLE, c, ca, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, ca, b, i,
"empty bset");
btree_err_on(BSET_OFFSET(i) &&
BSET_OFFSET(i) != offset,
BTREE_ERR_WANT_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i,
"bset at wrong sector offset");
if (!offset) {
@ -760,16 +737,16 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
/* XXX endianness */
btree_err_on(bp->seq != bn->keys.seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL,
"incorrect sequence number (wrong btree node)");
}
btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id,
BTREE_ERR_MUST_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i,
"incorrect btree id");
btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level,
BTREE_ERR_MUST_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i,
"incorrect level");
if (!write)
@ -786,7 +763,7 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
}
btree_err_on(!bpos_eq(b->data->min_key, bp->min_key),
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL,
"incorrect min_key: got %s should be %s",
(printbuf_reset(&buf1),
bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf),
@ -795,7 +772,7 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
}
btree_err_on(!bpos_eq(bn->max_key, b->key.k.p),
BTREE_ERR_MUST_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i,
"incorrect max key %s",
(printbuf_reset(&buf1),
bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf));
@ -804,10 +781,12 @@ static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
compat_btree_node(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write, bn);
err = bch2_bkey_format_validate(&bn->format);
btree_err_on(err,
BTREE_ERR_BAD_NODE, c, ca, b, i,
"invalid bkey format: %s", err);
btree_err_on(bch2_bkey_format_invalid(c, &bn->format, write, &buf1),
-BCH_ERR_btree_node_read_err_bad_node, c, ca, b, i,
"invalid bkey format: %s\n %s", buf1.buf,
(printbuf_reset(&buf2),
bch2_bkey_format_to_text(&buf2, &bn->format), buf2.buf));
printbuf_reset(&buf1);
compat_bformat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
@ -847,14 +826,14 @@ static int validate_bset_keys(struct bch_fs *c, struct btree *b,
struct bkey tmp;
if (btree_err_on(bkey_p_next(k) > vstruct_last(i),
BTREE_ERR_FIXABLE, c, NULL, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i,
"key extends past end of bset")) {
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
BTREE_ERR_FIXABLE, c, NULL, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i,
"invalid bkey format %u", k->format)) {
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
@ -878,7 +857,7 @@ static int validate_bset_keys(struct bch_fs *c, struct btree *b,
prt_printf(&buf, "\n ");
bch2_bkey_val_to_text(&buf, c, u.s_c);
btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf);
btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
@ -902,7 +881,7 @@ static int validate_bset_keys(struct bch_fs *c, struct btree *b,
bch2_dump_bset(c, b, i, 0);
if (btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf)) {
if (btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf)) {
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
@ -945,16 +924,16 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
iter->size = (btree_blocks(c) + 1) * 2;
if (bch2_meta_read_fault("btree"))
btree_err(BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
btree_err(-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL,
"dynamic fault");
btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL,
"bad magic: want %llx, got %llx",
bset_magic(c), le64_to_cpu(b->data->magic));
btree_err_on(!b->data->keys.seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL,
"bad btree header: seq 0");
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
@ -962,7 +941,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
&bkey_i_to_btree_ptr_v2(&b->key)->v;
btree_err_on(b->data->keys.seq != bp->seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL,
"got wrong btree node (seq %llx want %llx)",
b->data->keys.seq, bp->seq);
}
@ -977,7 +956,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
i = &b->data->keys;
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i,
"unknown checksum type %llu",
BSET_CSUM_TYPE(i));
@ -985,7 +964,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
btree_err_on(bch2_crc_cmp(csum, b->data->csum),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i,
"invalid checksum");
ret = bset_encrypt(c, i, b->written << 9);
@ -995,7 +974,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
btree_err_on(btree_node_type_is_extents(btree_node_type(b)) &&
!BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data),
BTREE_ERR_INCOMPATIBLE, c, NULL, b, NULL,
-BCH_ERR_btree_node_read_err_incompatible, c, NULL, b, NULL,
"btree node does not have NEW_EXTENT_OVERWRITE set");
sectors = vstruct_sectors(b->data, c->block_bits);
@ -1007,7 +986,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
break;
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i,
"unknown checksum type %llu",
BSET_CSUM_TYPE(i));
@ -1015,7 +994,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
btree_err_on(bch2_crc_cmp(csum, bne->csum),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i,
"invalid checksum");
ret = bset_encrypt(c, i, b->written << 9);
@ -1048,12 +1027,12 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
true);
btree_err_on(blacklisted && first,
BTREE_ERR_FIXABLE, c, ca, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, ca, b, i,
"first btree node bset has blacklisted journal seq (%llu)",
le64_to_cpu(i->journal_seq));
btree_err_on(blacklisted && ptr_written,
BTREE_ERR_FIXABLE, c, ca, b, i,
-BCH_ERR_btree_node_read_err_fixable, c, ca, b, i,
"found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u",
le64_to_cpu(i->journal_seq),
b->written, b->written + sectors, ptr_written);
@ -1072,7 +1051,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
if (ptr_written) {
btree_err_on(b->written < ptr_written,
BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, NULL,
"btree node data missing: expected %u sectors, found %u",
ptr_written, b->written);
} else {
@ -1083,7 +1062,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
!bch2_journal_seq_is_blacklisted(c,
le64_to_cpu(bne->keys.journal_seq),
true),
BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
-BCH_ERR_btree_node_read_err_want_retry, c, ca, b, NULL,
"found bset signature after last bset");
/*
@ -1137,7 +1116,7 @@ int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
prt_printf(&buf, "\n ");
bch2_bkey_val_to_text(&buf, c, u.s_c);
btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf);
btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf);
btree_keys_account_key_drop(&b->nr, 0, k);
@ -1177,7 +1156,8 @@ out:
printbuf_exit(&buf);
return retry_read;
fsck_err:
if (ret == BTREE_RETRY_READ)
if (ret == -BCH_ERR_btree_node_read_err_want_retry ||
ret == -BCH_ERR_btree_node_read_err_must_retry)
retry_read = 1;
else
set_btree_node_read_error(b);
@ -1363,14 +1343,14 @@ static void btree_node_read_all_replicas_done(struct closure *cl)
}
written2 = btree_node_sectors_written(c, ra->buf[i]);
if (btree_err_on(written2 != written, BTREE_ERR_FIXABLE, c, NULL, b, NULL,
if (btree_err_on(written2 != written, -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL,
"btree node sectors written mismatch: %u != %u",
written, written2) ||
btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]),
BTREE_ERR_FIXABLE, c, NULL, b, NULL,
-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL,
"found bset signature after last bset") ||
btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9),
BTREE_ERR_FIXABLE, c, NULL, b, NULL,
-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL,
"btree node replicas content mismatch"))
dump_bset_maps = true;

View File

@ -5,6 +5,7 @@
#include "bkey_buf.h"
#include "btree_cache.h"
#include "btree_iter.h"
#include "btree_journal_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_update.h"
@ -12,7 +13,6 @@
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "recovery.h"
#include "replicas.h"
#include "subvolume.h"
#include "trace.h"

View File

@ -221,6 +221,22 @@ struct btree_path *bch2_path_get(struct btree_trans *, enum btree_id, struct bpo
unsigned, unsigned, unsigned, unsigned long);
struct bkey_s_c bch2_btree_path_peek_slot(struct btree_path *, struct bkey *);
/*
* bch2_btree_path_peek_slot() for a cached iterator might return a key in a
* different snapshot:
*/
static inline struct bkey_s_c bch2_btree_path_peek_slot_exact(struct btree_path *path, struct bkey *u)
{
struct bkey_s_c k = bch2_btree_path_peek_slot(path, u);
if (k.k && bpos_eq(path->pos, k.k->p))
return k;
bkey_init(u);
u->p = path->pos;
return (struct bkey_s_c) { u, NULL };
}
struct bkey_i *bch2_btree_journal_peek_slot(struct btree_trans *,
struct btree_iter *, struct bpos);

View File

@ -0,0 +1,531 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bset.h"
#include "btree_journal_iter.h"
#include "journal_io.h"
#include <linux/sort.h>
/*
* For managing keys we read from the journal: until journal replay works normal
* btree lookups need to be able to find and return keys from the journal where
* they overwrite what's in the btree, so we have a special iterator and
* operations for the regular btree iter code to use:
*/
static int __journal_key_cmp(enum btree_id l_btree_id,
unsigned l_level,
struct bpos l_pos,
const struct journal_key *r)
{
return (cmp_int(l_btree_id, r->btree_id) ?:
cmp_int(l_level, r->level) ?:
bpos_cmp(l_pos, r->k->k.p));
}
static int journal_key_cmp(const struct journal_key *l, const struct journal_key *r)
{
return __journal_key_cmp(l->btree_id, l->level, l->k->k.p, r);
}
static inline size_t idx_to_pos(struct journal_keys *keys, size_t idx)
{
size_t gap_size = keys->size - keys->nr;
if (idx >= keys->gap)
idx += gap_size;
return idx;
}
static inline struct journal_key *idx_to_key(struct journal_keys *keys, size_t idx)
{
return keys->d + idx_to_pos(keys, idx);
}
static size_t __bch2_journal_key_search(struct journal_keys *keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
size_t l = 0, r = keys->nr, m;
while (l < r) {
m = l + ((r - l) >> 1);
if (__journal_key_cmp(id, level, pos, idx_to_key(keys, m)) > 0)
l = m + 1;
else
r = m;
}
BUG_ON(l < keys->nr &&
__journal_key_cmp(id, level, pos, idx_to_key(keys, l)) > 0);
BUG_ON(l &&
__journal_key_cmp(id, level, pos, idx_to_key(keys, l - 1)) <= 0);
return l;
}
static size_t bch2_journal_key_search(struct journal_keys *keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
return idx_to_pos(keys, __bch2_journal_key_search(keys, id, level, pos));
}
struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *c, enum btree_id btree_id,
unsigned level, struct bpos pos,
struct bpos end_pos, size_t *idx)
{
struct journal_keys *keys = &c->journal_keys;
unsigned iters = 0;
struct journal_key *k;
search:
if (!*idx)
*idx = __bch2_journal_key_search(keys, btree_id, level, pos);
while ((k = *idx < keys->nr ? idx_to_key(keys, *idx) : NULL)) {
if (__journal_key_cmp(btree_id, level, end_pos, k) < 0)
return NULL;
if (__journal_key_cmp(btree_id, level, pos, k) <= 0 &&
!k->overwritten)
return k->k;
(*idx)++;
iters++;
if (iters == 10) {
*idx = 0;
goto search;
}
}
return NULL;
}
struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *c, enum btree_id btree_id,
unsigned level, struct bpos pos)
{
size_t idx = 0;
return bch2_journal_keys_peek_upto(c, btree_id, level, pos, pos, &idx);
}
static void journal_iters_fix(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
/* The key we just inserted is immediately before the gap: */
size_t gap_end = keys->gap + (keys->size - keys->nr);
struct btree_and_journal_iter *iter;
/*
* If an iterator points one after the key we just inserted, decrement
* the iterator so it points at the key we just inserted - if the
* decrement was unnecessary, bch2_btree_and_journal_iter_peek() will
* handle that:
*/
list_for_each_entry(iter, &c->journal_iters, journal.list)
if (iter->journal.idx == gap_end)
iter->journal.idx = keys->gap - 1;
}
static void journal_iters_move_gap(struct bch_fs *c, size_t old_gap, size_t new_gap)
{
struct journal_keys *keys = &c->journal_keys;
struct journal_iter *iter;
size_t gap_size = keys->size - keys->nr;
list_for_each_entry(iter, &c->journal_iters, list) {
if (iter->idx > old_gap)
iter->idx -= gap_size;
if (iter->idx >= new_gap)
iter->idx += gap_size;
}
}
int bch2_journal_key_insert_take(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct journal_key n = {
.btree_id = id,
.level = level,
.k = k,
.allocated = true,
/*
* Ensure these keys are done last by journal replay, to unblock
* journal reclaim:
*/
.journal_seq = U32_MAX,
};
struct journal_keys *keys = &c->journal_keys;
size_t idx = bch2_journal_key_search(keys, id, level, k->k.p);
BUG_ON(test_bit(BCH_FS_RW, &c->flags));
if (idx < keys->size &&
journal_key_cmp(&n, &keys->d[idx]) == 0) {
if (keys->d[idx].allocated)
kfree(keys->d[idx].k);
keys->d[idx] = n;
return 0;
}
if (idx > keys->gap)
idx -= keys->size - keys->nr;
if (keys->nr == keys->size) {
struct journal_keys new_keys = {
.nr = keys->nr,
.size = max_t(size_t, keys->size, 8) * 2,
};
new_keys.d = kvmalloc_array(new_keys.size, sizeof(new_keys.d[0]), GFP_KERNEL);
if (!new_keys.d) {
bch_err(c, "%s: error allocating new key array (size %zu)",
__func__, new_keys.size);
return -BCH_ERR_ENOMEM_journal_key_insert;
}
/* Since @keys was full, there was no gap: */
memcpy(new_keys.d, keys->d, sizeof(keys->d[0]) * keys->nr);
kvfree(keys->d);
*keys = new_keys;
/* And now the gap is at the end: */
keys->gap = keys->nr;
}
journal_iters_move_gap(c, keys->gap, idx);
move_gap(keys->d, keys->nr, keys->size, keys->gap, idx);
keys->gap = idx;
keys->nr++;
keys->d[keys->gap++] = n;
journal_iters_fix(c);
return 0;
}
/*
* Can only be used from the recovery thread while we're still RO - can't be
* used once we've got RW, as journal_keys is at that point used by multiple
* threads:
*/
int bch2_journal_key_insert(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct bkey_i *n;
int ret;
n = kmalloc(bkey_bytes(&k->k), GFP_KERNEL);
if (!n)
return -BCH_ERR_ENOMEM_journal_key_insert;
bkey_copy(n, k);
ret = bch2_journal_key_insert_take(c, id, level, n);
if (ret)
kfree(n);
return ret;
}
int bch2_journal_key_delete(struct bch_fs *c, enum btree_id id,
unsigned level, struct bpos pos)
{
struct bkey_i whiteout;
bkey_init(&whiteout.k);
whiteout.k.p = pos;
return bch2_journal_key_insert(c, id, level, &whiteout);
}
void bch2_journal_key_overwritten(struct bch_fs *c, enum btree_id btree,
unsigned level, struct bpos pos)
{
struct journal_keys *keys = &c->journal_keys;
size_t idx = bch2_journal_key_search(keys, btree, level, pos);
if (idx < keys->size &&
keys->d[idx].btree_id == btree &&
keys->d[idx].level == level &&
bpos_eq(keys->d[idx].k->k.p, pos))
keys->d[idx].overwritten = true;
}
static void bch2_journal_iter_advance(struct journal_iter *iter)
{
if (iter->idx < iter->keys->size) {
iter->idx++;
if (iter->idx == iter->keys->gap)
iter->idx += iter->keys->size - iter->keys->nr;
}
}
static struct bkey_s_c bch2_journal_iter_peek(struct journal_iter *iter)
{
struct journal_key *k = iter->keys->d + iter->idx;
while (k < iter->keys->d + iter->keys->size &&
k->btree_id == iter->btree_id &&
k->level == iter->level) {
if (!k->overwritten)
return bkey_i_to_s_c(k->k);
bch2_journal_iter_advance(iter);
k = iter->keys->d + iter->idx;
}
return bkey_s_c_null;
}
static void bch2_journal_iter_exit(struct journal_iter *iter)
{
list_del(&iter->list);
}
static void bch2_journal_iter_init(struct bch_fs *c,
struct journal_iter *iter,
enum btree_id id, unsigned level,
struct bpos pos)
{
iter->btree_id = id;
iter->level = level;
iter->keys = &c->journal_keys;
iter->idx = bch2_journal_key_search(&c->journal_keys, id, level, pos);
}
static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter)
{
return bch2_btree_node_iter_peek_unpack(&iter->node_iter,
iter->b, &iter->unpacked);
}
static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter)
{
bch2_btree_node_iter_advance(&iter->node_iter, iter->b);
}
void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter)
{
if (bpos_eq(iter->pos, SPOS_MAX))
iter->at_end = true;
else
iter->pos = bpos_successor(iter->pos);
}
struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter)
{
struct bkey_s_c btree_k, journal_k, ret;
again:
if (iter->at_end)
return bkey_s_c_null;
while ((btree_k = bch2_journal_iter_peek_btree(iter)).k &&
bpos_lt(btree_k.k->p, iter->pos))
bch2_journal_iter_advance_btree(iter);
while ((journal_k = bch2_journal_iter_peek(&iter->journal)).k &&
bpos_lt(journal_k.k->p, iter->pos))
bch2_journal_iter_advance(&iter->journal);
ret = journal_k.k &&
(!btree_k.k || bpos_le(journal_k.k->p, btree_k.k->p))
? journal_k
: btree_k;
if (ret.k && iter->b && bpos_gt(ret.k->p, iter->b->data->max_key))
ret = bkey_s_c_null;
if (ret.k) {
iter->pos = ret.k->p;
if (bkey_deleted(ret.k)) {
bch2_btree_and_journal_iter_advance(iter);
goto again;
}
} else {
iter->pos = SPOS_MAX;
iter->at_end = true;
}
return ret;
}
void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *iter)
{
bch2_journal_iter_exit(&iter->journal);
}
void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b,
struct btree_node_iter node_iter,
struct bpos pos)
{
memset(iter, 0, sizeof(*iter));
iter->b = b;
iter->node_iter = node_iter;
bch2_journal_iter_init(c, &iter->journal, b->c.btree_id, b->c.level, pos);
INIT_LIST_HEAD(&iter->journal.list);
iter->pos = b->data->min_key;
iter->at_end = false;
}
/*
* this version is used by btree_gc before filesystem has gone RW and
* multithreaded, so uses the journal_iters list:
*/
void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b)
{
struct btree_node_iter node_iter;
bch2_btree_node_iter_init_from_start(&node_iter, b);
__bch2_btree_and_journal_iter_init_node_iter(iter, c, b, node_iter, b->data->min_key);
list_add(&iter->journal.list, &c->journal_iters);
}
/* sort and dedup all keys in the journal: */
void bch2_journal_entries_free(struct bch_fs *c)
{
struct journal_replay **i;
struct genradix_iter iter;
genradix_for_each(&c->journal_entries, iter, i)
if (*i)
kvpfree(*i, offsetof(struct journal_replay, j) +
vstruct_bytes(&(*i)->j));
genradix_free(&c->journal_entries);
}
/*
* When keys compare equal, oldest compares first:
*/
static int journal_sort_key_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return journal_key_cmp(l, r) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->journal_offset, r->journal_offset);
}
void bch2_journal_keys_free(struct journal_keys *keys)
{
struct journal_key *i;
move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
keys->gap = keys->nr;
for (i = keys->d; i < keys->d + keys->nr; i++)
if (i->allocated)
kfree(i->k);
kvfree(keys->d);
keys->d = NULL;
keys->nr = keys->gap = keys->size = 0;
}
static void __journal_keys_sort(struct journal_keys *keys)
{
struct journal_key *src, *dst;
sort(keys->d, keys->nr, sizeof(keys->d[0]), journal_sort_key_cmp, NULL);
src = dst = keys->d;
while (src < keys->d + keys->nr) {
while (src + 1 < keys->d + keys->nr &&
src[0].btree_id == src[1].btree_id &&
src[0].level == src[1].level &&
bpos_eq(src[0].k->k.p, src[1].k->k.p))
src++;
*dst++ = *src++;
}
keys->nr = dst - keys->d;
}
int bch2_journal_keys_sort(struct bch_fs *c)
{
struct genradix_iter iter;
struct journal_replay *i, **_i;
struct jset_entry *entry;
struct bkey_i *k;
struct journal_keys *keys = &c->journal_keys;
size_t nr_keys = 0, nr_read = 0;
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
for_each_jset_key(k, entry, &i->j)
nr_keys++;
}
if (!nr_keys)
return 0;
keys->size = roundup_pow_of_two(nr_keys);
keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL);
if (!keys->d) {
bch_err(c, "Failed to allocate buffer for sorted journal keys (%zu keys); trying slowpath",
nr_keys);
do {
keys->size >>= 1;
keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL);
} while (!keys->d && keys->size > nr_keys / 8);
if (!keys->d) {
bch_err(c, "Failed to allocate %zu size buffer for sorted journal keys; exiting",
keys->size);
return -BCH_ERR_ENOMEM_journal_keys_sort;
}
}
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
cond_resched();
for_each_jset_key(k, entry, &i->j) {
if (keys->nr == keys->size) {
__journal_keys_sort(keys);
if (keys->nr > keys->size * 7 / 8) {
bch_err(c, "Too many journal keys for slowpath; have %zu compacted, buf size %zu, processed %zu/%zu",
keys->nr, keys->size, nr_read, nr_keys);
return -BCH_ERR_ENOMEM_journal_keys_sort;
}
}
keys->d[keys->nr++] = (struct journal_key) {
.btree_id = entry->btree_id,
.level = entry->level,
.k = k,
.journal_seq = le64_to_cpu(i->j.seq),
.journal_offset = k->_data - i->j._data,
};
nr_read++;
}
}
__journal_keys_sort(keys);
keys->gap = keys->nr;
bch_verbose(c, "Journal keys: %zu read, %zu after sorting and compacting", nr_keys, keys->nr);
return 0;
}

View File

@ -0,0 +1,57 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_JOURNAL_ITER_H
#define _BCACHEFS_BTREE_JOURNAL_ITER_H
struct journal_iter {
struct list_head list;
enum btree_id btree_id;
unsigned level;
size_t idx;
struct journal_keys *keys;
};
/*
* Iterate over keys in the btree, with keys from the journal overlaid on top:
*/
struct btree_and_journal_iter {
struct btree *b;
struct btree_node_iter node_iter;
struct bkey unpacked;
struct journal_iter journal;
struct bpos pos;
bool at_end;
};
struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *, enum btree_id,
unsigned, struct bpos, struct bpos, size_t *);
struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *, enum btree_id,
unsigned, struct bpos);
int bch2_journal_key_insert_take(struct bch_fs *, enum btree_id,
unsigned, struct bkey_i *);
int bch2_journal_key_insert(struct bch_fs *, enum btree_id,
unsigned, struct bkey_i *);
int bch2_journal_key_delete(struct bch_fs *, enum btree_id,
unsigned, struct bpos);
void bch2_journal_key_overwritten(struct bch_fs *, enum btree_id,
unsigned, struct bpos);
void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *);
struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *);
void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *);
void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *,
struct bch_fs *, struct btree *,
struct btree_node_iter, struct bpos);
void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *,
struct bch_fs *,
struct btree *);
void bch2_journal_keys_free(struct journal_keys *);
void bch2_journal_entries_free(struct bch_fs *);
int bch2_journal_keys_sort(struct bch_fs *);
#endif /* _BCACHEFS_BTREE_JOURNAL_ITER_H */

View File

@ -1,45 +1,22 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_gc.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_journal_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_update_interior.h"
#include "btree_write_buffer.h"
#include "buckets.h"
#include "debug.h"
#include "errcode.h"
#include "error.h"
#include "extent_update.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "recovery.h"
#include "subvolume.h"
#include "replicas.h"
#include "trace.h"
#include "subvolume.h"
#include <linux/prefetch.h>
#include <linux/sort.h>
/*
* bch2_btree_path_peek_slot() for a cached iterator might return a key in a
* different snapshot:
*/
static struct bkey_s_c bch2_btree_path_peek_slot_exact(struct btree_path *path, struct bkey *u)
{
struct bkey_s_c k = bch2_btree_path_peek_slot(path, u);
if (k.k && bpos_eq(path->pos, k.k->p))
return k;
bkey_init(u);
u->p = path->pos;
return (struct bkey_s_c) { u, NULL };
}
static void verify_update_old_key(struct btree_trans *trans, struct btree_insert_entry *i)
{
@ -64,20 +41,6 @@ static void verify_update_old_key(struct btree_trans *trans, struct btree_insert
#endif
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *, struct btree_path *,
struct bkey_i *, enum btree_update_flags,
unsigned long ip);
static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
const struct btree_insert_entry *r)
{
return cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->cached, r->cached) ?:
-cmp_int(l->level, r->level) ?:
bpos_cmp(l->k->k.p, r->k->k.p);
}
static inline struct btree_path_level *insert_l(struct btree_insert_entry *i)
{
return i->path->l + i->level;
@ -1191,917 +1154,3 @@ err:
goto retry;
}
static noinline int __check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_s_c k;
int ret;
bch2_trans_iter_init(trans, &iter, id, pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while (1) {
k = bch2_btree_iter_prev(&iter);
ret = bkey_err(k);
if (ret)
break;
if (!k.k)
break;
if (!bkey_eq(pos, k.k->p))
break;
if (bch2_snapshot_is_ancestor(c, k.k->p.snapshot, pos.snapshot)) {
ret = 1;
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static inline int check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
if (!btree_type_has_snapshots(id) ||
bch2_snapshot_is_leaf(trans->c, pos.snapshot))
return 0;
return __check_pos_snapshot_overwritten(trans, id, pos);
}
static noinline int extent_front_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
struct bkey_i **insert,
enum btree_update_flags flags)
{
struct bch_fs *c = trans->c;
struct bkey_i *update;
int ret;
update = bch2_bkey_make_mut_noupdate(trans, k);
ret = PTR_ERR_OR_ZERO(update);
if (ret)
return ret;
if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
return 0;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, (*insert)->k.p);
if (ret < 0)
return ret;
if (ret)
return 0;
ret = bch2_btree_delete_at(trans, iter, flags);
if (ret)
return ret;
*insert = update;
return 0;
}
static noinline int extent_back_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
int ret;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, insert->k.p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p);
if (ret < 0)
return ret;
if (ret)
return 0;
bch2_bkey_merge(c, bkey_i_to_s(insert), k);
return 0;
}
/*
* When deleting, check if we need to emit a whiteout (because we're overwriting
* something in an ancestor snapshot)
*/
static int need_whiteout_for_snapshot(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos)
{
struct btree_iter iter;
struct bkey_s_c k;
u32 snapshot = pos.snapshot;
int ret;
if (!bch2_snapshot_parent(trans->c, pos.snapshot))
return 0;
pos.snapshot++;
for_each_btree_key_norestart(trans, iter, btree_id, pos,
BTREE_ITER_ALL_SNAPSHOTS|
BTREE_ITER_NOPRESERVE, k, ret) {
if (!bkey_eq(k.k->p, pos))
break;
if (bch2_snapshot_is_ancestor(trans->c, snapshot,
k.k->p.snapshot)) {
ret = !bkey_whiteout(k.k);
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
enum btree_id id,
struct bpos old_pos,
struct bpos new_pos)
{
struct bch_fs *c = trans->c;
struct btree_iter old_iter, new_iter = { NULL };
struct bkey_s_c old_k, new_k;
snapshot_id_list s;
struct bkey_i *update;
int ret;
if (!bch2_snapshot_has_children(c, old_pos.snapshot))
return 0;
darray_init(&s);
bch2_trans_iter_init(trans, &old_iter, id, old_pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
!(ret = bkey_err(old_k)) &&
bkey_eq(old_pos, old_k.k->p)) {
struct bpos whiteout_pos =
SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
continue;
new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bkey_err(new_k);
if (ret)
break;
if (new_k.k->type == KEY_TYPE_deleted) {
update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
break;
bkey_init(&update->k);
update->k.p = whiteout_pos;
update->k.type = KEY_TYPE_whiteout;
ret = bch2_trans_update(trans, &new_iter, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
}
bch2_trans_iter_exit(trans, &new_iter);
ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
if (ret)
break;
}
bch2_trans_iter_exit(trans, &new_iter);
bch2_trans_iter_exit(trans, &old_iter);
darray_exit(&s);
return ret;
}
int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
struct btree_iter *iter,
enum btree_update_flags flags,
struct bkey_s_c old,
struct bkey_s_c new)
{
enum btree_id btree_id = iter->btree_id;
struct bkey_i *update;
struct bpos new_start = bkey_start_pos(new.k);
bool front_split = bkey_lt(bkey_start_pos(old.k), new_start);
bool back_split = bkey_gt(old.k->p, new.k->p);
int ret = 0, compressed_sectors;
/*
* If we're going to be splitting a compressed extent, note it
* so that __bch2_trans_commit() can increase our disk
* reservation:
*/
if (((front_split && back_split) ||
((front_split || back_split) && old.k->p.snapshot != new.k->p.snapshot)) &&
(compressed_sectors = bch2_bkey_sectors_compressed(old)))
trans->extra_journal_res += compressed_sectors;
if (front_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_back(new_start, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
old.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
return ret;
}
/* If we're overwriting in a different snapshot - middle split: */
if (old.k->p.snapshot != new.k->p.snapshot &&
(front_split || back_split)) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_front(new_start, update);
bch2_cut_back(new.k->p, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
old.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
return ret;
}
if (bkey_le(old.k->p, new.k->p)) {
update = bch2_trans_kmalloc(trans, sizeof(*update));
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bkey_init(&update->k);
update->k.p = old.k->p;
update->k.p.snapshot = new.k->p.snapshot;
if (new.k->p.snapshot != old.k->p.snapshot) {
update->k.type = KEY_TYPE_whiteout;
} else if (btree_type_has_snapshots(btree_id)) {
ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
if (ret < 0)
return ret;
if (ret)
update->k.type = KEY_TYPE_whiteout;
}
ret = bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
return ret;
}
if (back_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_front(new.k->p, update);
ret = bch2_trans_update_by_path(trans, iter->path, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags, _RET_IP_);
if (ret)
return ret;
}
return 0;
}
static int bch2_trans_update_extent(struct btree_trans *trans,
struct btree_iter *orig_iter,
struct bkey_i *insert,
enum btree_update_flags flags)
{
struct btree_iter iter;
struct bkey_s_c k;
enum btree_id btree_id = orig_iter->btree_id;
int ret = 0;
bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
BTREE_ITER_INTENT|
BTREE_ITER_WITH_UPDATES|
BTREE_ITER_NOT_EXTENTS);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
ret = extent_front_merge(trans, &iter, k, &insert, flags);
if (ret)
goto err;
}
goto next;
}
while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
bool done = bkey_lt(insert->k.p, k.k->p);
ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
if (ret)
goto err;
if (done)
goto out;
next:
bch2_btree_iter_advance(&iter);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
}
if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
ret = extent_back_merge(trans, &iter, insert, k);
if (ret)
goto err;
}
out:
if (!bkey_deleted(&insert->k))
ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static noinline int flush_new_cached_update(struct btree_trans *trans,
struct btree_path *path,
struct btree_insert_entry *i,
enum btree_update_flags flags,
unsigned long ip)
{
struct btree_path *btree_path;
struct bkey k;
int ret;
btree_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT, _THIS_IP_);
ret = bch2_btree_path_traverse(trans, btree_path, 0);
if (ret)
goto out;
/*
* The old key in the insert entry might actually refer to an existing
* key in the btree that has been deleted from cache and not yet
* flushed. Check for this and skip the flush so we don't run triggers
* against a stale key.
*/
bch2_btree_path_peek_slot_exact(btree_path, &k);
if (!bkey_deleted(&k))
goto out;
i->key_cache_already_flushed = true;
i->flags |= BTREE_TRIGGER_NORUN;
btree_path_set_should_be_locked(btree_path);
ret = bch2_trans_update_by_path(trans, btree_path, i->k, flags, ip);
out:
bch2_path_put(trans, btree_path, true);
return ret;
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *trans, struct btree_path *path,
struct bkey_i *k, enum btree_update_flags flags,
unsigned long ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i, n;
u64 seq = 0;
int cmp;
EBUG_ON(!path->should_be_locked);
EBUG_ON(trans->nr_updates >= BTREE_ITER_MAX);
EBUG_ON(!bpos_eq(k->k.p, path->pos));
/*
* The transaction journal res hasn't been allocated at this point.
* That occurs at commit time. Reuse the seq field to pass in the seq
* of a prejournaled key.
*/
if (flags & BTREE_UPDATE_PREJOURNAL)
seq = trans->journal_res.seq;
n = (struct btree_insert_entry) {
.flags = flags,
.bkey_type = __btree_node_type(path->level, path->btree_id),
.btree_id = path->btree_id,
.level = path->level,
.cached = path->cached,
.path = path,
.k = k,
.seq = seq,
.ip_allocated = ip,
};
#ifdef CONFIG_BCACHEFS_DEBUG
trans_for_each_update(trans, i)
BUG_ON(i != trans->updates &&
btree_insert_entry_cmp(i - 1, i) >= 0);
#endif
/*
* Pending updates are kept sorted: first, find position of new update,
* then delete/trim any updates the new update overwrites:
*/
trans_for_each_update(trans, i) {
cmp = btree_insert_entry_cmp(&n, i);
if (cmp <= 0)
break;
}
if (!cmp && i < trans->updates + trans->nr_updates) {
EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
bch2_path_put(trans, i->path, true);
i->flags = n.flags;
i->cached = n.cached;
i->k = n.k;
i->path = n.path;
i->seq = n.seq;
i->ip_allocated = n.ip_allocated;
} else {
array_insert_item(trans->updates, trans->nr_updates,
i - trans->updates, n);
i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
if (unlikely(trans->journal_replay_not_finished)) {
struct bkey_i *j_k =
bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
if (j_k) {
i->old_k = j_k->k;
i->old_v = &j_k->v;
}
}
}
__btree_path_get(i->path, true);
/*
* If a key is present in the key cache, it must also exist in the
* btree - this is necessary for cache coherency. When iterating over
* a btree that's cached in the key cache, the btree iter code checks
* the key cache - but the key has to exist in the btree for that to
* work:
*/
if (path->cached && bkey_deleted(&i->old_k))
return flush_new_cached_update(trans, path, i, flags, ip);
return 0;
}
int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_path *path = iter->update_path ?: iter->path;
struct bkey_cached *ck;
int ret;
if (iter->flags & BTREE_ITER_IS_EXTENTS)
return bch2_trans_update_extent(trans, iter, k, flags);
if (bkey_deleted(&k->k) &&
!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) {
ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
if (unlikely(ret < 0))
return ret;
if (ret)
k->k.type = KEY_TYPE_whiteout;
}
/*
* Ensure that updates to cached btrees go to the key cache:
*/
if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
!path->cached &&
!path->level &&
btree_id_cached(trans->c, path->btree_id)) {
if (!iter->key_cache_path ||
!iter->key_cache_path->should_be_locked ||
!bpos_eq(iter->key_cache_path->pos, k->k.p)) {
if (!iter->key_cache_path)
iter->key_cache_path =
bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT|
BTREE_ITER_CACHED, _THIS_IP_);
iter->key_cache_path =
bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
iter->flags & BTREE_ITER_INTENT,
_THIS_IP_);
ret = bch2_btree_path_traverse(trans, iter->key_cache_path,
BTREE_ITER_CACHED);
if (unlikely(ret))
return ret;
ck = (void *) iter->key_cache_path->l[0].b;
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
}
btree_path_set_should_be_locked(iter->key_cache_path);
}
path = iter->key_cache_path;
}
return bch2_trans_update_by_path(trans, path, k, flags, _RET_IP_);
}
/*
* Add a transaction update for a key that has already been journaled.
*/
int __must_check bch2_trans_update_seq(struct btree_trans *trans, u64 seq,
struct btree_iter *iter, struct bkey_i *k,
enum btree_update_flags flags)
{
trans->journal_res.seq = seq;
return bch2_trans_update(trans, iter, k, flags|BTREE_UPDATE_NOJOURNAL|
BTREE_UPDATE_PREJOURNAL);
}
int __must_check bch2_trans_update_buffered(struct btree_trans *trans,
enum btree_id btree,
struct bkey_i *k)
{
struct btree_write_buffered_key *i;
int ret;
EBUG_ON(trans->nr_wb_updates > trans->wb_updates_size);
EBUG_ON(k->k.u64s > BTREE_WRITE_BUFERED_U64s_MAX);
trans_for_each_wb_update(trans, i) {
if (i->btree == btree && bpos_eq(i->k.k.p, k->k.p)) {
bkey_copy(&i->k, k);
return 0;
}
}
if (!trans->wb_updates ||
trans->nr_wb_updates == trans->wb_updates_size) {
struct btree_write_buffered_key *u;
if (trans->nr_wb_updates == trans->wb_updates_size) {
struct btree_transaction_stats *s = btree_trans_stats(trans);
BUG_ON(trans->wb_updates_size > U8_MAX / 2);
trans->wb_updates_size = max(1, trans->wb_updates_size * 2);
if (s)
s->wb_updates_size = trans->wb_updates_size;
}
u = bch2_trans_kmalloc_nomemzero(trans,
trans->wb_updates_size *
sizeof(struct btree_write_buffered_key));
ret = PTR_ERR_OR_ZERO(u);
if (ret)
return ret;
if (trans->nr_wb_updates)
memcpy(u, trans->wb_updates, trans->nr_wb_updates *
sizeof(struct btree_write_buffered_key));
trans->wb_updates = u;
}
trans->wb_updates[trans->nr_wb_updates] = (struct btree_write_buffered_key) {
.btree = btree,
};
bkey_copy(&trans->wb_updates[trans->nr_wb_updates].k, k);
trans->nr_wb_updates++;
return 0;
}
int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
enum btree_id btree, struct bpos end)
{
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT);
k = bch2_btree_iter_prev(iter);
ret = bkey_err(k);
if (ret)
goto err;
bch2_btree_iter_advance(iter);
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
BUG_ON(k.k->type != KEY_TYPE_deleted);
if (bkey_gt(k.k->p, end)) {
ret = -BCH_ERR_ENOSPC_btree_slot;
goto err;
}
return 0;
err:
bch2_trans_iter_exit(trans, iter);
return ret;
}
void bch2_trans_commit_hook(struct btree_trans *trans,
struct btree_trans_commit_hook *h)
{
h->next = trans->hooks;
trans->hooks = h;
}
int bch2_btree_insert_nonextent(struct btree_trans *trans,
enum btree_id btree, struct bkey_i *k,
enum btree_update_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, btree, k->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_btree_insert(struct btree_trans *trans, enum btree_id id,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
BTREE_ITER_CACHED|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/**
* bch2_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 *journal_seq, int flags)
{
return bch2_trans_do(c, disk_res, journal_seq, flags,
__bch2_btree_insert(&trans, id, k, 0));
}
int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
unsigned len, unsigned update_flags)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = iter->pos;
bch2_key_resize(&k->k, len);
return bch2_trans_update(trans, iter, k, update_flags);
}
int bch2_btree_delete_at(struct btree_trans *trans,
struct btree_iter *iter, unsigned update_flags)
{
return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
}
int bch2_btree_delete_at_buffered(struct btree_trans *trans,
enum btree_id btree, struct bpos pos)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = pos;
return bch2_trans_update_buffered(trans, btree, k);
}
int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
u32 restart_count = trans->restart_count;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(trans->c, 0);
struct bkey_i delete;
ret = bkey_err(k);
if (ret)
goto err;
bkey_init(&delete.k);
/*
* This could probably be more efficient for extents:
*/
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
if (iter.flags & BTREE_ITER_IS_EXTENTS)
bch2_key_resize(&delete.k,
bpos_min(end, k.k->p).offset -
iter.pos.offset);
ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
bch2_trans_commit(trans, &disk_res, journal_seq,
BTREE_INSERT_NOFAIL);
bch2_disk_reservation_put(trans->c, &disk_res);
err:
/*
* the bch2_trans_begin() call is in a weird place because we
* need to call it after every transaction commit, to avoid path
* overflow, but don't want to call it if the delete operation
* is a no-op and we have no work to do:
*/
bch2_trans_begin(trans);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
ret = 0;
if (ret)
break;
}
bch2_trans_iter_exit(trans, &iter);
if (!ret && trans_was_restarted(trans, restart_count))
ret = -BCH_ERR_transaction_restart_nested;
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
int ret = bch2_trans_run(c,
bch2_btree_delete_range_trans(&trans, id, start, end,
update_flags, journal_seq));
if (ret == -BCH_ERR_transaction_restart_nested)
ret = 0;
return ret;
}
int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
struct bpos pos, bool set)
{
struct bkey_i *k;
int ret = 0;
k = bch2_trans_kmalloc_nomemzero(trans, sizeof(*k));
ret = PTR_ERR_OR_ZERO(k);
if (unlikely(ret))
return ret;
bkey_init(&k->k);
k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
k->k.p = pos;
return bch2_trans_update_buffered(trans, btree, k);
}
static int __bch2_trans_log_msg(darray_u64 *entries, const char *fmt, va_list args)
{
struct printbuf buf = PRINTBUF;
struct jset_entry_log *l;
unsigned u64s;
int ret;
prt_vprintf(&buf, fmt, args);
ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
if (ret)
goto err;
u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
ret = darray_make_room(entries, jset_u64s(u64s));
if (ret)
goto err;
l = (void *) &darray_top(*entries);
l->entry.u64s = cpu_to_le16(u64s);
l->entry.btree_id = 0;
l->entry.level = 1;
l->entry.type = BCH_JSET_ENTRY_log;
l->entry.pad[0] = 0;
l->entry.pad[1] = 0;
l->entry.pad[2] = 0;
memcpy(l->d, buf.buf, buf.pos);
while (buf.pos & 7)
l->d[buf.pos++] = '\0';
entries->nr += jset_u64s(u64s);
err:
printbuf_exit(&buf);
return ret;
}
static int
__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
va_list args)
{
int ret;
if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
ret = __bch2_trans_log_msg(&c->journal.early_journal_entries, fmt, args);
} else {
ret = bch2_trans_do(c, NULL, NULL,
BTREE_INSERT_LAZY_RW|commit_flags,
__bch2_trans_log_msg(&trans.extra_journal_entries, fmt, args));
}
return ret;
}
int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, 0, fmt, args);
va_end(args);
return ret;
}
/*
* Use for logging messages during recovery to enable reserved space and avoid
* blocking.
*/
int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
va_end(args);
return ret;
}

943
libbcachefs/btree_update.c Normal file
View File

@ -0,0 +1,943 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_iter.h"
#include "btree_journal_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "debug.h"
#include "errcode.h"
#include "error.h"
#include "extents.h"
#include "keylist.h"
#include "subvolume.h"
#include "trace.h"
static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
const struct btree_insert_entry *r)
{
return cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->cached, r->cached) ?:
-cmp_int(l->level, r->level) ?:
bpos_cmp(l->k->k.p, r->k->k.p);
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *, struct btree_path *,
struct bkey_i *, enum btree_update_flags,
unsigned long ip);
static noinline int __check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_s_c k;
int ret;
bch2_trans_iter_init(trans, &iter, id, pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while (1) {
k = bch2_btree_iter_prev(&iter);
ret = bkey_err(k);
if (ret)
break;
if (!k.k)
break;
if (!bkey_eq(pos, k.k->p))
break;
if (bch2_snapshot_is_ancestor(c, k.k->p.snapshot, pos.snapshot)) {
ret = 1;
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static inline int check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
if (!btree_type_has_snapshots(id) ||
bch2_snapshot_is_leaf(trans->c, pos.snapshot))
return 0;
return __check_pos_snapshot_overwritten(trans, id, pos);
}
static noinline int extent_front_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
struct bkey_i **insert,
enum btree_update_flags flags)
{
struct bch_fs *c = trans->c;
struct bkey_i *update;
int ret;
update = bch2_bkey_make_mut_noupdate(trans, k);
ret = PTR_ERR_OR_ZERO(update);
if (ret)
return ret;
if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
return 0;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, (*insert)->k.p);
if (ret < 0)
return ret;
if (ret)
return 0;
ret = bch2_btree_delete_at(trans, iter, flags);
if (ret)
return ret;
*insert = update;
return 0;
}
static noinline int extent_back_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
int ret;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, insert->k.p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p);
if (ret < 0)
return ret;
if (ret)
return 0;
bch2_bkey_merge(c, bkey_i_to_s(insert), k);
return 0;
}
/*
* When deleting, check if we need to emit a whiteout (because we're overwriting
* something in an ancestor snapshot)
*/
static int need_whiteout_for_snapshot(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos)
{
struct btree_iter iter;
struct bkey_s_c k;
u32 snapshot = pos.snapshot;
int ret;
if (!bch2_snapshot_parent(trans->c, pos.snapshot))
return 0;
pos.snapshot++;
for_each_btree_key_norestart(trans, iter, btree_id, pos,
BTREE_ITER_ALL_SNAPSHOTS|
BTREE_ITER_NOPRESERVE, k, ret) {
if (!bkey_eq(k.k->p, pos))
break;
if (bch2_snapshot_is_ancestor(trans->c, snapshot,
k.k->p.snapshot)) {
ret = !bkey_whiteout(k.k);
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
enum btree_id id,
struct bpos old_pos,
struct bpos new_pos)
{
struct bch_fs *c = trans->c;
struct btree_iter old_iter, new_iter = { NULL };
struct bkey_s_c old_k, new_k;
snapshot_id_list s;
struct bkey_i *update;
int ret;
if (!bch2_snapshot_has_children(c, old_pos.snapshot))
return 0;
darray_init(&s);
bch2_trans_iter_init(trans, &old_iter, id, old_pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
!(ret = bkey_err(old_k)) &&
bkey_eq(old_pos, old_k.k->p)) {
struct bpos whiteout_pos =
SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
continue;
new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bkey_err(new_k);
if (ret)
break;
if (new_k.k->type == KEY_TYPE_deleted) {
update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
break;
bkey_init(&update->k);
update->k.p = whiteout_pos;
update->k.type = KEY_TYPE_whiteout;
ret = bch2_trans_update(trans, &new_iter, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
}
bch2_trans_iter_exit(trans, &new_iter);
ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
if (ret)
break;
}
bch2_trans_iter_exit(trans, &new_iter);
bch2_trans_iter_exit(trans, &old_iter);
darray_exit(&s);
return ret;
}
int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
struct btree_iter *iter,
enum btree_update_flags flags,
struct bkey_s_c old,
struct bkey_s_c new)
{
enum btree_id btree_id = iter->btree_id;
struct bkey_i *update;
struct bpos new_start = bkey_start_pos(new.k);
bool front_split = bkey_lt(bkey_start_pos(old.k), new_start);
bool back_split = bkey_gt(old.k->p, new.k->p);
int ret = 0, compressed_sectors;
/*
* If we're going to be splitting a compressed extent, note it
* so that __bch2_trans_commit() can increase our disk
* reservation:
*/
if (((front_split && back_split) ||
((front_split || back_split) && old.k->p.snapshot != new.k->p.snapshot)) &&
(compressed_sectors = bch2_bkey_sectors_compressed(old)))
trans->extra_journal_res += compressed_sectors;
if (front_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_back(new_start, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
old.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
return ret;
}
/* If we're overwriting in a different snapshot - middle split: */
if (old.k->p.snapshot != new.k->p.snapshot &&
(front_split || back_split)) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_front(new_start, update);
bch2_cut_back(new.k->p, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
old.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
return ret;
}
if (bkey_le(old.k->p, new.k->p)) {
update = bch2_trans_kmalloc(trans, sizeof(*update));
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bkey_init(&update->k);
update->k.p = old.k->p;
update->k.p.snapshot = new.k->p.snapshot;
if (new.k->p.snapshot != old.k->p.snapshot) {
update->k.type = KEY_TYPE_whiteout;
} else if (btree_type_has_snapshots(btree_id)) {
ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
if (ret < 0)
return ret;
if (ret)
update->k.type = KEY_TYPE_whiteout;
}
ret = bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
return ret;
}
if (back_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_front(new.k->p, update);
ret = bch2_trans_update_by_path(trans, iter->path, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags, _RET_IP_);
if (ret)
return ret;
}
return 0;
}
static int bch2_trans_update_extent(struct btree_trans *trans,
struct btree_iter *orig_iter,
struct bkey_i *insert,
enum btree_update_flags flags)
{
struct btree_iter iter;
struct bkey_s_c k;
enum btree_id btree_id = orig_iter->btree_id;
int ret = 0;
bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
BTREE_ITER_INTENT|
BTREE_ITER_WITH_UPDATES|
BTREE_ITER_NOT_EXTENTS);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
ret = extent_front_merge(trans, &iter, k, &insert, flags);
if (ret)
goto err;
}
goto next;
}
while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
bool done = bkey_lt(insert->k.p, k.k->p);
ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
if (ret)
goto err;
if (done)
goto out;
next:
bch2_btree_iter_advance(&iter);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
}
if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
ret = extent_back_merge(trans, &iter, insert, k);
if (ret)
goto err;
}
out:
if (!bkey_deleted(&insert->k))
ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static noinline int flush_new_cached_update(struct btree_trans *trans,
struct btree_path *path,
struct btree_insert_entry *i,
enum btree_update_flags flags,
unsigned long ip)
{
struct btree_path *btree_path;
struct bkey k;
int ret;
btree_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT, _THIS_IP_);
ret = bch2_btree_path_traverse(trans, btree_path, 0);
if (ret)
goto out;
/*
* The old key in the insert entry might actually refer to an existing
* key in the btree that has been deleted from cache and not yet
* flushed. Check for this and skip the flush so we don't run triggers
* against a stale key.
*/
bch2_btree_path_peek_slot_exact(btree_path, &k);
if (!bkey_deleted(&k))
goto out;
i->key_cache_already_flushed = true;
i->flags |= BTREE_TRIGGER_NORUN;
btree_path_set_should_be_locked(btree_path);
ret = bch2_trans_update_by_path(trans, btree_path, i->k, flags, ip);
out:
bch2_path_put(trans, btree_path, true);
return ret;
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *trans, struct btree_path *path,
struct bkey_i *k, enum btree_update_flags flags,
unsigned long ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i, n;
u64 seq = 0;
int cmp;
EBUG_ON(!path->should_be_locked);
EBUG_ON(trans->nr_updates >= BTREE_ITER_MAX);
EBUG_ON(!bpos_eq(k->k.p, path->pos));
/*
* The transaction journal res hasn't been allocated at this point.
* That occurs at commit time. Reuse the seq field to pass in the seq
* of a prejournaled key.
*/
if (flags & BTREE_UPDATE_PREJOURNAL)
seq = trans->journal_res.seq;
n = (struct btree_insert_entry) {
.flags = flags,
.bkey_type = __btree_node_type(path->level, path->btree_id),
.btree_id = path->btree_id,
.level = path->level,
.cached = path->cached,
.path = path,
.k = k,
.seq = seq,
.ip_allocated = ip,
};
#ifdef CONFIG_BCACHEFS_DEBUG
trans_for_each_update(trans, i)
BUG_ON(i != trans->updates &&
btree_insert_entry_cmp(i - 1, i) >= 0);
#endif
/*
* Pending updates are kept sorted: first, find position of new update,
* then delete/trim any updates the new update overwrites:
*/
trans_for_each_update(trans, i) {
cmp = btree_insert_entry_cmp(&n, i);
if (cmp <= 0)
break;
}
if (!cmp && i < trans->updates + trans->nr_updates) {
EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
bch2_path_put(trans, i->path, true);
i->flags = n.flags;
i->cached = n.cached;
i->k = n.k;
i->path = n.path;
i->seq = n.seq;
i->ip_allocated = n.ip_allocated;
} else {
array_insert_item(trans->updates, trans->nr_updates,
i - trans->updates, n);
i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
if (unlikely(trans->journal_replay_not_finished)) {
struct bkey_i *j_k =
bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
if (j_k) {
i->old_k = j_k->k;
i->old_v = &j_k->v;
}
}
}
__btree_path_get(i->path, true);
/*
* If a key is present in the key cache, it must also exist in the
* btree - this is necessary for cache coherency. When iterating over
* a btree that's cached in the key cache, the btree iter code checks
* the key cache - but the key has to exist in the btree for that to
* work:
*/
if (path->cached && bkey_deleted(&i->old_k))
return flush_new_cached_update(trans, path, i, flags, ip);
return 0;
}
int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_path *path = iter->update_path ?: iter->path;
struct bkey_cached *ck;
int ret;
if (iter->flags & BTREE_ITER_IS_EXTENTS)
return bch2_trans_update_extent(trans, iter, k, flags);
if (bkey_deleted(&k->k) &&
!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) {
ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
if (unlikely(ret < 0))
return ret;
if (ret)
k->k.type = KEY_TYPE_whiteout;
}
/*
* Ensure that updates to cached btrees go to the key cache:
*/
if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
!path->cached &&
!path->level &&
btree_id_cached(trans->c, path->btree_id)) {
if (!iter->key_cache_path ||
!iter->key_cache_path->should_be_locked ||
!bpos_eq(iter->key_cache_path->pos, k->k.p)) {
if (!iter->key_cache_path)
iter->key_cache_path =
bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT|
BTREE_ITER_CACHED, _THIS_IP_);
iter->key_cache_path =
bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
iter->flags & BTREE_ITER_INTENT,
_THIS_IP_);
ret = bch2_btree_path_traverse(trans, iter->key_cache_path,
BTREE_ITER_CACHED);
if (unlikely(ret))
return ret;
ck = (void *) iter->key_cache_path->l[0].b;
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
}
btree_path_set_should_be_locked(iter->key_cache_path);
}
path = iter->key_cache_path;
}
return bch2_trans_update_by_path(trans, path, k, flags, _RET_IP_);
}
/*
* Add a transaction update for a key that has already been journaled.
*/
int __must_check bch2_trans_update_seq(struct btree_trans *trans, u64 seq,
struct btree_iter *iter, struct bkey_i *k,
enum btree_update_flags flags)
{
trans->journal_res.seq = seq;
return bch2_trans_update(trans, iter, k, flags|BTREE_UPDATE_NOJOURNAL|
BTREE_UPDATE_PREJOURNAL);
}
int __must_check bch2_trans_update_buffered(struct btree_trans *trans,
enum btree_id btree,
struct bkey_i *k)
{
struct btree_write_buffered_key *i;
int ret;
EBUG_ON(trans->nr_wb_updates > trans->wb_updates_size);
EBUG_ON(k->k.u64s > BTREE_WRITE_BUFERED_U64s_MAX);
trans_for_each_wb_update(trans, i) {
if (i->btree == btree && bpos_eq(i->k.k.p, k->k.p)) {
bkey_copy(&i->k, k);
return 0;
}
}
if (!trans->wb_updates ||
trans->nr_wb_updates == trans->wb_updates_size) {
struct btree_write_buffered_key *u;
if (trans->nr_wb_updates == trans->wb_updates_size) {
struct btree_transaction_stats *s = btree_trans_stats(trans);
BUG_ON(trans->wb_updates_size > U8_MAX / 2);
trans->wb_updates_size = max(1, trans->wb_updates_size * 2);
if (s)
s->wb_updates_size = trans->wb_updates_size;
}
u = bch2_trans_kmalloc_nomemzero(trans,
trans->wb_updates_size *
sizeof(struct btree_write_buffered_key));
ret = PTR_ERR_OR_ZERO(u);
if (ret)
return ret;
if (trans->nr_wb_updates)
memcpy(u, trans->wb_updates, trans->nr_wb_updates *
sizeof(struct btree_write_buffered_key));
trans->wb_updates = u;
}
trans->wb_updates[trans->nr_wb_updates] = (struct btree_write_buffered_key) {
.btree = btree,
};
bkey_copy(&trans->wb_updates[trans->nr_wb_updates].k, k);
trans->nr_wb_updates++;
return 0;
}
int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
enum btree_id btree, struct bpos end)
{
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT);
k = bch2_btree_iter_prev(iter);
ret = bkey_err(k);
if (ret)
goto err;
bch2_btree_iter_advance(iter);
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
BUG_ON(k.k->type != KEY_TYPE_deleted);
if (bkey_gt(k.k->p, end)) {
ret = -BCH_ERR_ENOSPC_btree_slot;
goto err;
}
return 0;
err:
bch2_trans_iter_exit(trans, iter);
return ret;
}
void bch2_trans_commit_hook(struct btree_trans *trans,
struct btree_trans_commit_hook *h)
{
h->next = trans->hooks;
trans->hooks = h;
}
int bch2_btree_insert_nonextent(struct btree_trans *trans,
enum btree_id btree, struct bkey_i *k,
enum btree_update_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, btree, k->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_btree_insert(struct btree_trans *trans, enum btree_id id,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
BTREE_ITER_CACHED|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/**
* bch2_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 *journal_seq, int flags)
{
return bch2_trans_do(c, disk_res, journal_seq, flags,
__bch2_btree_insert(&trans, id, k, 0));
}
int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
unsigned len, unsigned update_flags)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = iter->pos;
bch2_key_resize(&k->k, len);
return bch2_trans_update(trans, iter, k, update_flags);
}
int bch2_btree_delete_at(struct btree_trans *trans,
struct btree_iter *iter, unsigned update_flags)
{
return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
}
int bch2_btree_delete_at_buffered(struct btree_trans *trans,
enum btree_id btree, struct bpos pos)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = pos;
return bch2_trans_update_buffered(trans, btree, k);
}
int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
u32 restart_count = trans->restart_count;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(trans->c, 0);
struct bkey_i delete;
ret = bkey_err(k);
if (ret)
goto err;
bkey_init(&delete.k);
/*
* This could probably be more efficient for extents:
*/
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
if (iter.flags & BTREE_ITER_IS_EXTENTS)
bch2_key_resize(&delete.k,
bpos_min(end, k.k->p).offset -
iter.pos.offset);
ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
bch2_trans_commit(trans, &disk_res, journal_seq,
BTREE_INSERT_NOFAIL);
bch2_disk_reservation_put(trans->c, &disk_res);
err:
/*
* the bch2_trans_begin() call is in a weird place because we
* need to call it after every transaction commit, to avoid path
* overflow, but don't want to call it if the delete operation
* is a no-op and we have no work to do:
*/
bch2_trans_begin(trans);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
ret = 0;
if (ret)
break;
}
bch2_trans_iter_exit(trans, &iter);
if (!ret && trans_was_restarted(trans, restart_count))
ret = -BCH_ERR_transaction_restart_nested;
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
int ret = bch2_trans_run(c,
bch2_btree_delete_range_trans(&trans, id, start, end,
update_flags, journal_seq));
if (ret == -BCH_ERR_transaction_restart_nested)
ret = 0;
return ret;
}
int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
struct bpos pos, bool set)
{
struct bkey_i *k;
int ret = 0;
k = bch2_trans_kmalloc_nomemzero(trans, sizeof(*k));
ret = PTR_ERR_OR_ZERO(k);
if (unlikely(ret))
return ret;
bkey_init(&k->k);
k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
k->k.p = pos;
return bch2_trans_update_buffered(trans, btree, k);
}
static int __bch2_trans_log_msg(darray_u64 *entries, const char *fmt, va_list args)
{
struct printbuf buf = PRINTBUF;
struct jset_entry_log *l;
unsigned u64s;
int ret;
prt_vprintf(&buf, fmt, args);
ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
if (ret)
goto err;
u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
ret = darray_make_room(entries, jset_u64s(u64s));
if (ret)
goto err;
l = (void *) &darray_top(*entries);
l->entry.u64s = cpu_to_le16(u64s);
l->entry.btree_id = 0;
l->entry.level = 1;
l->entry.type = BCH_JSET_ENTRY_log;
l->entry.pad[0] = 0;
l->entry.pad[1] = 0;
l->entry.pad[2] = 0;
memcpy(l->d, buf.buf, buf.pos);
while (buf.pos & 7)
l->d[buf.pos++] = '\0';
entries->nr += jset_u64s(u64s);
err:
printbuf_exit(&buf);
return ret;
}
static int
__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
va_list args)
{
int ret;
if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
ret = __bch2_trans_log_msg(&c->journal.early_journal_entries, fmt, args);
} else {
ret = bch2_trans_do(c, NULL, NULL,
BTREE_INSERT_LAZY_RW|commit_flags,
__bch2_trans_log_msg(&trans.extra_journal_entries, fmt, args));
}
return ret;
}
int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, 0, fmt, args);
va_end(args);
return ret;
}
/*
* Use for logging messages during recovery to enable reserved space and avoid
* blocking.
*/
int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
va_end(args);
return ret;
}

View File

@ -5,6 +5,7 @@
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_journal_iter.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
@ -17,7 +18,6 @@
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "recovery.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"

View File

@ -10,7 +10,31 @@
#include "buckets_types.h"
#include "extents.h"
#include "super.h"
#include "sb-members.h"
static inline size_t sector_to_bucket(const struct bch_dev *ca, sector_t s)
{
return div_u64(s, ca->mi.bucket_size);
}
static inline sector_t bucket_to_sector(const struct bch_dev *ca, size_t b)
{
return ((sector_t) b) * ca->mi.bucket_size;
}
static inline sector_t bucket_remainder(const struct bch_dev *ca, sector_t s)
{
u32 remainder;
div_u64_rem(s, ca->mi.bucket_size, &remainder);
return remainder;
}
static inline size_t sector_to_bucket_and_offset(const struct bch_dev *ca, sector_t s,
u32 *offset)
{
return div_u64_rem(s, ca->mi.bucket_size, offset);
}
#define for_each_bucket(_b, _buckets) \
for (_b = (_buckets)->b + (_buckets)->first_bucket; \
@ -292,6 +316,27 @@ int bch2_trans_mark_metadata_bucket(struct btree_trans *, struct bch_dev *,
size_t, enum bch_data_type, unsigned);
int bch2_trans_mark_dev_sb(struct bch_fs *, struct bch_dev *);
static inline bool is_superblock_bucket(struct bch_dev *ca, u64 b)
{
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
u64 b_offset = bucket_to_sector(ca, b);
u64 b_end = bucket_to_sector(ca, b + 1);
unsigned i;
if (!b)
return true;
for (i = 0; i < layout->nr_superblocks; i++) {
u64 offset = le64_to_cpu(layout->sb_offset[i]);
u64 end = offset + (1 << layout->sb_max_size_bits);
if (!(offset >= b_end || end <= b_offset))
return true;
}
return false;
}
/* disk reservations: */
static inline void bch2_disk_reservation_put(struct bch_fs *c,

View File

@ -360,7 +360,7 @@ struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a,
state.type = type;
bch2_checksum_init(&state);
state.seed = a.lo;
state.seed = (u64 __force) a.lo;
BUG_ON(!bch2_checksum_mergeable(type));
@ -371,7 +371,7 @@ struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a,
page_address(ZERO_PAGE(0)), b);
b_len -= b;
}
a.lo = bch2_checksum_final(&state);
a.lo = (__le64 __force) bch2_checksum_final(&state);
a.lo ^= b.lo;
a.hi ^= b.hi;
return a;
@ -426,7 +426,7 @@ int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio,
merged = bch2_checksum_bio(c, crc_old.csum_type,
extent_nonce(version, crc_old), bio);
if (bch2_crc_cmp(merged, crc_old.csum)) {
if (bch2_crc_cmp(merged, crc_old.csum) && !c->opts.no_data_io) {
bch_err(c, "checksum error in bch2_rechecksum_bio() (memory corruption or bug?)\n"
"expected %0llx:%0llx got %0llx:%0llx (old type %s new type %s)",
crc_old.csum.hi,
@ -458,6 +458,48 @@ int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio,
return 0;
}
/* BCH_SB_FIELD_crypt: */
static int bch2_sb_crypt_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) {
prt_printf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&crypt->field), sizeof(*crypt));
return -BCH_ERR_invalid_sb_crypt;
}
if (BCH_CRYPT_KDF_TYPE(crypt)) {
prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt));
return -BCH_ERR_invalid_sb_crypt;
}
return 0;
}
static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
prt_printf(out, "KFD: %llu", BCH_CRYPT_KDF_TYPE(crypt));
prt_newline(out);
prt_printf(out, "scrypt n: %llu", BCH_KDF_SCRYPT_N(crypt));
prt_newline(out);
prt_printf(out, "scrypt r: %llu", BCH_KDF_SCRYPT_R(crypt));
prt_newline(out);
prt_printf(out, "scrypt p: %llu", BCH_KDF_SCRYPT_P(crypt));
prt_newline(out);
}
const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
.validate = bch2_sb_crypt_validate,
.to_text = bch2_sb_crypt_to_text,
};
#ifdef __KERNEL__
static int __bch2_request_key(char *key_description, struct bch_key *key)
{
@ -597,7 +639,7 @@ int bch2_disable_encryption(struct bch_fs *c)
if (ret)
goto out;
crypt->key.magic = BCH_KEY_MAGIC;
crypt->key.magic = cpu_to_le64(BCH_KEY_MAGIC);
crypt->key.key = key;
SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0);
@ -625,7 +667,7 @@ int bch2_enable_encryption(struct bch_fs *c, bool keyed)
if (ret)
goto err;
key.magic = BCH_KEY_MAGIC;
key.magic = cpu_to_le64(BCH_KEY_MAGIC);
get_random_bytes(&key.key, sizeof(key.key));
if (keyed) {

View File

@ -72,6 +72,8 @@ static inline int bch2_encrypt_bio(struct bch_fs *c, unsigned type,
: 0;
}
extern const struct bch_sb_field_ops bch_sb_field_ops_crypt;
int bch2_decrypt_sb_key(struct bch_fs *, struct bch_sb_field_crypt *,
struct bch_key *);

View File

@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "disk_groups.h"
#include "sb-members.h"
#include "super-io.h"
#include <linux/sort.h>

View File

@ -213,6 +213,12 @@
x(BCH_ERR_invalid_sb, invalid_sb_quota) \
x(BCH_ERR_invalid, invalid_bkey) \
x(BCH_ERR_operation_blocked, nocow_lock_blocked) \
x(EIO, btree_node_read_err) \
x(BCH_ERR_btree_node_read_err, btree_node_read_err_fixable) \
x(BCH_ERR_btree_node_read_err, btree_node_read_err_want_retry) \
x(BCH_ERR_btree_node_read_err, btree_node_read_err_must_retry) \
x(BCH_ERR_btree_node_read_err, btree_node_read_err_bad_node) \
x(BCH_ERR_btree_node_read_err, btree_node_read_err_incompatible)
enum bch_errcode {
BCH_ERR_START = 2048,

View File

@ -517,13 +517,13 @@ static void bch2_extent_crc_pack(union bch_extent_crc *dst,
switch (type) {
case BCH_EXTENT_ENTRY_crc32:
set_common_fields(dst->crc32, src);
memcpy(&dst->crc32.csum, &src.csum.lo, sizeof(dst->crc32.csum));
dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo);
break;
case BCH_EXTENT_ENTRY_crc64:
set_common_fields(dst->crc64, src);
dst->crc64.nonce = src.nonce;
dst->crc64.csum_lo = src.csum.lo;
dst->crc64.csum_hi = *((__le16 *) &src.csum.hi);
dst->crc64.csum_lo = (u64 __force) src.csum.lo;
dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi);
break;
case BCH_EXTENT_ENTRY_crc128:
set_common_fields(dst->crc128, src);

View File

@ -155,7 +155,7 @@ bch2_extent_crc_unpack(const struct bkey *k, const union bch_extent_crc *crc)
common_fields(crc->crc32),
};
memcpy(&ret.csum.lo, &crc->crc32.csum, sizeof(crc->crc32.csum));
*((__le32 *) &ret.csum.lo) = (__le32 __force) crc->crc32.csum;
return ret;
}
case BCH_EXTENT_ENTRY_crc64: {
@ -165,8 +165,8 @@ bch2_extent_crc_unpack(const struct bkey *k, const union bch_extent_crc *crc)
.csum.lo = (__force __le64) crc->crc64.csum_lo,
};
u16 hi = crc->crc64.csum_hi;
memcpy(&ret.csum.hi, &hi, sizeof(hi));
*((__le16 *) &ret.csum.hi) = (__le16 __force) crc->crc64.csum_hi;
return ret;
}
case BCH_EXTENT_ENTRY_crc128: {

1102
libbcachefs/fs-io-buffered.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,28 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_FS_IO_BUFFERED_H
#define _BCACHEFS_FS_IO_BUFFERED_H
#ifndef NO_BCACHEFS_FS
int bch2_read_single_folio(struct folio *, struct address_space *);
int bch2_read_folio(struct file *, struct folio *);
int bch2_writepages(struct address_space *, struct writeback_control *);
void bch2_readahead(struct readahead_control *);
int bch2_write_begin(struct file *, struct address_space *, loff_t,
unsigned, struct page **, void **);
int bch2_write_end(struct file *, struct address_space *, loff_t,
unsigned, unsigned, struct page *, void *);
ssize_t bch2_read_iter(struct kiocb *, struct iov_iter *);
ssize_t bch2_write_iter(struct kiocb *, struct iov_iter *);
void bch2_fs_fs_io_buffered_exit(struct bch_fs *);
int bch2_fs_fs_io_buffered_init(struct bch_fs *);
#else
static inline void bch2_fs_fs_io_buffered_exit(struct bch_fs *c) {}
static inline int bch2_fs_fs_io_buffered_init(struct bch_fs *c) { return 0; }
#endif
#endif /* _BCACHEFS_FS_IO_BUFFERED_H */

678
libbcachefs/fs-io-direct.c Normal file
View File

@ -0,0 +1,678 @@
// SPDX-License-Identifier: GPL-2.0
#ifndef NO_BCACHEFS_FS
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "fs.h"
#include "fs-io.h"
#include "fs-io-direct.h"
#include "fs-io-pagecache.h"
#include "io.h"
#include <linux/kthread.h>
#include <linux/pagemap.h>
#include <linux/task_io_accounting_ops.h>
/* O_DIRECT reads */
struct dio_read {
struct closure cl;
struct kiocb *req;
long ret;
bool should_dirty;
struct bch_read_bio rbio;
};
static void bio_check_or_release(struct bio *bio, bool check_dirty)
{
if (check_dirty) {
bio_check_pages_dirty(bio);
} else {
bio_release_pages(bio, false);
bio_put(bio);
}
}
static void bch2_dio_read_complete(struct closure *cl)
{
struct dio_read *dio = container_of(cl, struct dio_read, cl);
dio->req->ki_complete(dio->req, dio->ret);
bio_check_or_release(&dio->rbio.bio, dio->should_dirty);
}
static void bch2_direct_IO_read_endio(struct bio *bio)
{
struct dio_read *dio = bio->bi_private;
if (bio->bi_status)
dio->ret = blk_status_to_errno(bio->bi_status);
closure_put(&dio->cl);
}
static void bch2_direct_IO_read_split_endio(struct bio *bio)
{
struct dio_read *dio = bio->bi_private;
bool should_dirty = dio->should_dirty;
bch2_direct_IO_read_endio(bio);
bio_check_or_release(bio, should_dirty);
}
static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_io_opts opts;
struct dio_read *dio;
struct bio *bio;
loff_t offset = req->ki_pos;
bool sync = is_sync_kiocb(req);
size_t shorten;
ssize_t ret;
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
if ((offset|iter->count) & (block_bytes(c) - 1))
return -EINVAL;
ret = min_t(loff_t, iter->count,
max_t(loff_t, 0, i_size_read(&inode->v) - offset));
if (!ret)
return ret;
shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c));
iter->count -= shorten;
bio = bio_alloc_bioset(NULL,
bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
REQ_OP_READ,
GFP_KERNEL,
&c->dio_read_bioset);
bio->bi_end_io = bch2_direct_IO_read_endio;
dio = container_of(bio, struct dio_read, rbio.bio);
closure_init(&dio->cl, NULL);
/*
* this is a _really_ horrible hack just to avoid an atomic sub at the
* end:
*/
if (!sync) {
set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL);
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER -
CLOSURE_RUNNING +
CLOSURE_DESTRUCTOR);
} else {
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER + 1);
}
dio->req = req;
dio->ret = ret;
/*
* This is one of the sketchier things I've encountered: we have to skip
* the dirtying of requests that are internal from the kernel (i.e. from
* loopback), because we'll deadlock on page_lock.
*/
dio->should_dirty = iter_is_iovec(iter);
goto start;
while (iter->count) {
bio = bio_alloc_bioset(NULL,
bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
REQ_OP_READ,
GFP_KERNEL,
&c->bio_read);
bio->bi_end_io = bch2_direct_IO_read_split_endio;
start:
bio->bi_opf = REQ_OP_READ|REQ_SYNC;
bio->bi_iter.bi_sector = offset >> 9;
bio->bi_private = dio;
ret = bio_iov_iter_get_pages(bio, iter);
if (ret < 0) {
/* XXX: fault inject this path */
bio->bi_status = BLK_STS_RESOURCE;
bio_endio(bio);
break;
}
offset += bio->bi_iter.bi_size;
if (dio->should_dirty)
bio_set_pages_dirty(bio);
if (iter->count)
closure_get(&dio->cl);
bch2_read(c, rbio_init(bio, opts), inode_inum(inode));
}
iter->count += shorten;
if (sync) {
closure_sync(&dio->cl);
closure_debug_destroy(&dio->cl);
ret = dio->ret;
bio_check_or_release(&dio->rbio.bio, dio->should_dirty);
return ret;
} else {
return -EIOCBQUEUED;
}
}
ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct address_space *mapping = file->f_mapping;
size_t count = iov_iter_count(iter);
ssize_t ret;
if (!count)
return 0; /* skip atime */
if (iocb->ki_flags & IOCB_DIRECT) {
struct blk_plug plug;
if (unlikely(mapping->nrpages)) {
ret = filemap_write_and_wait_range(mapping,
iocb->ki_pos,
iocb->ki_pos + count - 1);
if (ret < 0)
goto out;
}
file_accessed(file);
blk_start_plug(&plug);
ret = bch2_direct_IO_read(iocb, iter);
blk_finish_plug(&plug);
if (ret >= 0)
iocb->ki_pos += ret;
} else {
bch2_pagecache_add_get(inode);
ret = generic_file_read_iter(iocb, iter);
bch2_pagecache_add_put(inode);
}
out:
return bch2_err_class(ret);
}
/* O_DIRECT writes */
struct dio_write {
struct kiocb *req;
struct address_space *mapping;
struct bch_inode_info *inode;
struct mm_struct *mm;
unsigned loop:1,
extending:1,
sync:1,
flush:1,
free_iov:1;
struct quota_res quota_res;
u64 written;
struct iov_iter iter;
struct iovec inline_vecs[2];
/* must be last: */
struct bch_write_op op;
};
static bool bch2_check_range_allocated(struct bch_fs *c, subvol_inum inum,
u64 offset, u64 size,
unsigned nr_replicas, bool compressed)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
u64 end = offset + size;
u32 snapshot;
bool ret = true;
int err;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
err = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
if (err)
goto err;
for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents,
SPOS(inum.inum, offset, snapshot),
BTREE_ITER_SLOTS, k, err) {
if (bkey_ge(bkey_start_pos(k.k), POS(inum.inum, end)))
break;
if (k.k->p.snapshot != snapshot ||
nr_replicas > bch2_bkey_replicas(c, k) ||
(!compressed && bch2_bkey_sectors_compressed(k))) {
ret = false;
break;
}
}
offset = iter.pos.offset;
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(err, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
return err ? false : ret;
}
static noinline bool bch2_dio_write_check_allocated(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct bch_inode_info *inode = dio->inode;
struct bio *bio = &dio->op.wbio.bio;
return bch2_check_range_allocated(c, inode_inum(inode),
dio->op.pos.offset, bio_sectors(bio),
dio->op.opts.data_replicas,
dio->op.opts.compression != 0);
}
static void bch2_dio_write_loop_async(struct bch_write_op *);
static __always_inline long bch2_dio_write_done(struct dio_write *dio);
/*
* We're going to return -EIOCBQUEUED, but we haven't finished consuming the
* iov_iter yet, so we need to stash a copy of the iovec: it might be on the
* caller's stack, we're not guaranteed that it will live for the duration of
* the IO:
*/
static noinline int bch2_dio_write_copy_iov(struct dio_write *dio)
{
struct iovec *iov = dio->inline_vecs;
/*
* iov_iter has a single embedded iovec - nothing to do:
*/
if (iter_is_ubuf(&dio->iter))
return 0;
/*
* We don't currently handle non-iovec iov_iters here - return an error,
* and we'll fall back to doing the IO synchronously:
*/
if (!iter_is_iovec(&dio->iter))
return -1;
if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) {
iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov),
GFP_KERNEL);
if (unlikely(!iov))
return -ENOMEM;
dio->free_iov = true;
}
memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov));
dio->iter.__iov = iov;
return 0;
}
static void bch2_dio_write_flush_done(struct closure *cl)
{
struct dio_write *dio = container_of(cl, struct dio_write, op.cl);
struct bch_fs *c = dio->op.c;
closure_debug_destroy(cl);
dio->op.error = bch2_journal_error(&c->journal);
bch2_dio_write_done(dio);
}
static noinline void bch2_dio_write_flush(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct bch_inode_unpacked inode;
int ret;
dio->flush = 0;
closure_init(&dio->op.cl, NULL);
if (!dio->op.error) {
ret = bch2_inode_find_by_inum(c, inode_inum(dio->inode), &inode);
if (ret) {
dio->op.error = ret;
} else {
bch2_journal_flush_seq_async(&c->journal, inode.bi_journal_seq, &dio->op.cl);
bch2_inode_flush_nocow_writes_async(c, dio->inode, &dio->op.cl);
}
}
if (dio->sync) {
closure_sync(&dio->op.cl);
closure_debug_destroy(&dio->op.cl);
} else {
continue_at(&dio->op.cl, bch2_dio_write_flush_done, NULL);
}
}
static __always_inline long bch2_dio_write_done(struct dio_write *dio)
{
struct kiocb *req = dio->req;
struct bch_inode_info *inode = dio->inode;
bool sync = dio->sync;
long ret;
if (unlikely(dio->flush)) {
bch2_dio_write_flush(dio);
if (!sync)
return -EIOCBQUEUED;
}
bch2_pagecache_block_put(inode);
if (dio->free_iov)
kfree(dio->iter.__iov);
ret = dio->op.error ?: ((long) dio->written << 9);
bio_put(&dio->op.wbio.bio);
/* inode->i_dio_count is our ref on inode and thus bch_fs */
inode_dio_end(&inode->v);
if (ret < 0)
ret = bch2_err_class(ret);
if (!sync) {
req->ki_complete(req, ret);
ret = -EIOCBQUEUED;
}
return ret;
}
static __always_inline void bch2_dio_write_end(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct kiocb *req = dio->req;
struct bch_inode_info *inode = dio->inode;
struct bio *bio = &dio->op.wbio.bio;
req->ki_pos += (u64) dio->op.written << 9;
dio->written += dio->op.written;
if (dio->extending) {
spin_lock(&inode->v.i_lock);
if (req->ki_pos > inode->v.i_size)
i_size_write(&inode->v, req->ki_pos);
spin_unlock(&inode->v.i_lock);
}
if (dio->op.i_sectors_delta || dio->quota_res.sectors) {
mutex_lock(&inode->ei_quota_lock);
__bch2_i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta);
__bch2_quota_reservation_put(c, inode, &dio->quota_res);
mutex_unlock(&inode->ei_quota_lock);
}
bio_release_pages(bio, false);
if (unlikely(dio->op.error))
set_bit(EI_INODE_ERROR, &inode->ei_flags);
}
static __always_inline long bch2_dio_write_loop(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct kiocb *req = dio->req;
struct address_space *mapping = dio->mapping;
struct bch_inode_info *inode = dio->inode;
struct bch_io_opts opts;
struct bio *bio = &dio->op.wbio.bio;
unsigned unaligned, iter_count;
bool sync = dio->sync, dropped_locks;
long ret;
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
while (1) {
iter_count = dio->iter.count;
EBUG_ON(current->faults_disabled_mapping);
current->faults_disabled_mapping = mapping;
ret = bio_iov_iter_get_pages(bio, &dio->iter);
dropped_locks = fdm_dropped_locks();
current->faults_disabled_mapping = NULL;
/*
* If the fault handler returned an error but also signalled
* that it dropped & retook ei_pagecache_lock, we just need to
* re-shoot down the page cache and retry:
*/
if (dropped_locks && ret)
ret = 0;
if (unlikely(ret < 0))
goto err;
if (unlikely(dropped_locks)) {
ret = bch2_write_invalidate_inode_pages_range(mapping,
req->ki_pos,
req->ki_pos + iter_count - 1);
if (unlikely(ret))
goto err;
if (!bio->bi_iter.bi_size)
continue;
}
unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1);
bio->bi_iter.bi_size -= unaligned;
iov_iter_revert(&dio->iter, unaligned);
if (!bio->bi_iter.bi_size) {
/*
* bio_iov_iter_get_pages was only able to get <
* blocksize worth of pages:
*/
ret = -EFAULT;
goto err;
}
bch2_write_op_init(&dio->op, c, opts);
dio->op.end_io = sync
? NULL
: bch2_dio_write_loop_async;
dio->op.target = dio->op.opts.foreground_target;
dio->op.write_point = writepoint_hashed((unsigned long) current);
dio->op.nr_replicas = dio->op.opts.data_replicas;
dio->op.subvol = inode->ei_subvol;
dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9);
dio->op.devs_need_flush = &inode->ei_devs_need_flush;
if (sync)
dio->op.flags |= BCH_WRITE_SYNC;
dio->op.flags |= BCH_WRITE_CHECK_ENOSPC;
ret = bch2_quota_reservation_add(c, inode, &dio->quota_res,
bio_sectors(bio), true);
if (unlikely(ret))
goto err;
ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio),
dio->op.opts.data_replicas, 0);
if (unlikely(ret) &&
!bch2_dio_write_check_allocated(dio))
goto err;
task_io_account_write(bio->bi_iter.bi_size);
if (unlikely(dio->iter.count) &&
!dio->sync &&
!dio->loop &&
bch2_dio_write_copy_iov(dio))
dio->sync = sync = true;
dio->loop = true;
closure_call(&dio->op.cl, bch2_write, NULL, NULL);
if (!sync)
return -EIOCBQUEUED;
bch2_dio_write_end(dio);
if (likely(!dio->iter.count) || dio->op.error)
break;
bio_reset(bio, NULL, REQ_OP_WRITE);
}
out:
return bch2_dio_write_done(dio);
err:
dio->op.error = ret;
bio_release_pages(bio, false);
bch2_quota_reservation_put(c, inode, &dio->quota_res);
goto out;
}
static noinline __cold void bch2_dio_write_continue(struct dio_write *dio)
{
struct mm_struct *mm = dio->mm;
bio_reset(&dio->op.wbio.bio, NULL, REQ_OP_WRITE);
if (mm)
kthread_use_mm(mm);
bch2_dio_write_loop(dio);
if (mm)
kthread_unuse_mm(mm);
}
static void bch2_dio_write_loop_async(struct bch_write_op *op)
{
struct dio_write *dio = container_of(op, struct dio_write, op);
bch2_dio_write_end(dio);
if (likely(!dio->iter.count) || dio->op.error)
bch2_dio_write_done(dio);
else
bch2_dio_write_continue(dio);
}
ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct address_space *mapping = file->f_mapping;
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct dio_write *dio;
struct bio *bio;
bool locked = true, extending;
ssize_t ret;
prefetch(&c->opts);
prefetch((void *) &c->opts + 64);
prefetch(&inode->ei_inode);
prefetch((void *) &inode->ei_inode + 64);
inode_lock(&inode->v);
ret = generic_write_checks(req, iter);
if (unlikely(ret <= 0))
goto err;
ret = file_remove_privs(file);
if (unlikely(ret))
goto err;
ret = file_update_time(file);
if (unlikely(ret))
goto err;
if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1)))
goto err;
inode_dio_begin(&inode->v);
bch2_pagecache_block_get(inode);
extending = req->ki_pos + iter->count > inode->v.i_size;
if (!extending) {
inode_unlock(&inode->v);
locked = false;
}
bio = bio_alloc_bioset(NULL,
bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
REQ_OP_WRITE,
GFP_KERNEL,
&c->dio_write_bioset);
dio = container_of(bio, struct dio_write, op.wbio.bio);
dio->req = req;
dio->mapping = mapping;
dio->inode = inode;
dio->mm = current->mm;
dio->loop = false;
dio->extending = extending;
dio->sync = is_sync_kiocb(req) || extending;
dio->flush = iocb_is_dsync(req) && !c->opts.journal_flush_disabled;
dio->free_iov = false;
dio->quota_res.sectors = 0;
dio->written = 0;
dio->iter = *iter;
dio->op.c = c;
if (unlikely(mapping->nrpages)) {
ret = bch2_write_invalidate_inode_pages_range(mapping,
req->ki_pos,
req->ki_pos + iter->count - 1);
if (unlikely(ret))
goto err_put_bio;
}
ret = bch2_dio_write_loop(dio);
err:
if (locked)
inode_unlock(&inode->v);
return ret;
err_put_bio:
bch2_pagecache_block_put(inode);
bio_put(bio);
inode_dio_end(&inode->v);
goto err;
}
void bch2_fs_fs_io_direct_exit(struct bch_fs *c)
{
bioset_exit(&c->dio_write_bioset);
bioset_exit(&c->dio_read_bioset);
}
int bch2_fs_fs_io_direct_init(struct bch_fs *c)
{
if (bioset_init(&c->dio_read_bioset,
4, offsetof(struct dio_read, rbio.bio),
BIOSET_NEED_BVECS))
return -BCH_ERR_ENOMEM_dio_read_bioset_init;
if (bioset_init(&c->dio_write_bioset,
4, offsetof(struct dio_write, op.wbio.bio),
BIOSET_NEED_BVECS))
return -BCH_ERR_ENOMEM_dio_write_bioset_init;
return 0;
}
#endif /* NO_BCACHEFS_FS */

View File

@ -0,0 +1,15 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_FS_IO_DIRECT_H
#define _BCACHEFS_FS_IO_DIRECT_H
#ifndef NO_BCACHEFS_FS
ssize_t bch2_direct_write(struct kiocb *, struct iov_iter *);
void bch2_fs_fs_io_direct_exit(struct bch_fs *);
int bch2_fs_fs_io_direct_init(struct bch_fs *);
#else
static inline void bch2_fs_fs_io_direct_exit(struct bch_fs *c) {}
static inline int bch2_fs_fs_io_direct_init(struct bch_fs *c) { return 0; }
#endif
#endif /* _BCACHEFS_FS_IO_DIRECT_H */

View File

@ -0,0 +1,777 @@
// SPDX-License-Identifier: GPL-2.0
#ifndef NO_BCACHEFS_FS
#include "bcachefs.h"
#include "btree_iter.h"
#include "extents.h"
#include "fs-io.h"
#include "fs-io-pagecache.h"
#include "subvolume.h"
#include <linux/pagevec.h>
#include <linux/writeback.h>
int bch2_filemap_get_contig_folios_d(struct address_space *mapping,
loff_t start, u64 end,
int fgp_flags, gfp_t gfp,
folios *folios)
{
struct folio *f;
u64 pos = start;
int ret = 0;
while (pos < end) {
if ((u64) pos >= (u64) start + (1ULL << 20))
fgp_flags &= ~FGP_CREAT;
ret = darray_make_room_gfp(folios, 1, gfp & GFP_KERNEL);
if (ret)
break;
f = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, fgp_flags, gfp);
if (IS_ERR_OR_NULL(f))
break;
BUG_ON(folios->nr && folio_pos(f) != pos);
pos = folio_end_pos(f);
darray_push(folios, f);
}
if (!folios->nr && !ret && (fgp_flags & FGP_CREAT))
ret = -ENOMEM;
return folios->nr ? 0 : ret;
}
/* pagecache_block must be held */
int bch2_write_invalidate_inode_pages_range(struct address_space *mapping,
loff_t start, loff_t end)
{
int ret;
/*
* XXX: the way this is currently implemented, we can spin if a process
* is continually redirtying a specific page
*/
do {
if (!mapping->nrpages)
return 0;
ret = filemap_write_and_wait_range(mapping, start, end);
if (ret)
break;
if (!mapping->nrpages)
return 0;
ret = invalidate_inode_pages2_range(mapping,
start >> PAGE_SHIFT,
end >> PAGE_SHIFT);
} while (ret == -EBUSY);
return ret;
}
static const char * const bch2_folio_sector_states[] = {
#define x(n) #n,
BCH_FOLIO_SECTOR_STATE()
#undef x
NULL
};
static inline enum bch_folio_sector_state
folio_sector_dirty(enum bch_folio_sector_state state)
{
switch (state) {
case SECTOR_unallocated:
return SECTOR_dirty;
case SECTOR_reserved:
return SECTOR_dirty_reserved;
default:
return state;
}
}
static inline enum bch_folio_sector_state
folio_sector_undirty(enum bch_folio_sector_state state)
{
switch (state) {
case SECTOR_dirty:
return SECTOR_unallocated;
case SECTOR_dirty_reserved:
return SECTOR_reserved;
default:
return state;
}
}
static inline enum bch_folio_sector_state
folio_sector_reserve(enum bch_folio_sector_state state)
{
switch (state) {
case SECTOR_unallocated:
return SECTOR_reserved;
case SECTOR_dirty:
return SECTOR_dirty_reserved;
default:
return state;
}
}
/* for newly allocated folios: */
struct bch_folio *__bch2_folio_create(struct folio *folio, gfp_t gfp)
{
struct bch_folio *s;
s = kzalloc(sizeof(*s) +
sizeof(struct bch_folio_sector) *
folio_sectors(folio), gfp);
if (!s)
return NULL;
spin_lock_init(&s->lock);
folio_attach_private(folio, s);
return s;
}
struct bch_folio *bch2_folio_create(struct folio *folio, gfp_t gfp)
{
return bch2_folio(folio) ?: __bch2_folio_create(folio, gfp);
}
static unsigned bkey_to_sector_state(struct bkey_s_c k)
{
if (bkey_extent_is_reservation(k))
return SECTOR_reserved;
if (bkey_extent_is_allocation(k.k))
return SECTOR_allocated;
return SECTOR_unallocated;
}
static void __bch2_folio_set(struct folio *folio,
unsigned pg_offset, unsigned pg_len,
unsigned nr_ptrs, unsigned state)
{
struct bch_folio *s = bch2_folio(folio);
unsigned i, sectors = folio_sectors(folio);
BUG_ON(pg_offset >= sectors);
BUG_ON(pg_offset + pg_len > sectors);
spin_lock(&s->lock);
for (i = pg_offset; i < pg_offset + pg_len; i++) {
s->s[i].nr_replicas = nr_ptrs;
bch2_folio_sector_set(folio, s, i, state);
}
if (i == sectors)
s->uptodate = true;
spin_unlock(&s->lock);
}
/*
* Initialize bch_folio state (allocated/unallocated, nr_replicas) from the
* extents btree:
*/
int bch2_folio_set(struct bch_fs *c, subvol_inum inum,
struct folio **folios, unsigned nr_folios)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_folio *s;
u64 offset = folio_sector(folios[0]);
unsigned folio_idx;
u32 snapshot;
bool need_set = false;
int ret;
for (folio_idx = 0; folio_idx < nr_folios; folio_idx++) {
s = bch2_folio_create(folios[folio_idx], GFP_KERNEL);
if (!s)
return -ENOMEM;
need_set |= !s->uptodate;
}
if (!need_set)
return 0;
folio_idx = 0;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
if (ret)
goto err;
for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents,
SPOS(inum.inum, offset, snapshot),
BTREE_ITER_SLOTS, k, ret) {
unsigned nr_ptrs = bch2_bkey_nr_ptrs_fully_allocated(k);
unsigned state = bkey_to_sector_state(k);
while (folio_idx < nr_folios) {
struct folio *folio = folios[folio_idx];
u64 folio_start = folio_sector(folio);
u64 folio_end = folio_end_sector(folio);
unsigned folio_offset = max(bkey_start_offset(k.k), folio_start) - folio_start;
unsigned folio_len = min(k.k->p.offset, folio_end) - folio_offset - folio_start;
BUG_ON(k.k->p.offset < folio_start);
BUG_ON(bkey_start_offset(k.k) > folio_end);
if (!bch2_folio(folio)->uptodate)
__bch2_folio_set(folio, folio_offset, folio_len, nr_ptrs, state);
if (k.k->p.offset < folio_end)
break;
folio_idx++;
}
if (folio_idx == nr_folios)
break;
}
offset = iter.pos.offset;
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
return ret;
}
void bch2_bio_page_state_set(struct bio *bio, struct bkey_s_c k)
{
struct bvec_iter iter;
struct folio_vec fv;
unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v
? 0 : bch2_bkey_nr_ptrs_fully_allocated(k);
unsigned state = bkey_to_sector_state(k);
bio_for_each_folio(fv, bio, iter)
__bch2_folio_set(fv.fv_folio,
fv.fv_offset >> 9,
fv.fv_len >> 9,
nr_ptrs, state);
}
void bch2_mark_pagecache_unallocated(struct bch_inode_info *inode,
u64 start, u64 end)
{
pgoff_t index = start >> PAGE_SECTORS_SHIFT;
pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT;
struct folio_batch fbatch;
unsigned i, j;
if (end <= start)
return;
folio_batch_init(&fbatch);
while (filemap_get_folios(inode->v.i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
u64 folio_start = folio_sector(folio);
u64 folio_end = folio_end_sector(folio);
unsigned folio_offset = max(start, folio_start) - folio_start;
unsigned folio_len = min(end, folio_end) - folio_offset - folio_start;
struct bch_folio *s;
BUG_ON(end <= folio_start);
folio_lock(folio);
s = bch2_folio(folio);
if (s) {
spin_lock(&s->lock);
for (j = folio_offset; j < folio_offset + folio_len; j++)
s->s[j].nr_replicas = 0;
spin_unlock(&s->lock);
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
}
void bch2_mark_pagecache_reserved(struct bch_inode_info *inode,
u64 start, u64 end)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
pgoff_t index = start >> PAGE_SECTORS_SHIFT;
pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT;
struct folio_batch fbatch;
s64 i_sectors_delta = 0;
unsigned i, j;
if (end <= start)
return;
folio_batch_init(&fbatch);
while (filemap_get_folios(inode->v.i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
u64 folio_start = folio_sector(folio);
u64 folio_end = folio_end_sector(folio);
unsigned folio_offset = max(start, folio_start) - folio_start;
unsigned folio_len = min(end, folio_end) - folio_offset - folio_start;
struct bch_folio *s;
BUG_ON(end <= folio_start);
folio_lock(folio);
s = bch2_folio(folio);
if (s) {
spin_lock(&s->lock);
for (j = folio_offset; j < folio_offset + folio_len; j++) {
i_sectors_delta -= s->s[j].state == SECTOR_dirty;
bch2_folio_sector_set(folio, s, j, folio_sector_reserve(s->s[j].state));
}
spin_unlock(&s->lock);
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
bch2_i_sectors_acct(c, inode, NULL, i_sectors_delta);
}
static inline unsigned sectors_to_reserve(struct bch_folio_sector *s,
unsigned nr_replicas)
{
return max(0, (int) nr_replicas -
s->nr_replicas -
s->replicas_reserved);
}
int bch2_get_folio_disk_reservation(struct bch_fs *c,
struct bch_inode_info *inode,
struct folio *folio, bool check_enospc)
{
struct bch_folio *s = bch2_folio_create(folio, 0);
unsigned nr_replicas = inode_nr_replicas(c, inode);
struct disk_reservation disk_res = { 0 };
unsigned i, sectors = folio_sectors(folio), disk_res_sectors = 0;
int ret;
if (!s)
return -ENOMEM;
for (i = 0; i < sectors; i++)
disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas);
if (!disk_res_sectors)
return 0;
ret = bch2_disk_reservation_get(c, &disk_res,
disk_res_sectors, 1,
!check_enospc
? BCH_DISK_RESERVATION_NOFAIL
: 0);
if (unlikely(ret))
return ret;
for (i = 0; i < sectors; i++)
s->s[i].replicas_reserved +=
sectors_to_reserve(&s->s[i], nr_replicas);
return 0;
}
void bch2_folio_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch2_folio_reservation *res)
{
bch2_disk_reservation_put(c, &res->disk);
bch2_quota_reservation_put(c, inode, &res->quota);
}
int bch2_folio_reservation_get(struct bch_fs *c,
struct bch_inode_info *inode,
struct folio *folio,
struct bch2_folio_reservation *res,
unsigned offset, unsigned len)
{
struct bch_folio *s = bch2_folio_create(folio, 0);
unsigned i, disk_sectors = 0, quota_sectors = 0;
int ret;
if (!s)
return -ENOMEM;
BUG_ON(!s->uptodate);
for (i = round_down(offset, block_bytes(c)) >> 9;
i < round_up(offset + len, block_bytes(c)) >> 9;
i++) {
disk_sectors += sectors_to_reserve(&s->s[i],
res->disk.nr_replicas);
quota_sectors += s->s[i].state == SECTOR_unallocated;
}
if (disk_sectors) {
ret = bch2_disk_reservation_add(c, &res->disk, disk_sectors, 0);
if (unlikely(ret))
return ret;
}
if (quota_sectors) {
ret = bch2_quota_reservation_add(c, inode, &res->quota,
quota_sectors, true);
if (unlikely(ret)) {
struct disk_reservation tmp = {
.sectors = disk_sectors
};
bch2_disk_reservation_put(c, &tmp);
res->disk.sectors -= disk_sectors;
return ret;
}
}
return 0;
}
static void bch2_clear_folio_bits(struct folio *folio)
{
struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_folio *s = bch2_folio(folio);
struct disk_reservation disk_res = { 0 };
int i, sectors = folio_sectors(folio), dirty_sectors = 0;
if (!s)
return;
EBUG_ON(!folio_test_locked(folio));
EBUG_ON(folio_test_writeback(folio));
for (i = 0; i < sectors; i++) {
disk_res.sectors += s->s[i].replicas_reserved;
s->s[i].replicas_reserved = 0;
dirty_sectors -= s->s[i].state == SECTOR_dirty;
bch2_folio_sector_set(folio, s, i, folio_sector_undirty(s->s[i].state));
}
bch2_disk_reservation_put(c, &disk_res);
bch2_i_sectors_acct(c, inode, NULL, dirty_sectors);
bch2_folio_release(folio);
}
void bch2_set_folio_dirty(struct bch_fs *c,
struct bch_inode_info *inode,
struct folio *folio,
struct bch2_folio_reservation *res,
unsigned offset, unsigned len)
{
struct bch_folio *s = bch2_folio(folio);
unsigned i, dirty_sectors = 0;
WARN_ON((u64) folio_pos(folio) + offset + len >
round_up((u64) i_size_read(&inode->v), block_bytes(c)));
BUG_ON(!s->uptodate);
spin_lock(&s->lock);
for (i = round_down(offset, block_bytes(c)) >> 9;
i < round_up(offset + len, block_bytes(c)) >> 9;
i++) {
unsigned sectors = sectors_to_reserve(&s->s[i],
res->disk.nr_replicas);
/*
* This can happen if we race with the error path in
* bch2_writepage_io_done():
*/
sectors = min_t(unsigned, sectors, res->disk.sectors);
s->s[i].replicas_reserved += sectors;
res->disk.sectors -= sectors;
dirty_sectors += s->s[i].state == SECTOR_unallocated;
bch2_folio_sector_set(folio, s, i, folio_sector_dirty(s->s[i].state));
}
spin_unlock(&s->lock);
bch2_i_sectors_acct(c, inode, &res->quota, dirty_sectors);
if (!folio_test_dirty(folio))
filemap_dirty_folio(inode->v.i_mapping, folio);
}
vm_fault_t bch2_page_fault(struct vm_fault *vmf)
{
struct file *file = vmf->vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct address_space *fdm = faults_disabled_mapping();
struct bch_inode_info *inode = file_bch_inode(file);
vm_fault_t ret;
if (fdm == mapping)
return VM_FAULT_SIGBUS;
/* Lock ordering: */
if (fdm > mapping) {
struct bch_inode_info *fdm_host = to_bch_ei(fdm->host);
if (bch2_pagecache_add_tryget(inode))
goto got_lock;
bch2_pagecache_block_put(fdm_host);
bch2_pagecache_add_get(inode);
bch2_pagecache_add_put(inode);
bch2_pagecache_block_get(fdm_host);
/* Signal that lock has been dropped: */
set_fdm_dropped_locks();
return VM_FAULT_SIGBUS;
}
bch2_pagecache_add_get(inode);
got_lock:
ret = filemap_fault(vmf);
bch2_pagecache_add_put(inode);
return ret;
}
vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf)
{
struct folio *folio = page_folio(vmf->page);
struct file *file = vmf->vma->vm_file;
struct bch_inode_info *inode = file_bch_inode(file);
struct address_space *mapping = file->f_mapping;
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_folio_reservation res;
unsigned len;
loff_t isize;
vm_fault_t ret;
bch2_folio_reservation_init(c, inode, &res);
sb_start_pagefault(inode->v.i_sb);
file_update_time(file);
/*
* Not strictly necessary, but helps avoid dio writes livelocking in
* bch2_write_invalidate_inode_pages_range() - can drop this if/when we get
* a bch2_write_invalidate_inode_pages_range() that works without dropping
* page lock before invalidating page
*/
bch2_pagecache_add_get(inode);
folio_lock(folio);
isize = i_size_read(&inode->v);
if (folio->mapping != mapping || folio_pos(folio) >= isize) {
folio_unlock(folio);
ret = VM_FAULT_NOPAGE;
goto out;
}
len = min_t(loff_t, folio_size(folio), isize - folio_pos(folio));
if (bch2_folio_set(c, inode_inum(inode), &folio, 1) ?:
bch2_folio_reservation_get(c, inode, folio, &res, 0, len)) {
folio_unlock(folio);
ret = VM_FAULT_SIGBUS;
goto out;
}
bch2_set_folio_dirty(c, inode, folio, &res, 0, len);
bch2_folio_reservation_put(c, inode, &res);
folio_wait_stable(folio);
ret = VM_FAULT_LOCKED;
out:
bch2_pagecache_add_put(inode);
sb_end_pagefault(inode->v.i_sb);
return ret;
}
void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length)
{
if (offset || length < folio_size(folio))
return;
bch2_clear_folio_bits(folio);
}
bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask)
{
if (folio_test_dirty(folio) || folio_test_writeback(folio))
return false;
bch2_clear_folio_bits(folio);
return true;
}
/* fseek: */
static int folio_data_offset(struct folio *folio, loff_t pos,
unsigned min_replicas)
{
struct bch_folio *s = bch2_folio(folio);
unsigned i, sectors = folio_sectors(folio);
if (s)
for (i = folio_pos_to_s(folio, pos); i < sectors; i++)
if (s->s[i].state >= SECTOR_dirty &&
s->s[i].nr_replicas + s->s[i].replicas_reserved >= min_replicas)
return i << SECTOR_SHIFT;
return -1;
}
loff_t bch2_seek_pagecache_data(struct inode *vinode,
loff_t start_offset,
loff_t end_offset,
unsigned min_replicas,
bool nonblock)
{
struct folio_batch fbatch;
pgoff_t start_index = start_offset >> PAGE_SHIFT;
pgoff_t end_index = end_offset >> PAGE_SHIFT;
pgoff_t index = start_index;
unsigned i;
loff_t ret;
int offset;
folio_batch_init(&fbatch);
while (filemap_get_folios(vinode->i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
if (!nonblock) {
folio_lock(folio);
} else if (!folio_trylock(folio)) {
folio_batch_release(&fbatch);
return -EAGAIN;
}
offset = folio_data_offset(folio,
max(folio_pos(folio), start_offset),
min_replicas);
if (offset >= 0) {
ret = clamp(folio_pos(folio) + offset,
start_offset, end_offset);
folio_unlock(folio);
folio_batch_release(&fbatch);
return ret;
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
return end_offset;
}
static int folio_hole_offset(struct address_space *mapping, loff_t *offset,
unsigned min_replicas, bool nonblock)
{
struct folio *folio;
struct bch_folio *s;
unsigned i, sectors;
bool ret = true;
folio = __filemap_get_folio(mapping, *offset >> PAGE_SHIFT,
FGP_LOCK|(nonblock ? FGP_NOWAIT : 0), 0);
if (folio == ERR_PTR(-EAGAIN))
return -EAGAIN;
if (IS_ERR_OR_NULL(folio))
return true;
s = bch2_folio(folio);
if (!s)
goto unlock;
sectors = folio_sectors(folio);
for (i = folio_pos_to_s(folio, *offset); i < sectors; i++)
if (s->s[i].state < SECTOR_dirty ||
s->s[i].nr_replicas + s->s[i].replicas_reserved < min_replicas) {
*offset = max(*offset,
folio_pos(folio) + (i << SECTOR_SHIFT));
goto unlock;
}
*offset = folio_end_pos(folio);
ret = false;
unlock:
folio_unlock(folio);
folio_put(folio);
return ret;
}
loff_t bch2_seek_pagecache_hole(struct inode *vinode,
loff_t start_offset,
loff_t end_offset,
unsigned min_replicas,
bool nonblock)
{
struct address_space *mapping = vinode->i_mapping;
loff_t offset = start_offset;
while (offset < end_offset &&
!folio_hole_offset(mapping, &offset, min_replicas, nonblock))
;
return min(offset, end_offset);
}
int bch2_clamp_data_hole(struct inode *inode,
u64 *hole_start,
u64 *hole_end,
unsigned min_replicas,
bool nonblock)
{
loff_t ret;
ret = bch2_seek_pagecache_hole(inode,
*hole_start << 9, *hole_end << 9, min_replicas, nonblock) >> 9;
if (ret < 0)
return ret;
*hole_start = ret;
if (*hole_start == *hole_end)
return 0;
ret = bch2_seek_pagecache_data(inode,
*hole_start << 9, *hole_end << 9, min_replicas, nonblock) >> 9;
if (ret < 0)
return ret;
*hole_end = ret;
return 0;
}
#endif /* NO_BCACHEFS_FS */

View File

@ -0,0 +1,175 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_FS_IO_PAGECACHE_H
#define _BCACHEFS_FS_IO_PAGECACHE_H
#include <linux/pagemap.h>
typedef DARRAY(struct folio *) folios;
int bch2_filemap_get_contig_folios_d(struct address_space *, loff_t,
u64, int, gfp_t, folios *);
int bch2_write_invalidate_inode_pages_range(struct address_space *, loff_t, loff_t);
/*
* Use u64 for the end pos and sector helpers because if the folio covers the
* max supported range of the mapping, the start offset of the next folio
* overflows loff_t. This breaks much of the range based processing in the
* buffered write path.
*/
static inline u64 folio_end_pos(struct folio *folio)
{
return folio_pos(folio) + folio_size(folio);
}
static inline size_t folio_sectors(struct folio *folio)
{
return PAGE_SECTORS << folio_order(folio);
}
static inline loff_t folio_sector(struct folio *folio)
{
return folio_pos(folio) >> 9;
}
static inline u64 folio_end_sector(struct folio *folio)
{
return folio_end_pos(folio) >> 9;
}
#define BCH_FOLIO_SECTOR_STATE() \
x(unallocated) \
x(reserved) \
x(dirty) \
x(dirty_reserved) \
x(allocated)
enum bch_folio_sector_state {
#define x(n) SECTOR_##n,
BCH_FOLIO_SECTOR_STATE()
#undef x
};
struct bch_folio_sector {
/* Uncompressed, fully allocated replicas (or on disk reservation): */
unsigned nr_replicas:4;
/* Owns PAGE_SECTORS * replicas_reserved sized in memory reservation: */
unsigned replicas_reserved:4;
/* i_sectors: */
enum bch_folio_sector_state state:8;
};
struct bch_folio {
spinlock_t lock;
atomic_t write_count;
/*
* Is the sector state up to date with the btree?
* (Not the data itself)
*/
bool uptodate;
struct bch_folio_sector s[];
};
/* Helper for when we need to add debug instrumentation: */
static inline void bch2_folio_sector_set(struct folio *folio,
struct bch_folio *s,
unsigned i, unsigned n)
{
s->s[i].state = n;
}
/* file offset (to folio offset) to bch_folio_sector index */
static inline int folio_pos_to_s(struct folio *folio, loff_t pos)
{
u64 f_offset = pos - folio_pos(folio);
BUG_ON(pos < folio_pos(folio) || pos >= folio_end_pos(folio));
return f_offset >> SECTOR_SHIFT;
}
/* for newly allocated folios: */
static inline void __bch2_folio_release(struct folio *folio)
{
kfree(folio_detach_private(folio));
}
static inline void bch2_folio_release(struct folio *folio)
{
EBUG_ON(!folio_test_locked(folio));
__bch2_folio_release(folio);
}
static inline struct bch_folio *__bch2_folio(struct folio *folio)
{
return folio_has_private(folio)
? (struct bch_folio *) folio_get_private(folio)
: NULL;
}
static inline struct bch_folio *bch2_folio(struct folio *folio)
{
EBUG_ON(!folio_test_locked(folio));
return __bch2_folio(folio);
}
struct bch_folio *__bch2_folio_create(struct folio *, gfp_t);
struct bch_folio *bch2_folio_create(struct folio *, gfp_t);
struct bch2_folio_reservation {
struct disk_reservation disk;
struct quota_res quota;
};
static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode)
{
/* XXX: this should not be open coded */
return inode->ei_inode.bi_data_replicas
? inode->ei_inode.bi_data_replicas - 1
: c->opts.data_replicas;
}
static inline void bch2_folio_reservation_init(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch2_folio_reservation *res)
{
memset(res, 0, sizeof(*res));
res->disk.nr_replicas = inode_nr_replicas(c, inode);
}
int bch2_folio_set(struct bch_fs *, subvol_inum, struct folio **, unsigned);
void bch2_bio_page_state_set(struct bio *, struct bkey_s_c);
void bch2_mark_pagecache_unallocated(struct bch_inode_info *, u64, u64);
void bch2_mark_pagecache_reserved(struct bch_inode_info *, u64, u64);
int bch2_get_folio_disk_reservation(struct bch_fs *,
struct bch_inode_info *,
struct folio *, bool);
void bch2_folio_reservation_put(struct bch_fs *,
struct bch_inode_info *,
struct bch2_folio_reservation *);
int bch2_folio_reservation_get(struct bch_fs *,
struct bch_inode_info *,
struct folio *,
struct bch2_folio_reservation *,
unsigned, unsigned);
void bch2_set_folio_dirty(struct bch_fs *,
struct bch_inode_info *,
struct folio *,
struct bch2_folio_reservation *,
unsigned, unsigned);
vm_fault_t bch2_page_fault(struct vm_fault *);
vm_fault_t bch2_page_mkwrite(struct vm_fault *);
void bch2_invalidate_folio(struct folio *, size_t, size_t);
bool bch2_release_folio(struct folio *, gfp_t);
loff_t bch2_seek_pagecache_data(struct inode *, loff_t, loff_t, unsigned, bool);
loff_t bch2_seek_pagecache_hole(struct inode *, loff_t, loff_t, unsigned, bool);
int bch2_clamp_data_hole(struct inode *, u64 *, u64 *, unsigned, bool);
#endif /* _BCACHEFS_FS_IO_PAGECACHE_H */

File diff suppressed because it is too large Load Diff

View File

@ -5,29 +5,164 @@
#ifndef NO_BCACHEFS_FS
#include "buckets.h"
#include "fs.h"
#include "io_types.h"
#include "quota.h"
#include <linux/uio.h>
struct quota_res;
struct folio_vec {
struct folio *fv_folio;
size_t fv_offset;
size_t fv_len;
};
static inline struct folio_vec biovec_to_foliovec(struct bio_vec bv)
{
struct folio *folio = page_folio(bv.bv_page);
size_t offset = (folio_page_idx(folio, bv.bv_page) << PAGE_SHIFT) +
bv.bv_offset;
size_t len = min_t(size_t, folio_size(folio) - offset, bv.bv_len);
return (struct folio_vec) {
.fv_folio = folio,
.fv_offset = offset,
.fv_len = len,
};
}
static inline struct folio_vec bio_iter_iovec_folio(struct bio *bio,
struct bvec_iter iter)
{
return biovec_to_foliovec(bio_iter_iovec(bio, iter));
}
#define __bio_for_each_folio(bvl, bio, iter, start) \
for (iter = (start); \
(iter).bi_size && \
((bvl = bio_iter_iovec_folio((bio), (iter))), 1); \
bio_advance_iter_single((bio), &(iter), (bvl).fv_len))
/**
* bio_for_each_folio - iterate over folios within a bio
*
* Like other non-_all versions, this iterates over what bio->bi_iter currently
* points to. This version is for drivers, where the bio may have previously
* been split or cloned.
*/
#define bio_for_each_folio(bvl, bio, iter) \
__bio_for_each_folio(bvl, bio, iter, (bio)->bi_iter)
struct quota_res {
u64 sectors;
};
#ifdef CONFIG_BCACHEFS_QUOTA
static inline void __bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res)
{
BUG_ON(res->sectors > inode->ei_quota_reserved);
bch2_quota_acct(c, inode->ei_qid, Q_SPC,
-((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC);
inode->ei_quota_reserved -= res->sectors;
res->sectors = 0;
}
static inline void bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res)
{
if (res->sectors) {
mutex_lock(&inode->ei_quota_lock);
__bch2_quota_reservation_put(c, inode, res);
mutex_unlock(&inode->ei_quota_lock);
}
}
static inline int bch2_quota_reservation_add(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res,
u64 sectors,
bool check_enospc)
{
int ret;
if (test_bit(EI_INODE_SNAPSHOT, &inode->ei_flags))
return 0;
mutex_lock(&inode->ei_quota_lock);
ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors,
check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK);
if (likely(!ret)) {
inode->ei_quota_reserved += sectors;
res->sectors += sectors;
}
mutex_unlock(&inode->ei_quota_lock);
return ret;
}
#else
static void __bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res) {}
static void bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res) {}
static int bch2_quota_reservation_add(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res,
unsigned sectors,
bool check_enospc)
{
return 0;
}
#endif
void __bch2_i_sectors_acct(struct bch_fs *, struct bch_inode_info *,
struct quota_res *, s64);
static inline void bch2_i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode,
struct quota_res *quota_res, s64 sectors)
{
if (sectors) {
mutex_lock(&inode->ei_quota_lock);
__bch2_i_sectors_acct(c, inode, quota_res, sectors);
mutex_unlock(&inode->ei_quota_lock);
}
}
static inline struct address_space *faults_disabled_mapping(void)
{
return (void *) (((unsigned long) current->faults_disabled_mapping) & ~1UL);
}
static inline void set_fdm_dropped_locks(void)
{
current->faults_disabled_mapping =
(void *) (((unsigned long) current->faults_disabled_mapping)|1);
}
static inline bool fdm_dropped_locks(void)
{
return ((unsigned long) current->faults_disabled_mapping) & 1;
}
void bch2_inode_flush_nocow_writes_async(struct bch_fs *,
struct bch_inode_info *, struct closure *);
int __must_check bch2_write_inode_size(struct bch_fs *,
struct bch_inode_info *,
loff_t, unsigned);
int bch2_read_folio(struct file *, struct folio *);
int bch2_writepages(struct address_space *, struct writeback_control *);
void bch2_readahead(struct readahead_control *);
int bch2_write_begin(struct file *, struct address_space *, loff_t,
unsigned, struct page **, void **);
int bch2_write_end(struct file *, struct address_space *, loff_t,
unsigned, unsigned, struct page *, void *);
ssize_t bch2_read_iter(struct kiocb *, struct iov_iter *);
ssize_t bch2_write_iter(struct kiocb *, struct iov_iter *);
int bch2_fsync(struct file *, loff_t, loff_t, int);
int bch2_truncate(struct mnt_idmap *,
@ -39,11 +174,6 @@ loff_t bch2_remap_file_range(struct file *, loff_t, struct file *,
loff_t bch2_llseek(struct file *, loff_t, int);
vm_fault_t bch2_page_fault(struct vm_fault *);
vm_fault_t bch2_page_mkwrite(struct vm_fault *);
void bch2_invalidate_folio(struct folio *, size_t, size_t);
bool bch2_release_folio(struct folio *, gfp_t);
void bch2_fs_fsio_exit(struct bch_fs *);
int bch2_fs_fsio_init(struct bch_fs *);
#else

View File

@ -14,6 +14,8 @@
#include "fs-common.h"
#include "fs-io.h"
#include "fs-ioctl.h"
#include "fs-io-buffered.h"
#include "fs-io-pagecache.h"
#include "fsck.h"
#include "inode.h"
#include "io.h"
@ -203,7 +205,7 @@ struct inode *bch2_vfs_inode_get(struct bch_fs *c, subvol_inum inum)
if (ret) {
iget_failed(&inode->v);
return ERR_PTR(ret);
return ERR_PTR(bch2_err_class(ret));
}
mutex_lock(&c->vfs_inodes_lock);
@ -1000,11 +1002,16 @@ static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
int ret;
if (!dir_emit_dots(file, ctx))
return 0;
return bch2_readdir(c, inode_inum(inode), ctx);
ret = bch2_readdir(c, inode_inum(inode), ctx);
if (ret)
bch_err_fn(c, ret);
return bch2_err_class(ret);
}
static const struct file_operations bch_file_operations = {

View File

@ -11,6 +11,7 @@
#include "fsck.h"
#include "inode.h"
#include "keylist.h"
#include "recovery.h"
#include "subvolume.h"
#include "super.h"
#include "xattr.h"

View File

@ -348,6 +348,8 @@ int bch2_inode_peek(struct btree_trans *trans,
return 0;
err:
bch2_trans_iter_exit(trans, iter);
if (!bch2_err_matches(ret, BCH_ERR_transaction_restart))
bch_err_msg(trans->c, ret, "looking up inum %u:%llu:", inum.subvol, inum.inum);
return ret;
}
@ -520,23 +522,25 @@ void bch2_inode_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c
__bch2_inode_unpacked_to_text(out, &inode);
}
static inline bool bkey_is_deleted_inode(struct bkey_s_c k)
static inline u64 bkey_inode_flags(struct bkey_s_c k)
{
switch (k.k->type) {
case KEY_TYPE_inode:
return bkey_s_c_to_inode(k).v->bi_flags &
cpu_to_le32(BCH_INODE_UNLINKED);
return le32_to_cpu(bkey_s_c_to_inode(k).v->bi_flags);
case KEY_TYPE_inode_v2:
return bkey_s_c_to_inode_v2(k).v->bi_flags &
cpu_to_le32(BCH_INODE_UNLINKED);
return le64_to_cpu(bkey_s_c_to_inode_v2(k).v->bi_flags);
case KEY_TYPE_inode_v3:
return bkey_s_c_to_inode_v3(k).v->bi_flags &
cpu_to_le64(BCH_INODE_UNLINKED);
return le64_to_cpu(bkey_s_c_to_inode_v3(k).v->bi_flags);
default:
return false;
return 0;
}
}
static inline bool bkey_is_deleted_inode(struct bkey_s_c k)
{
return bkey_inode_flags(k) & BCH_INODE_UNLINKED;
}
int bch2_trans_mark_inode(struct btree_trans *trans,
enum btree_id btree_id, unsigned level,
struct bkey_s_c old,

View File

@ -14,6 +14,7 @@
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "replicas.h"
#include "sb-clean.h"
#include "trace.h"
static struct nonce journal_nonce(const struct jset *jset)
@ -208,33 +209,41 @@ static void journal_entry_null_range(void *start, void *end)
#define JOURNAL_ENTRY_BAD 7
static void journal_entry_err_msg(struct printbuf *out,
u32 version,
struct jset *jset,
struct jset_entry *entry)
{
prt_str(out, "invalid journal entry ");
if (entry)
prt_printf(out, "%s ", bch2_jset_entry_types[entry->type]);
prt_str(out, "invalid journal entry, version=");
bch2_version_to_text(out, version);
if (entry) {
prt_str(out, " type=");
prt_str(out, bch2_jset_entry_types[entry->type]);
}
if (!jset) {
prt_printf(out, " in superblock");
} else {
prt_printf(out, " seq=%llu", le64_to_cpu(jset->seq));
if (entry)
prt_printf(out, " offset=%zi/%u",
(u64 *) entry - jset->_data,
le32_to_cpu(jset->u64s));
}
if (!jset)
prt_printf(out, "in superblock");
else if (!entry)
prt_printf(out, "at seq %llu", le64_to_cpu(jset->seq));
else
prt_printf(out, "at offset %zi/%u seq %llu",
(u64 *) entry - jset->_data,
le32_to_cpu(jset->u64s),
le64_to_cpu(jset->seq));
prt_str(out, ": ");
}
#define journal_entry_err(c, jset, entry, msg, ...) \
#define journal_entry_err(c, version, jset, entry, msg, ...) \
({ \
struct printbuf buf = PRINTBUF; \
\
journal_entry_err_msg(&buf, jset, entry); \
journal_entry_err_msg(&buf, version, jset, entry); \
prt_printf(&buf, msg, ##__VA_ARGS__); \
\
switch (write) { \
switch (flags & BKEY_INVALID_WRITE) { \
case READ: \
mustfix_fsck_err(c, "%s", buf.buf); \
break; \
@ -251,8 +260,8 @@ static void journal_entry_err_msg(struct printbuf *out,
true; \
})
#define journal_entry_err_on(cond, c, jset, entry, msg, ...) \
((cond) ? journal_entry_err(c, jset, entry, msg, ##__VA_ARGS__) : false)
#define journal_entry_err_on(cond, c, version, jset, entry, msg, ...) \
((cond) ? journal_entry_err(c, version, jset, entry, msg, ##__VA_ARGS__) : false)
#define FSCK_DELETED_KEY 5
@ -261,13 +270,15 @@ static int journal_validate_key(struct bch_fs *c,
struct jset_entry *entry,
unsigned level, enum btree_id btree_id,
struct bkey_i *k,
unsigned version, int big_endian, int write)
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
int write = flags & BKEY_INVALID_WRITE;
void *next = vstruct_next(entry);
struct printbuf buf = PRINTBUF;
int ret = 0;
if (journal_entry_err_on(!k->k.u64s, c, jset, entry, "k->u64s 0")) {
if (journal_entry_err_on(!k->k.u64s, c, version, jset, entry, "k->u64s 0")) {
entry->u64s = cpu_to_le16((u64 *) k - entry->_data);
journal_entry_null_range(vstruct_next(entry), next);
return FSCK_DELETED_KEY;
@ -275,7 +286,7 @@ static int journal_validate_key(struct bch_fs *c,
if (journal_entry_err_on((void *) bkey_next(k) >
(void *) vstruct_next(entry),
c, jset, entry,
c, version, jset, entry,
"extends past end of journal entry")) {
entry->u64s = cpu_to_le16((u64 *) k - entry->_data);
journal_entry_null_range(vstruct_next(entry), next);
@ -283,7 +294,7 @@ static int journal_validate_key(struct bch_fs *c,
}
if (journal_entry_err_on(k->k.format != KEY_FORMAT_CURRENT,
c, jset, entry,
c, version, jset, entry,
"bad format %u", k->k.format)) {
le16_add_cpu(&entry->u64s, -((u16) k->k.u64s));
memmove(k, bkey_next(k), next - (void *) bkey_next(k));
@ -298,11 +309,7 @@ static int journal_validate_key(struct bch_fs *c,
if (bch2_bkey_invalid(c, bkey_i_to_s_c(k),
__btree_node_type(level, btree_id), write, &buf)) {
printbuf_reset(&buf);
prt_printf(&buf, "invalid journal entry %s at offset %zi/%u seq %llu:",
bch2_jset_entry_types[entry->type],
(u64 *) entry - jset->_data,
le32_to_cpu(jset->u64s),
le64_to_cpu(jset->seq));
journal_entry_err_msg(&buf, version, jset, entry);
prt_newline(&buf);
printbuf_indent_add(&buf, 2);
@ -312,6 +319,7 @@ static int journal_validate_key(struct bch_fs *c,
__btree_node_type(level, btree_id), write, &buf);
mustfix_fsck_err(c, "%s", buf.buf);
BUG();
le16_add_cpu(&entry->u64s, -((u16) k->k.u64s));
memmove(k, bkey_next(k), next - (void *) bkey_next(k));
@ -330,9 +338,10 @@ fsck_err:
}
static int journal_entry_btree_keys_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct bkey_i *k = entry->start;
@ -341,7 +350,7 @@ static int journal_entry_btree_keys_validate(struct bch_fs *c,
entry->level,
entry->btree_id,
k, version, big_endian,
write|BKEY_INVALID_JOURNAL);
flags|BKEY_INVALID_JOURNAL);
if (ret == FSCK_DELETED_KEY)
continue;
@ -369,16 +378,17 @@ static void journal_entry_btree_keys_to_text(struct printbuf *out, struct bch_fs
}
static int journal_entry_btree_root_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct bkey_i *k = entry->start;
int ret = 0;
if (journal_entry_err_on(!entry->u64s ||
le16_to_cpu(entry->u64s) != k->k.u64s,
c, jset, entry,
c, version, jset, entry,
"invalid btree root journal entry: wrong number of keys")) {
void *next = vstruct_next(entry);
/*
@ -392,7 +402,7 @@ static int journal_entry_btree_root_validate(struct bch_fs *c,
}
return journal_validate_key(c, jset, entry, 1, entry->btree_id, k,
version, big_endian, write);
version, big_endian, flags);
fsck_err:
return ret;
}
@ -404,9 +414,10 @@ static void journal_entry_btree_root_to_text(struct printbuf *out, struct bch_fs
}
static int journal_entry_prio_ptrs_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
/* obsolete, don't care: */
return 0;
@ -418,14 +429,15 @@ static void journal_entry_prio_ptrs_to_text(struct printbuf *out, struct bch_fs
}
static int journal_entry_blacklist_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
int ret = 0;
if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 1,
c, jset, entry,
c, version, jset, entry,
"invalid journal seq blacklist entry: bad size")) {
journal_entry_null_range(entry, vstruct_next(entry));
}
@ -443,15 +455,16 @@ static void journal_entry_blacklist_to_text(struct printbuf *out, struct bch_fs
}
static int journal_entry_blacklist_v2_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct jset_entry_blacklist_v2 *bl_entry;
int ret = 0;
if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 2,
c, jset, entry,
c, version, jset, entry,
"invalid journal seq blacklist entry: bad size")) {
journal_entry_null_range(entry, vstruct_next(entry));
goto out;
@ -461,7 +474,7 @@ static int journal_entry_blacklist_v2_validate(struct bch_fs *c,
if (journal_entry_err_on(le64_to_cpu(bl_entry->start) >
le64_to_cpu(bl_entry->end),
c, jset, entry,
c, version, jset, entry,
"invalid journal seq blacklist entry: start > end")) {
journal_entry_null_range(entry, vstruct_next(entry));
}
@ -482,9 +495,10 @@ static void journal_entry_blacklist_v2_to_text(struct printbuf *out, struct bch_
}
static int journal_entry_usage_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
@ -492,7 +506,7 @@ static int journal_entry_usage_validate(struct bch_fs *c,
int ret = 0;
if (journal_entry_err_on(bytes < sizeof(*u),
c, jset, entry,
c, version, jset, entry,
"invalid journal entry usage: bad size")) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
@ -514,9 +528,10 @@ static void journal_entry_usage_to_text(struct printbuf *out, struct bch_fs *c,
}
static int journal_entry_data_usage_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct jset_entry_data_usage *u =
container_of(entry, struct jset_entry_data_usage, entry);
@ -525,7 +540,7 @@ static int journal_entry_data_usage_validate(struct bch_fs *c,
if (journal_entry_err_on(bytes < sizeof(*u) ||
bytes < sizeof(*u) + u->r.nr_devs,
c, jset, entry,
c, version, jset, entry,
"invalid journal entry usage: bad size")) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
@ -546,9 +561,10 @@ static void journal_entry_data_usage_to_text(struct printbuf *out, struct bch_fs
}
static int journal_entry_clock_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct jset_entry_clock *clock =
container_of(entry, struct jset_entry_clock, entry);
@ -556,13 +572,13 @@ static int journal_entry_clock_validate(struct bch_fs *c,
int ret = 0;
if (journal_entry_err_on(bytes != sizeof(*clock),
c, jset, entry, "bad size")) {
c, version, jset, entry, "bad size")) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
}
if (journal_entry_err_on(clock->rw > 1,
c, jset, entry, "bad rw")) {
c, version, jset, entry, "bad rw")) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
}
@ -581,9 +597,10 @@ static void journal_entry_clock_to_text(struct printbuf *out, struct bch_fs *c,
}
static int journal_entry_dev_usage_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
struct jset_entry_dev_usage *u =
container_of(entry, struct jset_entry_dev_usage, entry);
@ -593,7 +610,7 @@ static int journal_entry_dev_usage_validate(struct bch_fs *c,
int ret = 0;
if (journal_entry_err_on(bytes < expected,
c, jset, entry, "bad size (%u < %u)",
c, version, jset, entry, "bad size (%u < %u)",
bytes, expected)) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
@ -602,13 +619,13 @@ static int journal_entry_dev_usage_validate(struct bch_fs *c,
dev = le32_to_cpu(u->dev);
if (journal_entry_err_on(!bch2_dev_exists2(c, dev),
c, jset, entry, "bad dev")) {
c, version, jset, entry, "bad dev")) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
}
if (journal_entry_err_on(u->pad,
c, jset, entry, "bad pad")) {
c, version, jset, entry, "bad pad")) {
journal_entry_null_range(entry, vstruct_next(entry));
return ret;
}
@ -641,9 +658,10 @@ static void journal_entry_dev_usage_to_text(struct printbuf *out, struct bch_fs
}
static int journal_entry_log_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
return 0;
}
@ -658,9 +676,10 @@ static void journal_entry_log_to_text(struct printbuf *out, struct bch_fs *c,
}
static int journal_entry_overwrite_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
return journal_entry_btree_keys_validate(c, jset, entry,
version, big_endian, READ);
@ -674,7 +693,8 @@ static void journal_entry_overwrite_to_text(struct printbuf *out, struct bch_fs
struct jset_entry_ops {
int (*validate)(struct bch_fs *, struct jset *,
struct jset_entry *, unsigned, int, int);
struct jset_entry *, unsigned, int,
enum bkey_invalid_flags);
void (*to_text)(struct printbuf *, struct bch_fs *, struct jset_entry *);
};
@ -691,11 +711,12 @@ static const struct jset_entry_ops bch2_jset_entry_ops[] = {
int bch2_journal_entry_validate(struct bch_fs *c,
struct jset *jset,
struct jset_entry *entry,
unsigned version, int big_endian, int write)
unsigned version, int big_endian,
enum bkey_invalid_flags flags)
{
return entry->type < BCH_JSET_ENTRY_NR
? bch2_jset_entry_ops[entry->type].validate(c, jset, entry,
version, big_endian, write)
version, big_endian, flags)
: 0;
}
@ -711,22 +732,22 @@ void bch2_journal_entry_to_text(struct printbuf *out, struct bch_fs *c,
}
static int jset_validate_entries(struct bch_fs *c, struct jset *jset,
int write)
enum bkey_invalid_flags flags)
{
struct jset_entry *entry;
unsigned version = le32_to_cpu(jset->version);
int ret = 0;
vstruct_for_each(jset, entry) {
if (journal_entry_err_on(vstruct_next(entry) >
vstruct_last(jset), c, jset, entry,
if (journal_entry_err_on(vstruct_next(entry) > vstruct_last(jset),
c, version, jset, entry,
"journal entry extends past end of jset")) {
jset->u64s = cpu_to_le32((u64 *) entry - jset->_data);
break;
}
ret = bch2_journal_entry_validate(c, jset, entry,
le32_to_cpu(jset->version),
JSET_BIG_ENDIAN(jset), write);
version, JSET_BIG_ENDIAN(jset), flags);
if (ret)
break;
}
@ -737,7 +758,7 @@ fsck_err:
static int jset_validate(struct bch_fs *c,
struct bch_dev *ca,
struct jset *jset, u64 sector,
int write)
enum bkey_invalid_flags flags)
{
unsigned version;
int ret = 0;
@ -746,7 +767,8 @@ static int jset_validate(struct bch_fs *c,
return JOURNAL_ENTRY_NONE;
version = le32_to_cpu(jset->version);
if (journal_entry_err_on(!bch2_version_compatible(version), c, jset, NULL,
if (journal_entry_err_on(!bch2_version_compatible(version),
c, version, jset, NULL,
"%s sector %llu seq %llu: incompatible journal entry version %u.%u",
ca ? ca->name : c->name,
sector, le64_to_cpu(jset->seq),
@ -757,7 +779,7 @@ static int jset_validate(struct bch_fs *c,
}
if (journal_entry_err_on(!bch2_checksum_type_valid(c, JSET_CSUM_TYPE(jset)),
c, jset, NULL,
c, version, jset, NULL,
"%s sector %llu seq %llu: journal entry with unknown csum type %llu",
ca ? ca->name : c->name,
sector, le64_to_cpu(jset->seq),
@ -767,7 +789,7 @@ static int jset_validate(struct bch_fs *c,
/* last_seq is ignored when JSET_NO_FLUSH is true */
if (journal_entry_err_on(!JSET_NO_FLUSH(jset) &&
le64_to_cpu(jset->last_seq) > le64_to_cpu(jset->seq),
c, jset, NULL,
c, version, jset, NULL,
"invalid journal entry: last_seq > seq (%llu > %llu)",
le64_to_cpu(jset->last_seq),
le64_to_cpu(jset->seq))) {
@ -775,7 +797,7 @@ static int jset_validate(struct bch_fs *c,
return JOURNAL_ENTRY_BAD;
}
ret = jset_validate_entries(c, jset, write);
ret = jset_validate_entries(c, jset, flags);
fsck_err:
return ret;
}
@ -788,14 +810,15 @@ static int jset_validate_early(struct bch_fs *c,
{
size_t bytes = vstruct_bytes(jset);
unsigned version;
int write = READ;
enum bkey_invalid_flags flags = BKEY_INVALID_JOURNAL;
int ret = 0;
if (le64_to_cpu(jset->magic) != jset_magic(c))
return JOURNAL_ENTRY_NONE;
version = le32_to_cpu(jset->version);
if (journal_entry_err_on(!bch2_version_compatible(version), c, jset, NULL,
if (journal_entry_err_on(!bch2_version_compatible(version),
c, version, jset, NULL,
"%s sector %llu seq %llu: unknown journal entry version %u.%u",
ca ? ca->name : c->name,
sector, le64_to_cpu(jset->seq),
@ -810,7 +833,7 @@ static int jset_validate_early(struct bch_fs *c,
return JOURNAL_ENTRY_REREAD;
if (journal_entry_err_on(bytes > bucket_sectors_left << 9,
c, jset, NULL,
c, version, jset, NULL,
"%s sector %llu seq %llu: journal entry too big (%zu bytes)",
ca ? ca->name : c->name,
sector, le64_to_cpu(jset->seq), bytes))
@ -1127,7 +1150,7 @@ int bch2_journal_read(struct bch_fs *c,
* those entries will be blacklisted:
*/
genradix_for_each_reverse(&c->journal_entries, radix_iter, _i) {
int write = READ;
enum bkey_invalid_flags flags = BKEY_INVALID_JOURNAL;
i = *_i;
@ -1149,7 +1172,7 @@ int bch2_journal_read(struct bch_fs *c,
}
if (journal_entry_err_on(le64_to_cpu(i->j.last_seq) > le64_to_cpu(i->j.seq),
c, &i->j, NULL,
c, le32_to_cpu(i->j.version), &i->j, NULL,
"invalid journal entry: last_seq > seq (%llu > %llu)",
le64_to_cpu(i->j.last_seq),
le64_to_cpu(i->j.seq)))

View File

@ -50,7 +50,8 @@ static inline struct jset_entry *__jset_entry_type_next(struct jset *jset,
jset_entry_for_each_key(entry, k)
int bch2_journal_entry_validate(struct bch_fs *, struct jset *,
struct jset_entry *, unsigned, int, int);
struct jset_entry *, unsigned, int,
enum bkey_invalid_flags);
void bch2_journal_entry_to_text(struct printbuf *, struct bch_fs *,
struct jset_entry *);

View File

@ -3,13 +3,14 @@
#include "bcachefs.h"
#include "btree_key_cache.h"
#include "btree_update.h"
#include "buckets.h"
#include "errcode.h"
#include "error.h"
#include "journal.h"
#include "journal_io.h"
#include "journal_reclaim.h"
#include "replicas.h"
#include "super.h"
#include "sb-members.h"
#include "trace.h"
#include <linux/kthread.h>

View File

@ -220,8 +220,10 @@ static int bch2_copygc(struct btree_trans *trans,
f = move_bucket_in_flight_add(buckets_in_flight, *i);
ret = PTR_ERR_OR_ZERO(f);
if (ret == -EEXIST) /* rare race: copygc_get_buckets returned same bucket more than once */
if (ret == -EEXIST) { /* rare race: copygc_get_buckets returned same bucket more than once */
ret = 0;
continue;
}
if (ret == -ENOMEM) { /* flush IO, continue later */
ret = 0;
break;

View File

@ -5,6 +5,7 @@
#include "bkey_buf.h"
#include "alloc_background.h"
#include "btree_gc.h"
#include "btree_journal_iter.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
@ -23,6 +24,7 @@
#include "quota.h"
#include "recovery.h"
#include "replicas.h"
#include "sb-clean.h"
#include "subvolume.h"
#include "super-io.h"
@ -57,524 +59,6 @@ static void zero_out_btree_mem_ptr(struct journal_keys *keys)
bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
}
/* iterate over keys read from the journal: */
static int __journal_key_cmp(enum btree_id l_btree_id,
unsigned l_level,
struct bpos l_pos,
const struct journal_key *r)
{
return (cmp_int(l_btree_id, r->btree_id) ?:
cmp_int(l_level, r->level) ?:
bpos_cmp(l_pos, r->k->k.p));
}
static int journal_key_cmp(const struct journal_key *l, const struct journal_key *r)
{
return __journal_key_cmp(l->btree_id, l->level, l->k->k.p, r);
}
static inline size_t idx_to_pos(struct journal_keys *keys, size_t idx)
{
size_t gap_size = keys->size - keys->nr;
if (idx >= keys->gap)
idx += gap_size;
return idx;
}
static inline struct journal_key *idx_to_key(struct journal_keys *keys, size_t idx)
{
return keys->d + idx_to_pos(keys, idx);
}
static size_t __bch2_journal_key_search(struct journal_keys *keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
size_t l = 0, r = keys->nr, m;
while (l < r) {
m = l + ((r - l) >> 1);
if (__journal_key_cmp(id, level, pos, idx_to_key(keys, m)) > 0)
l = m + 1;
else
r = m;
}
BUG_ON(l < keys->nr &&
__journal_key_cmp(id, level, pos, idx_to_key(keys, l)) > 0);
BUG_ON(l &&
__journal_key_cmp(id, level, pos, idx_to_key(keys, l - 1)) <= 0);
return l;
}
static size_t bch2_journal_key_search(struct journal_keys *keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
return idx_to_pos(keys, __bch2_journal_key_search(keys, id, level, pos));
}
struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *c, enum btree_id btree_id,
unsigned level, struct bpos pos,
struct bpos end_pos, size_t *idx)
{
struct journal_keys *keys = &c->journal_keys;
unsigned iters = 0;
struct journal_key *k;
search:
if (!*idx)
*idx = __bch2_journal_key_search(keys, btree_id, level, pos);
while ((k = *idx < keys->nr ? idx_to_key(keys, *idx) : NULL)) {
if (__journal_key_cmp(btree_id, level, end_pos, k) < 0)
return NULL;
if (__journal_key_cmp(btree_id, level, pos, k) <= 0 &&
!k->overwritten)
return k->k;
(*idx)++;
iters++;
if (iters == 10) {
*idx = 0;
goto search;
}
}
return NULL;
}
struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *c, enum btree_id btree_id,
unsigned level, struct bpos pos)
{
size_t idx = 0;
return bch2_journal_keys_peek_upto(c, btree_id, level, pos, pos, &idx);
}
static void journal_iters_fix(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
/* The key we just inserted is immediately before the gap: */
size_t gap_end = keys->gap + (keys->size - keys->nr);
struct btree_and_journal_iter *iter;
/*
* If an iterator points one after the key we just inserted, decrement
* the iterator so it points at the key we just inserted - if the
* decrement was unnecessary, bch2_btree_and_journal_iter_peek() will
* handle that:
*/
list_for_each_entry(iter, &c->journal_iters, journal.list)
if (iter->journal.idx == gap_end)
iter->journal.idx = keys->gap - 1;
}
static void journal_iters_move_gap(struct bch_fs *c, size_t old_gap, size_t new_gap)
{
struct journal_keys *keys = &c->journal_keys;
struct journal_iter *iter;
size_t gap_size = keys->size - keys->nr;
list_for_each_entry(iter, &c->journal_iters, list) {
if (iter->idx > old_gap)
iter->idx -= gap_size;
if (iter->idx >= new_gap)
iter->idx += gap_size;
}
}
int bch2_journal_key_insert_take(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct journal_key n = {
.btree_id = id,
.level = level,
.k = k,
.allocated = true,
/*
* Ensure these keys are done last by journal replay, to unblock
* journal reclaim:
*/
.journal_seq = U32_MAX,
};
struct journal_keys *keys = &c->journal_keys;
size_t idx = bch2_journal_key_search(keys, id, level, k->k.p);
BUG_ON(test_bit(BCH_FS_RW, &c->flags));
if (idx < keys->size &&
journal_key_cmp(&n, &keys->d[idx]) == 0) {
if (keys->d[idx].allocated)
kfree(keys->d[idx].k);
keys->d[idx] = n;
return 0;
}
if (idx > keys->gap)
idx -= keys->size - keys->nr;
if (keys->nr == keys->size) {
struct journal_keys new_keys = {
.nr = keys->nr,
.size = max_t(size_t, keys->size, 8) * 2,
};
new_keys.d = kvmalloc_array(new_keys.size, sizeof(new_keys.d[0]), GFP_KERNEL);
if (!new_keys.d) {
bch_err(c, "%s: error allocating new key array (size %zu)",
__func__, new_keys.size);
return -BCH_ERR_ENOMEM_journal_key_insert;
}
/* Since @keys was full, there was no gap: */
memcpy(new_keys.d, keys->d, sizeof(keys->d[0]) * keys->nr);
kvfree(keys->d);
*keys = new_keys;
/* And now the gap is at the end: */
keys->gap = keys->nr;
}
journal_iters_move_gap(c, keys->gap, idx);
move_gap(keys->d, keys->nr, keys->size, keys->gap, idx);
keys->gap = idx;
keys->nr++;
keys->d[keys->gap++] = n;
journal_iters_fix(c);
return 0;
}
/*
* Can only be used from the recovery thread while we're still RO - can't be
* used once we've got RW, as journal_keys is at that point used by multiple
* threads:
*/
int bch2_journal_key_insert(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct bkey_i *n;
int ret;
n = kmalloc(bkey_bytes(&k->k), GFP_KERNEL);
if (!n)
return -BCH_ERR_ENOMEM_journal_key_insert;
bkey_copy(n, k);
ret = bch2_journal_key_insert_take(c, id, level, n);
if (ret)
kfree(n);
return ret;
}
int bch2_journal_key_delete(struct bch_fs *c, enum btree_id id,
unsigned level, struct bpos pos)
{
struct bkey_i whiteout;
bkey_init(&whiteout.k);
whiteout.k.p = pos;
return bch2_journal_key_insert(c, id, level, &whiteout);
}
void bch2_journal_key_overwritten(struct bch_fs *c, enum btree_id btree,
unsigned level, struct bpos pos)
{
struct journal_keys *keys = &c->journal_keys;
size_t idx = bch2_journal_key_search(keys, btree, level, pos);
if (idx < keys->size &&
keys->d[idx].btree_id == btree &&
keys->d[idx].level == level &&
bpos_eq(keys->d[idx].k->k.p, pos))
keys->d[idx].overwritten = true;
}
static void bch2_journal_iter_advance(struct journal_iter *iter)
{
if (iter->idx < iter->keys->size) {
iter->idx++;
if (iter->idx == iter->keys->gap)
iter->idx += iter->keys->size - iter->keys->nr;
}
}
static struct bkey_s_c bch2_journal_iter_peek(struct journal_iter *iter)
{
struct journal_key *k = iter->keys->d + iter->idx;
while (k < iter->keys->d + iter->keys->size &&
k->btree_id == iter->btree_id &&
k->level == iter->level) {
if (!k->overwritten)
return bkey_i_to_s_c(k->k);
bch2_journal_iter_advance(iter);
k = iter->keys->d + iter->idx;
}
return bkey_s_c_null;
}
static void bch2_journal_iter_exit(struct journal_iter *iter)
{
list_del(&iter->list);
}
static void bch2_journal_iter_init(struct bch_fs *c,
struct journal_iter *iter,
enum btree_id id, unsigned level,
struct bpos pos)
{
iter->btree_id = id;
iter->level = level;
iter->keys = &c->journal_keys;
iter->idx = bch2_journal_key_search(&c->journal_keys, id, level, pos);
}
static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter)
{
return bch2_btree_node_iter_peek_unpack(&iter->node_iter,
iter->b, &iter->unpacked);
}
static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter)
{
bch2_btree_node_iter_advance(&iter->node_iter, iter->b);
}
void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter)
{
if (bpos_eq(iter->pos, SPOS_MAX))
iter->at_end = true;
else
iter->pos = bpos_successor(iter->pos);
}
struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter)
{
struct bkey_s_c btree_k, journal_k, ret;
again:
if (iter->at_end)
return bkey_s_c_null;
while ((btree_k = bch2_journal_iter_peek_btree(iter)).k &&
bpos_lt(btree_k.k->p, iter->pos))
bch2_journal_iter_advance_btree(iter);
while ((journal_k = bch2_journal_iter_peek(&iter->journal)).k &&
bpos_lt(journal_k.k->p, iter->pos))
bch2_journal_iter_advance(&iter->journal);
ret = journal_k.k &&
(!btree_k.k || bpos_le(journal_k.k->p, btree_k.k->p))
? journal_k
: btree_k;
if (ret.k && iter->b && bpos_gt(ret.k->p, iter->b->data->max_key))
ret = bkey_s_c_null;
if (ret.k) {
iter->pos = ret.k->p;
if (bkey_deleted(ret.k)) {
bch2_btree_and_journal_iter_advance(iter);
goto again;
}
} else {
iter->pos = SPOS_MAX;
iter->at_end = true;
}
return ret;
}
void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *iter)
{
bch2_journal_iter_exit(&iter->journal);
}
void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b,
struct btree_node_iter node_iter,
struct bpos pos)
{
memset(iter, 0, sizeof(*iter));
iter->b = b;
iter->node_iter = node_iter;
bch2_journal_iter_init(c, &iter->journal, b->c.btree_id, b->c.level, pos);
INIT_LIST_HEAD(&iter->journal.list);
iter->pos = b->data->min_key;
iter->at_end = false;
}
/*
* this version is used by btree_gc before filesystem has gone RW and
* multithreaded, so uses the journal_iters list:
*/
void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b)
{
struct btree_node_iter node_iter;
bch2_btree_node_iter_init_from_start(&node_iter, b);
__bch2_btree_and_journal_iter_init_node_iter(iter, c, b, node_iter, b->data->min_key);
list_add(&iter->journal.list, &c->journal_iters);
}
/* sort and dedup all keys in the journal: */
void bch2_journal_entries_free(struct bch_fs *c)
{
struct journal_replay **i;
struct genradix_iter iter;
genradix_for_each(&c->journal_entries, iter, i)
if (*i)
kvpfree(*i, offsetof(struct journal_replay, j) +
vstruct_bytes(&(*i)->j));
genradix_free(&c->journal_entries);
}
/*
* When keys compare equal, oldest compares first:
*/
static int journal_sort_key_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return journal_key_cmp(l, r) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->journal_offset, r->journal_offset);
}
void bch2_journal_keys_free(struct journal_keys *keys)
{
struct journal_key *i;
move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
keys->gap = keys->nr;
for (i = keys->d; i < keys->d + keys->nr; i++)
if (i->allocated)
kfree(i->k);
kvfree(keys->d);
keys->d = NULL;
keys->nr = keys->gap = keys->size = 0;
}
static void __journal_keys_sort(struct journal_keys *keys)
{
struct journal_key *src, *dst;
sort(keys->d, keys->nr, sizeof(keys->d[0]), journal_sort_key_cmp, NULL);
src = dst = keys->d;
while (src < keys->d + keys->nr) {
while (src + 1 < keys->d + keys->nr &&
src[0].btree_id == src[1].btree_id &&
src[0].level == src[1].level &&
bpos_eq(src[0].k->k.p, src[1].k->k.p))
src++;
*dst++ = *src++;
}
keys->nr = dst - keys->d;
}
static int journal_keys_sort(struct bch_fs *c)
{
struct genradix_iter iter;
struct journal_replay *i, **_i;
struct jset_entry *entry;
struct bkey_i *k;
struct journal_keys *keys = &c->journal_keys;
size_t nr_keys = 0, nr_read = 0;
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
for_each_jset_key(k, entry, &i->j)
nr_keys++;
}
if (!nr_keys)
return 0;
keys->size = roundup_pow_of_two(nr_keys);
keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL);
if (!keys->d) {
bch_err(c, "Failed to allocate buffer for sorted journal keys (%zu keys); trying slowpath",
nr_keys);
do {
keys->size >>= 1;
keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL);
} while (!keys->d && keys->size > nr_keys / 8);
if (!keys->d) {
bch_err(c, "Failed to allocate %zu size buffer for sorted journal keys; exiting",
keys->size);
return -BCH_ERR_ENOMEM_journal_keys_sort;
}
}
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
cond_resched();
for_each_jset_key(k, entry, &i->j) {
if (keys->nr == keys->size) {
__journal_keys_sort(keys);
if (keys->nr > keys->size * 7 / 8) {
bch_err(c, "Too many journal keys for slowpath; have %zu compacted, buf size %zu, processed %zu/%zu",
keys->nr, keys->size, nr_read, nr_keys);
return -BCH_ERR_ENOMEM_journal_keys_sort;
}
}
keys->d[keys->nr++] = (struct journal_key) {
.btree_id = entry->btree_id,
.level = entry->level,
.k = k,
.journal_seq = le64_to_cpu(i->j.seq),
.journal_offset = k->_data - i->j._data,
};
nr_read++;
}
}
__journal_keys_sort(keys);
keys->gap = keys->nr;
bch_verbose(c, "Journal keys: %zu read, %zu after sorting and compacting", nr_keys, keys->nr);
return 0;
}
/* journal replay: */
static void replay_now_at(struct journal *j, u64 seq)
@ -846,134 +330,6 @@ static int journal_replay_early(struct bch_fs *c,
/* sb clean section: */
static struct bkey_i *btree_root_find(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct jset *j,
enum btree_id id, unsigned *level)
{
struct bkey_i *k;
struct jset_entry *entry, *start, *end;
if (clean) {
start = clean->start;
end = vstruct_end(&clean->field);
} else {
start = j->start;
end = vstruct_last(j);
}
for (entry = start; entry < end; entry = vstruct_next(entry))
if (entry->type == BCH_JSET_ENTRY_btree_root &&
entry->btree_id == id)
goto found;
return NULL;
found:
if (!entry->u64s)
return ERR_PTR(-EINVAL);
k = entry->start;
*level = entry->level;
return k;
}
static int verify_superblock_clean(struct bch_fs *c,
struct bch_sb_field_clean **cleanp,
struct jset *j)
{
unsigned i;
struct bch_sb_field_clean *clean = *cleanp;
struct printbuf buf1 = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret = 0;
if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
le64_to_cpu(clean->journal_seq),
le64_to_cpu(j->seq))) {
kfree(clean);
*cleanp = NULL;
return 0;
}
for (i = 0; i < BTREE_ID_NR; i++) {
struct bkey_i *k1, *k2;
unsigned l1 = 0, l2 = 0;
k1 = btree_root_find(c, clean, NULL, i, &l1);
k2 = btree_root_find(c, NULL, j, i, &l2);
if (!k1 && !k2)
continue;
printbuf_reset(&buf1);
printbuf_reset(&buf2);
if (k1)
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1));
else
prt_printf(&buf1, "(none)");
if (k2)
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2));
else
prt_printf(&buf2, "(none)");
mustfix_fsck_err_on(!k1 || !k2 ||
IS_ERR(k1) ||
IS_ERR(k2) ||
k1->k.u64s != k2->k.u64s ||
memcmp(k1, k2, bkey_bytes(&k1->k)) ||
l1 != l2, c,
"superblock btree root %u doesn't match journal after clean shutdown\n"
"sb: l=%u %s\n"
"journal: l=%u %s\n", i,
l1, buf1.buf,
l2, buf2.buf);
}
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
static struct bch_sb_field_clean *read_superblock_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *clean, *sb_clean;
int ret;
mutex_lock(&c->sb_lock);
sb_clean = bch2_sb_get_clean(c->disk_sb.sb);
if (fsck_err_on(!sb_clean, c,
"superblock marked clean but clean section not present")) {
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
mutex_unlock(&c->sb_lock);
return NULL;
}
clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
GFP_KERNEL);
if (!clean) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean);
}
ret = bch2_sb_clean_validate_late(c, clean, READ);
if (ret) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
mutex_unlock(&c->sb_lock);
return clean;
fsck_err:
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
static bool btree_id_is_alloc(enum btree_id id)
{
switch (id) {
@ -1120,6 +476,35 @@ static int bch2_fs_upgrade_for_subvolumes(struct bch_fs *c)
return ret;
}
const char * const bch2_recovery_passes[] = {
#define x(_fn, _when) #_fn,
BCH_RECOVERY_PASSES()
#undef x
NULL
};
static int bch2_check_allocations(struct bch_fs *c)
{
return bch2_gc(c, true, c->opts.norecovery);
}
static int bch2_set_may_go_rw(struct bch_fs *c)
{
set_bit(BCH_FS_MAY_GO_RW, &c->flags);
return 0;
}
struct recovery_pass_fn {
int (*fn)(struct bch_fs *);
unsigned when;
};
static struct recovery_pass_fn recovery_pass_fns[] = {
#define x(_fn, _when) { .fn = bch2_##_fn, .when = _when },
BCH_RECOVERY_PASSES()
#undef x
};
static void check_version_upgrade(struct bch_fs *c)
{
unsigned latest_compatible = bch2_version_compatible(c->sb.version);
@ -1172,7 +557,12 @@ static void check_version_upgrade(struct bch_fs *c)
recovery_passes = bch2_upgrade_recovery_passes(c, old_version, new_version);
if (recovery_passes) {
prt_str(&buf, "fsck required");
if ((recovery_passes & RECOVERY_PASS_ALL_FSCK) == RECOVERY_PASS_ALL_FSCK)
prt_str(&buf, "fsck required");
else {
prt_str(&buf, "running recovery passses: ");
prt_bitflags(&buf, bch2_recovery_passes, recovery_passes);
}
c->recovery_passes_explicit |= recovery_passes;
c->opts.fix_errors = FSCK_FIX_yes;
@ -1188,42 +578,19 @@ static void check_version_upgrade(struct bch_fs *c)
}
}
static int bch2_check_allocations(struct bch_fs *c)
{
return bch2_gc(c, true, c->opts.norecovery);
}
static int bch2_set_may_go_rw(struct bch_fs *c)
{
set_bit(BCH_FS_MAY_GO_RW, &c->flags);
return 0;
}
struct recovery_pass_fn {
int (*fn)(struct bch_fs *);
const char *name;
unsigned when;
};
static struct recovery_pass_fn recovery_passes[] = {
#define x(_fn, _when) { .fn = bch2_##_fn, .name = #_fn, .when = _when },
BCH_RECOVERY_PASSES()
#undef x
};
u64 bch2_fsck_recovery_passes(void)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(recovery_passes); i++)
if (recovery_passes[i].when & PASS_FSCK)
for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
if (recovery_pass_fns[i].when & PASS_FSCK)
ret |= BIT_ULL(i);
return ret;
}
static bool should_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
struct recovery_pass_fn *p = recovery_passes + c->curr_recovery_pass;
struct recovery_pass_fn *p = recovery_pass_fns + c->curr_recovery_pass;
if (c->opts.norecovery && pass > BCH_RECOVERY_PASS_snapshots_read)
return false;
@ -1245,15 +612,18 @@ static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
c->curr_recovery_pass = pass;
if (should_run_recovery_pass(c, pass)) {
struct recovery_pass_fn *p = recovery_passes + pass;
struct recovery_pass_fn *p = recovery_pass_fns + pass;
if (!(p->when & PASS_SILENT))
printk(KERN_INFO bch2_log_msg(c, "%s..."), p->name);
printk(KERN_INFO bch2_log_msg(c, "%s..."),
bch2_recovery_passes[pass]);
ret = p->fn(c);
if (ret)
return ret;
if (!(p->when & PASS_SILENT))
printk(KERN_CONT " done\n");
c->recovery_passes_complete |= BIT_ULL(pass);
}
return 0;
@ -1263,7 +633,7 @@ static int bch2_run_recovery_passes(struct bch_fs *c)
{
int ret = 0;
while (c->curr_recovery_pass < ARRAY_SIZE(recovery_passes)) {
while (c->curr_recovery_pass < ARRAY_SIZE(recovery_pass_fns)) {
ret = bch2_run_recovery_pass(c, c->curr_recovery_pass);
if (bch2_err_matches(ret, BCH_ERR_restart_recovery))
continue;
@ -1283,17 +653,17 @@ int bch2_fs_recovery(struct bch_fs *c)
bool write_sb = false;
int ret = 0;
if (c->sb.clean)
clean = read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
if (c->sb.clean) {
clean = bch2_read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
if (c->sb.clean)
bch_info(c, "recovering from clean shutdown, journal seq %llu",
le64_to_cpu(clean->journal_seq));
else
} else {
bch_info(c, "recovering from unclean shutdown");
}
if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
@ -1308,12 +678,6 @@ int bch2_fs_recovery(struct bch_fs *c)
goto err;
}
if (!(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done))) {
bch_err(c, "filesystem may have incompatible bkey formats; run fsck from the compat branch to fix");
ret = -EINVAL;
goto err;
}
if (c->opts.fsck || !(c->opts.nochanges && c->opts.norecovery))
check_version_upgrade(c);
@ -1373,12 +737,12 @@ int bch2_fs_recovery(struct bch_fs *c)
}
}
ret = journal_keys_sort(c);
ret = bch2_journal_keys_sort(c);
if (ret)
goto err;
if (c->sb.clean && last_journal_entry) {
ret = verify_superblock_clean(c, &clean,
ret = bch2_verify_superblock_clean(c, &clean,
last_journal_entry);
if (ret)
goto err;
@ -1513,7 +877,6 @@ use_clean:
mutex_unlock(&c->sb_lock);
if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
!(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done)) ||
c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
struct bch_move_stats stats;
@ -1581,7 +944,7 @@ int bch2_fs_initialize(struct bch_fs *c)
}
mutex_unlock(&c->sb_lock);
c->curr_recovery_pass = ARRAY_SIZE(recovery_passes);
c->curr_recovery_pass = ARRAY_SIZE(recovery_pass_fns);
set_bit(BCH_FS_MAY_GO_RW, &c->flags);
set_bit(BCH_FS_FSCK_DONE, &c->flags);

View File

@ -2,55 +2,28 @@
#ifndef _BCACHEFS_RECOVERY_H
#define _BCACHEFS_RECOVERY_H
struct journal_iter {
struct list_head list;
enum btree_id btree_id;
unsigned level;
size_t idx;
struct journal_keys *keys;
};
extern const char * const bch2_recovery_passes[];
/*
* Iterate over keys in the btree, with keys from the journal overlaid on top:
* For when we need to rewind recovery passes and run a pass we skipped:
*/
static inline int bch2_run_explicit_recovery_pass(struct bch_fs *c,
enum bch_recovery_pass pass)
{
bch_info(c, "running explicit recovery pass %s (%u), currently at %s (%u)",
bch2_recovery_passes[pass], pass,
bch2_recovery_passes[c->curr_recovery_pass], c->curr_recovery_pass);
struct btree_and_journal_iter {
struct btree *b;
struct btree_node_iter node_iter;
struct bkey unpacked;
c->recovery_passes_explicit |= BIT_ULL(pass);
struct journal_iter journal;
struct bpos pos;
bool at_end;
};
struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *, enum btree_id,
unsigned, struct bpos, struct bpos, size_t *);
struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *, enum btree_id,
unsigned, struct bpos);
int bch2_journal_key_insert_take(struct bch_fs *, enum btree_id,
unsigned, struct bkey_i *);
int bch2_journal_key_insert(struct bch_fs *, enum btree_id,
unsigned, struct bkey_i *);
int bch2_journal_key_delete(struct bch_fs *, enum btree_id,
unsigned, struct bpos);
void bch2_journal_key_overwritten(struct bch_fs *, enum btree_id,
unsigned, struct bpos);
void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *);
struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *);
void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *);
void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *,
struct bch_fs *, struct btree *,
struct btree_node_iter, struct bpos);
void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *,
struct bch_fs *,
struct btree *);
void bch2_journal_keys_free(struct journal_keys *);
void bch2_journal_entries_free(struct bch_fs *);
if (c->curr_recovery_pass >= pass) {
c->curr_recovery_pass = pass;
c->recovery_passes_complete &= (1ULL << pass) >> 1;
return -BCH_ERR_restart_recovery;
} else {
return 0;
}
}
u64 bch2_fsck_recovery_passes(void);

395
libbcachefs/sb-clean.c Normal file
View File

@ -0,0 +1,395 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "error.h"
#include "journal_io.h"
#include "replicas.h"
#include "sb-clean.h"
#include "super-io.h"
/*
* BCH_SB_FIELD_clean:
*
* Btree roots, and a few other things, are recovered from the journal after an
* unclean shutdown - but after a clean shutdown, to avoid having to read the
* journal, we can store them in the superblock.
*
* bch_sb_field_clean simply contains a list of journal entries, stored exactly
* as they would be in the journal:
*/
int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean,
int write)
{
struct jset_entry *entry;
int ret;
for (entry = clean->start;
entry < (struct jset_entry *) vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
ret = bch2_journal_entry_validate(c, NULL, entry,
le16_to_cpu(c->disk_sb.sb->version),
BCH_SB_BIG_ENDIAN(c->disk_sb.sb),
write);
if (ret)
return ret;
}
return 0;
}
static struct bkey_i *btree_root_find(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct jset *j,
enum btree_id id, unsigned *level)
{
struct bkey_i *k;
struct jset_entry *entry, *start, *end;
if (clean) {
start = clean->start;
end = vstruct_end(&clean->field);
} else {
start = j->start;
end = vstruct_last(j);
}
for (entry = start; entry < end; entry = vstruct_next(entry))
if (entry->type == BCH_JSET_ENTRY_btree_root &&
entry->btree_id == id)
goto found;
return NULL;
found:
if (!entry->u64s)
return ERR_PTR(-EINVAL);
k = entry->start;
*level = entry->level;
return k;
}
int bch2_verify_superblock_clean(struct bch_fs *c,
struct bch_sb_field_clean **cleanp,
struct jset *j)
{
unsigned i;
struct bch_sb_field_clean *clean = *cleanp;
struct printbuf buf1 = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret = 0;
if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
le64_to_cpu(clean->journal_seq),
le64_to_cpu(j->seq))) {
kfree(clean);
*cleanp = NULL;
return 0;
}
for (i = 0; i < BTREE_ID_NR; i++) {
struct bkey_i *k1, *k2;
unsigned l1 = 0, l2 = 0;
k1 = btree_root_find(c, clean, NULL, i, &l1);
k2 = btree_root_find(c, NULL, j, i, &l2);
if (!k1 && !k2)
continue;
printbuf_reset(&buf1);
printbuf_reset(&buf2);
if (k1)
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1));
else
prt_printf(&buf1, "(none)");
if (k2)
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2));
else
prt_printf(&buf2, "(none)");
mustfix_fsck_err_on(!k1 || !k2 ||
IS_ERR(k1) ||
IS_ERR(k2) ||
k1->k.u64s != k2->k.u64s ||
memcmp(k1, k2, bkey_bytes(&k1->k)) ||
l1 != l2, c,
"superblock btree root %u doesn't match journal after clean shutdown\n"
"sb: l=%u %s\n"
"journal: l=%u %s\n", i,
l1, buf1.buf,
l2, buf2.buf);
}
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *clean, *sb_clean;
int ret;
mutex_lock(&c->sb_lock);
sb_clean = bch2_sb_get_clean(c->disk_sb.sb);
if (fsck_err_on(!sb_clean, c,
"superblock marked clean but clean section not present")) {
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
mutex_unlock(&c->sb_lock);
return NULL;
}
clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
GFP_KERNEL);
if (!clean) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean);
}
ret = bch2_sb_clean_validate_late(c, clean, READ);
if (ret) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
mutex_unlock(&c->sb_lock);
return clean;
fsck_err:
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size)
{
struct jset_entry *entry = *end;
unsigned u64s = DIV_ROUND_UP(size, sizeof(u64));
memset(entry, 0, u64s * sizeof(u64));
/*
* The u64s field counts from the start of data, ignoring the shared
* fields.
*/
entry->u64s = cpu_to_le16(u64s - 1);
*end = vstruct_next(*end);
return entry;
}
void bch2_journal_super_entries_add_common(struct bch_fs *c,
struct jset_entry **end,
u64 journal_seq)
{
struct bch_dev *ca;
unsigned i, dev;
percpu_down_read(&c->mark_lock);
if (!journal_seq) {
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
} else {
bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
}
{
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_inodes;
u->v = cpu_to_le64(c->usage_base->nr_inodes);
}
{
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_key_version;
u->v = cpu_to_le64(atomic64_read(&c->key_version));
}
for (i = 0; i < BCH_REPLICAS_MAX; i++) {
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_reserved;
u->entry.level = i;
u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
struct jset_entry_data_usage *u =
container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs),
struct jset_entry_data_usage, entry);
u->entry.type = BCH_JSET_ENTRY_data_usage;
u->v = cpu_to_le64(c->usage_base->replicas[i]);
unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
"embedded variable length struct");
}
for_each_member_device(ca, c, dev) {
unsigned b = sizeof(struct jset_entry_dev_usage) +
sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR;
struct jset_entry_dev_usage *u =
container_of(jset_entry_init(end, b),
struct jset_entry_dev_usage, entry);
u->entry.type = BCH_JSET_ENTRY_dev_usage;
u->dev = cpu_to_le32(dev);
u->buckets_ec = cpu_to_le64(ca->usage_base->buckets_ec);
for (i = 0; i < BCH_DATA_NR; i++) {
u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets);
u->d[i].sectors = cpu_to_le64(ca->usage_base->d[i].sectors);
u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented);
}
}
percpu_up_read(&c->mark_lock);
for (i = 0; i < 2; i++) {
struct jset_entry_clock *clock =
container_of(jset_entry_init(end, sizeof(*clock)),
struct jset_entry_clock, entry);
clock->entry.type = BCH_JSET_ENTRY_clock;
clock->rw = i;
clock->time = cpu_to_le64(atomic64_read(&c->io_clock[i].now));
}
}
static int bch2_sb_clean_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
if (vstruct_bytes(&clean->field) < sizeof(*clean)) {
prt_printf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&clean->field), sizeof(*clean));
return -BCH_ERR_invalid_sb_clean;
}
return 0;
}
static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
struct jset_entry *entry;
prt_printf(out, "flags: %x", le32_to_cpu(clean->flags));
prt_newline(out);
prt_printf(out, "journal_seq: %llu", le64_to_cpu(clean->journal_seq));
prt_newline(out);
for (entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
if (entry->type == BCH_JSET_ENTRY_btree_keys &&
!entry->u64s)
continue;
bch2_journal_entry_to_text(out, NULL, entry);
prt_newline(out);
}
}
const struct bch_sb_field_ops bch_sb_field_ops_clean = {
.validate = bch2_sb_clean_validate,
.to_text = bch2_sb_clean_to_text,
};
int bch2_fs_mark_dirty(struct bch_fs *c)
{
int ret;
/*
* Unconditionally write superblock, to verify it hasn't changed before
* we go rw:
*/
mutex_lock(&c->sb_lock);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_sb_maybe_downgrade(c);
c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS);
ret = bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
void bch2_fs_mark_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *sb_clean;
struct jset_entry *entry;
unsigned u64s;
int ret;
mutex_lock(&c->sb_lock);
if (BCH_SB_CLEAN(c->disk_sb.sb))
goto out;
SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata);
c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates));
c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled));
u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s);
if (!sb_clean) {
bch_err(c, "error resizing superblock while setting filesystem clean");
goto out;
}
sb_clean->flags = 0;
sb_clean->journal_seq = cpu_to_le64(atomic64_read(&c->journal.seq));
/* Trying to catch outstanding bug: */
BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
entry = sb_clean->start;
bch2_journal_super_entries_add_common(c, &entry, 0);
entry = bch2_btree_roots_to_journal_entries(c, entry, entry);
BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
memset(entry, 0,
vstruct_end(&sb_clean->field) - (void *) entry);
/*
* this should be in the write path, and we should be validating every
* superblock section:
*/
ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE);
if (ret) {
bch_err(c, "error writing marking filesystem clean: validate error");
goto out;
}
bch2_write_super(c);
out:
mutex_unlock(&c->sb_lock);
}

16
libbcachefs/sb-clean.h Normal file
View File

@ -0,0 +1,16 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_SB_CLEAN_H
#define _BCACHEFS_SB_CLEAN_H
int bch2_sb_clean_validate_late(struct bch_fs *, struct bch_sb_field_clean *, int);
int bch2_verify_superblock_clean(struct bch_fs *, struct bch_sb_field_clean **,
struct jset *);
struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *);
void bch2_journal_super_entries_add_common(struct bch_fs *, struct jset_entry **, u64);
extern const struct bch_sb_field_ops bch_sb_field_ops_clean;
int bch2_fs_mark_dirty(struct bch_fs *);
void bch2_fs_mark_clean(struct bch_fs *);
#endif /* _BCACHEFS_SB_CLEAN_H */

173
libbcachefs/sb-members.c Normal file
View File

@ -0,0 +1,173 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "disk_groups.h"
#include "replicas.h"
#include "sb-members.h"
#include "super-io.h"
/* Code for bch_sb_field_members: */
static int bch2_sb_members_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
unsigned i;
if ((void *) (mi->members + sb->nr_devices) >
vstruct_end(&mi->field)) {
prt_printf(err, "too many devices for section size");
return -BCH_ERR_invalid_sb_members;
}
for (i = 0; i < sb->nr_devices; i++) {
struct bch_member *m = mi->members + i;
if (!bch2_member_exists(m))
continue;
if (le64_to_cpu(m->nbuckets) > LONG_MAX) {
prt_printf(err, "device %u: too many buckets (got %llu, max %lu)",
i, le64_to_cpu(m->nbuckets), LONG_MAX);
return -BCH_ERR_invalid_sb_members;
}
if (le64_to_cpu(m->nbuckets) -
le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS) {
prt_printf(err, "device %u: not enough buckets (got %llu, max %u)",
i, le64_to_cpu(m->nbuckets), BCH_MIN_NR_NBUCKETS);
return -BCH_ERR_invalid_sb_members;
}
if (le16_to_cpu(m->bucket_size) <
le16_to_cpu(sb->block_size)) {
prt_printf(err, "device %u: bucket size %u smaller than block size %u",
i, le16_to_cpu(m->bucket_size), le16_to_cpu(sb->block_size));
return -BCH_ERR_invalid_sb_members;
}
if (le16_to_cpu(m->bucket_size) <
BCH_SB_BTREE_NODE_SIZE(sb)) {
prt_printf(err, "device %u: bucket size %u smaller than btree node size %llu",
i, le16_to_cpu(m->bucket_size), BCH_SB_BTREE_NODE_SIZE(sb));
return -BCH_ERR_invalid_sb_members;
}
}
return 0;
}
static void bch2_sb_members_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
struct bch_sb_field_disk_groups *gi = bch2_sb_get_disk_groups(sb);
unsigned i;
for (i = 0; i < sb->nr_devices; i++) {
struct bch_member *m = mi->members + i;
unsigned data_have = bch2_sb_dev_has_data(sb, i);
u64 bucket_size = le16_to_cpu(m->bucket_size);
u64 device_size = le64_to_cpu(m->nbuckets) * bucket_size;
if (!bch2_member_exists(m))
continue;
prt_printf(out, "Device:");
prt_tab(out);
prt_printf(out, "%u", i);
prt_newline(out);
printbuf_indent_add(out, 2);
prt_printf(out, "UUID:");
prt_tab(out);
pr_uuid(out, m->uuid.b);
prt_newline(out);
prt_printf(out, "Size:");
prt_tab(out);
prt_units_u64(out, device_size << 9);
prt_newline(out);
prt_printf(out, "Bucket size:");
prt_tab(out);
prt_units_u64(out, bucket_size << 9);
prt_newline(out);
prt_printf(out, "First bucket:");
prt_tab(out);
prt_printf(out, "%u", le16_to_cpu(m->first_bucket));
prt_newline(out);
prt_printf(out, "Buckets:");
prt_tab(out);
prt_printf(out, "%llu", le64_to_cpu(m->nbuckets));
prt_newline(out);
prt_printf(out, "Last mount:");
prt_tab(out);
if (m->last_mount)
pr_time(out, le64_to_cpu(m->last_mount));
else
prt_printf(out, "(never)");
prt_newline(out);
prt_printf(out, "State:");
prt_tab(out);
prt_printf(out, "%s",
BCH_MEMBER_STATE(m) < BCH_MEMBER_STATE_NR
? bch2_member_states[BCH_MEMBER_STATE(m)]
: "unknown");
prt_newline(out);
prt_printf(out, "Label:");
prt_tab(out);
if (BCH_MEMBER_GROUP(m)) {
unsigned idx = BCH_MEMBER_GROUP(m) - 1;
if (idx < disk_groups_nr(gi))
prt_printf(out, "%s (%u)",
gi->entries[idx].label, idx);
else
prt_printf(out, "(bad disk labels section)");
} else {
prt_printf(out, "(none)");
}
prt_newline(out);
prt_printf(out, "Data allowed:");
prt_tab(out);
if (BCH_MEMBER_DATA_ALLOWED(m))
prt_bitflags(out, bch2_data_types, BCH_MEMBER_DATA_ALLOWED(m));
else
prt_printf(out, "(none)");
prt_newline(out);
prt_printf(out, "Has data:");
prt_tab(out);
if (data_have)
prt_bitflags(out, bch2_data_types, data_have);
else
prt_printf(out, "(none)");
prt_newline(out);
prt_printf(out, "Discard:");
prt_tab(out);
prt_printf(out, "%llu", BCH_MEMBER_DISCARD(m));
prt_newline(out);
prt_printf(out, "Freespace initialized:");
prt_tab(out);
prt_printf(out, "%llu", BCH_MEMBER_FREESPACE_INITIALIZED(m));
prt_newline(out);
printbuf_indent_sub(out, 2);
}
}
const struct bch_sb_field_ops bch_sb_field_ops_members = {
.validate = bch2_sb_members_validate,
.to_text = bch2_sb_members_to_text,
};

176
libbcachefs/sb-members.h Normal file
View File

@ -0,0 +1,176 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_SB_MEMBERS_H
#define _BCACHEFS_SB_MEMBERS_H
static inline bool bch2_dev_is_online(struct bch_dev *ca)
{
return !percpu_ref_is_zero(&ca->io_ref);
}
static inline bool bch2_dev_is_readable(struct bch_dev *ca)
{
return bch2_dev_is_online(ca) &&
ca->mi.state != BCH_MEMBER_STATE_failed;
}
static inline bool bch2_dev_get_ioref(struct bch_dev *ca, int rw)
{
if (!percpu_ref_tryget(&ca->io_ref))
return false;
if (ca->mi.state == BCH_MEMBER_STATE_rw ||
(ca->mi.state == BCH_MEMBER_STATE_ro && rw == READ))
return true;
percpu_ref_put(&ca->io_ref);
return false;
}
static inline unsigned dev_mask_nr(const struct bch_devs_mask *devs)
{
return bitmap_weight(devs->d, BCH_SB_MEMBERS_MAX);
}
static inline bool bch2_dev_list_has_dev(struct bch_devs_list devs,
unsigned dev)
{
unsigned i;
for (i = 0; i < devs.nr; i++)
if (devs.devs[i] == dev)
return true;
return false;
}
static inline void bch2_dev_list_drop_dev(struct bch_devs_list *devs,
unsigned dev)
{
unsigned i;
for (i = 0; i < devs->nr; i++)
if (devs->devs[i] == dev) {
array_remove_item(devs->devs, devs->nr, i);
return;
}
}
static inline void bch2_dev_list_add_dev(struct bch_devs_list *devs,
unsigned dev)
{
if (!bch2_dev_list_has_dev(*devs, dev)) {
BUG_ON(devs->nr >= ARRAY_SIZE(devs->devs));
devs->devs[devs->nr++] = dev;
}
}
static inline struct bch_devs_list bch2_dev_list_single(unsigned dev)
{
return (struct bch_devs_list) { .nr = 1, .devs[0] = dev };
}
static inline struct bch_dev *__bch2_next_dev(struct bch_fs *c, unsigned *iter,
const struct bch_devs_mask *mask)
{
struct bch_dev *ca = NULL;
while ((*iter = mask
? find_next_bit(mask->d, c->sb.nr_devices, *iter)
: *iter) < c->sb.nr_devices &&
!(ca = rcu_dereference_check(c->devs[*iter],
lockdep_is_held(&c->state_lock))))
(*iter)++;
return ca;
}
#define for_each_member_device_rcu(ca, c, iter, mask) \
for ((iter) = 0; ((ca) = __bch2_next_dev((c), &(iter), mask)); (iter)++)
static inline struct bch_dev *bch2_get_next_dev(struct bch_fs *c, unsigned *iter)
{
struct bch_dev *ca;
rcu_read_lock();
if ((ca = __bch2_next_dev(c, iter, NULL)))
percpu_ref_get(&ca->ref);
rcu_read_unlock();
return ca;
}
/*
* If you break early, you must drop your ref on the current device
*/
#define for_each_member_device(ca, c, iter) \
for ((iter) = 0; \
(ca = bch2_get_next_dev(c, &(iter))); \
percpu_ref_put(&ca->ref), (iter)++)
static inline struct bch_dev *bch2_get_next_online_dev(struct bch_fs *c,
unsigned *iter,
int state_mask)
{
struct bch_dev *ca;
rcu_read_lock();
while ((ca = __bch2_next_dev(c, iter, NULL)) &&
(!((1 << ca->mi.state) & state_mask) ||
!percpu_ref_tryget(&ca->io_ref)))
(*iter)++;
rcu_read_unlock();
return ca;
}
#define __for_each_online_member(ca, c, iter, state_mask) \
for ((iter) = 0; \
(ca = bch2_get_next_online_dev(c, &(iter), state_mask)); \
percpu_ref_put(&ca->io_ref), (iter)++)
#define for_each_online_member(ca, c, iter) \
__for_each_online_member(ca, c, iter, ~0)
#define for_each_rw_member(ca, c, iter) \
__for_each_online_member(ca, c, iter, 1 << BCH_MEMBER_STATE_rw)
#define for_each_readable_member(ca, c, iter) \
__for_each_online_member(ca, c, iter, \
(1 << BCH_MEMBER_STATE_rw)|(1 << BCH_MEMBER_STATE_ro))
/*
* If a key exists that references a device, the device won't be going away and
* we can omit rcu_read_lock():
*/
static inline struct bch_dev *bch_dev_bkey_exists(const struct bch_fs *c, unsigned idx)
{
EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]);
return rcu_dereference_check(c->devs[idx], 1);
}
static inline struct bch_dev *bch_dev_locked(struct bch_fs *c, unsigned idx)
{
EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]);
return rcu_dereference_protected(c->devs[idx],
lockdep_is_held(&c->sb_lock) ||
lockdep_is_held(&c->state_lock));
}
/* XXX kill, move to struct bch_fs */
static inline struct bch_devs_mask bch2_online_devs(struct bch_fs *c)
{
struct bch_devs_mask devs;
struct bch_dev *ca;
unsigned i;
memset(&devs, 0, sizeof(devs));
for_each_online_member(ca, c, i)
__set_bit(ca->dev_idx, devs.d);
return devs;
}
extern const struct bch_sb_field_ops bch_sb_field_ops_members;
#endif /* _BCACHEFS_SB_MEMBERS_H */

View File

@ -1,8 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "counters.h"
#include "disk_groups.h"
@ -10,12 +8,13 @@
#include "error.h"
#include "io.h"
#include "journal.h"
#include "journal_io.h"
#include "journal_sb.h"
#include "journal_seq_blacklist.h"
#include "recovery.h"
#include "replicas.h"
#include "quota.h"
#include "sb-clean.h"
#include "sb-members.h"
#include "super-io.h"
#include "super.h"
#include "trace.h"
@ -1005,235 +1004,6 @@ void __bch2_check_set_feature(struct bch_fs *c, unsigned feat)
mutex_unlock(&c->sb_lock);
}
/* BCH_SB_FIELD_members: */
static int bch2_sb_members_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
unsigned i;
if ((void *) (mi->members + sb->nr_devices) >
vstruct_end(&mi->field)) {
prt_printf(err, "too many devices for section size");
return -BCH_ERR_invalid_sb_members;
}
for (i = 0; i < sb->nr_devices; i++) {
struct bch_member *m = mi->members + i;
if (!bch2_member_exists(m))
continue;
if (le64_to_cpu(m->nbuckets) > LONG_MAX) {
prt_printf(err, "device %u: too many buckets (got %llu, max %lu)",
i, le64_to_cpu(m->nbuckets), LONG_MAX);
return -BCH_ERR_invalid_sb_members;
}
if (le64_to_cpu(m->nbuckets) -
le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS) {
prt_printf(err, "device %u: not enough buckets (got %llu, max %u)",
i, le64_to_cpu(m->nbuckets), BCH_MIN_NR_NBUCKETS);
return -BCH_ERR_invalid_sb_members;
}
if (le16_to_cpu(m->bucket_size) <
le16_to_cpu(sb->block_size)) {
prt_printf(err, "device %u: bucket size %u smaller than block size %u",
i, le16_to_cpu(m->bucket_size), le16_to_cpu(sb->block_size));
return -BCH_ERR_invalid_sb_members;
}
if (le16_to_cpu(m->bucket_size) <
BCH_SB_BTREE_NODE_SIZE(sb)) {
prt_printf(err, "device %u: bucket size %u smaller than btree node size %llu",
i, le16_to_cpu(m->bucket_size), BCH_SB_BTREE_NODE_SIZE(sb));
return -BCH_ERR_invalid_sb_members;
}
}
return 0;
}
static void bch2_sb_members_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
struct bch_sb_field_disk_groups *gi = bch2_sb_get_disk_groups(sb);
unsigned i;
for (i = 0; i < sb->nr_devices; i++) {
struct bch_member *m = mi->members + i;
unsigned data_have = bch2_sb_dev_has_data(sb, i);
u64 bucket_size = le16_to_cpu(m->bucket_size);
u64 device_size = le64_to_cpu(m->nbuckets) * bucket_size;
if (!bch2_member_exists(m))
continue;
prt_printf(out, "Device:");
prt_tab(out);
prt_printf(out, "%u", i);
prt_newline(out);
printbuf_indent_add(out, 2);
prt_printf(out, "UUID:");
prt_tab(out);
pr_uuid(out, m->uuid.b);
prt_newline(out);
prt_printf(out, "Size:");
prt_tab(out);
prt_units_u64(out, device_size << 9);
prt_newline(out);
prt_printf(out, "Bucket size:");
prt_tab(out);
prt_units_u64(out, bucket_size << 9);
prt_newline(out);
prt_printf(out, "First bucket:");
prt_tab(out);
prt_printf(out, "%u", le16_to_cpu(m->first_bucket));
prt_newline(out);
prt_printf(out, "Buckets:");
prt_tab(out);
prt_printf(out, "%llu", le64_to_cpu(m->nbuckets));
prt_newline(out);
prt_printf(out, "Last mount:");
prt_tab(out);
if (m->last_mount)
pr_time(out, le64_to_cpu(m->last_mount));
else
prt_printf(out, "(never)");
prt_newline(out);
prt_printf(out, "State:");
prt_tab(out);
prt_printf(out, "%s",
BCH_MEMBER_STATE(m) < BCH_MEMBER_STATE_NR
? bch2_member_states[BCH_MEMBER_STATE(m)]
: "unknown");
prt_newline(out);
prt_printf(out, "Label:");
prt_tab(out);
if (BCH_MEMBER_GROUP(m)) {
unsigned idx = BCH_MEMBER_GROUP(m) - 1;
if (idx < disk_groups_nr(gi))
prt_printf(out, "%s (%u)",
gi->entries[idx].label, idx);
else
prt_printf(out, "(bad disk labels section)");
} else {
prt_printf(out, "(none)");
}
prt_newline(out);
prt_printf(out, "Data allowed:");
prt_tab(out);
if (BCH_MEMBER_DATA_ALLOWED(m))
prt_bitflags(out, bch2_data_types, BCH_MEMBER_DATA_ALLOWED(m));
else
prt_printf(out, "(none)");
prt_newline(out);
prt_printf(out, "Has data:");
prt_tab(out);
if (data_have)
prt_bitflags(out, bch2_data_types, data_have);
else
prt_printf(out, "(none)");
prt_newline(out);
prt_printf(out, "Discard:");
prt_tab(out);
prt_printf(out, "%llu", BCH_MEMBER_DISCARD(m));
prt_newline(out);
prt_printf(out, "Freespace initialized:");
prt_tab(out);
prt_printf(out, "%llu", BCH_MEMBER_FREESPACE_INITIALIZED(m));
prt_newline(out);
printbuf_indent_sub(out, 2);
}
}
static const struct bch_sb_field_ops bch_sb_field_ops_members = {
.validate = bch2_sb_members_validate,
.to_text = bch2_sb_members_to_text,
};
/* BCH_SB_FIELD_crypt: */
static int bch2_sb_crypt_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) {
prt_printf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&crypt->field), sizeof(*crypt));
return -BCH_ERR_invalid_sb_crypt;
}
if (BCH_CRYPT_KDF_TYPE(crypt)) {
prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt));
return -BCH_ERR_invalid_sb_crypt;
}
return 0;
}
static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
prt_printf(out, "KFD: %llu", BCH_CRYPT_KDF_TYPE(crypt));
prt_newline(out);
prt_printf(out, "scrypt n: %llu", BCH_KDF_SCRYPT_N(crypt));
prt_newline(out);
prt_printf(out, "scrypt r: %llu", BCH_KDF_SCRYPT_R(crypt));
prt_newline(out);
prt_printf(out, "scrypt p: %llu", BCH_KDF_SCRYPT_P(crypt));
prt_newline(out);
}
static const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
.validate = bch2_sb_crypt_validate,
.to_text = bch2_sb_crypt_to_text,
};
/* BCH_SB_FIELD_clean: */
int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean, int write)
{
struct jset_entry *entry;
int ret;
for (entry = clean->start;
entry < (struct jset_entry *) vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
ret = bch2_journal_entry_validate(c, NULL, entry,
le16_to_cpu(c->disk_sb.sb->version),
BCH_SB_BIG_ENDIAN(c->disk_sb.sb),
write);
if (ret)
return ret;
}
return 0;
}
/* Downgrade if superblock is at a higher version than currently supported: */
void bch2_sb_maybe_downgrade(struct bch_fs *c)
{
@ -1260,232 +1030,6 @@ void bch2_sb_upgrade(struct bch_fs *c, unsigned new_version)
c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL);
}
int bch2_fs_mark_dirty(struct bch_fs *c)
{
int ret;
/*
* Unconditionally write superblock, to verify it hasn't changed before
* we go rw:
*/
mutex_lock(&c->sb_lock);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_sb_maybe_downgrade(c);
c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS);
ret = bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size)
{
struct jset_entry *entry = *end;
unsigned u64s = DIV_ROUND_UP(size, sizeof(u64));
memset(entry, 0, u64s * sizeof(u64));
/*
* The u64s field counts from the start of data, ignoring the shared
* fields.
*/
entry->u64s = cpu_to_le16(u64s - 1);
*end = vstruct_next(*end);
return entry;
}
void bch2_journal_super_entries_add_common(struct bch_fs *c,
struct jset_entry **end,
u64 journal_seq)
{
struct bch_dev *ca;
unsigned i, dev;
percpu_down_read(&c->mark_lock);
if (!journal_seq) {
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
} else {
bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
}
{
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_inodes;
u->v = cpu_to_le64(c->usage_base->nr_inodes);
}
{
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_key_version;
u->v = cpu_to_le64(atomic64_read(&c->key_version));
}
for (i = 0; i < BCH_REPLICAS_MAX; i++) {
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_reserved;
u->entry.level = i;
u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
struct jset_entry_data_usage *u =
container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs),
struct jset_entry_data_usage, entry);
u->entry.type = BCH_JSET_ENTRY_data_usage;
u->v = cpu_to_le64(c->usage_base->replicas[i]);
unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
"embedded variable length struct");
}
for_each_member_device(ca, c, dev) {
unsigned b = sizeof(struct jset_entry_dev_usage) +
sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR;
struct jset_entry_dev_usage *u =
container_of(jset_entry_init(end, b),
struct jset_entry_dev_usage, entry);
u->entry.type = BCH_JSET_ENTRY_dev_usage;
u->dev = cpu_to_le32(dev);
u->buckets_ec = cpu_to_le64(ca->usage_base->buckets_ec);
for (i = 0; i < BCH_DATA_NR; i++) {
u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets);
u->d[i].sectors = cpu_to_le64(ca->usage_base->d[i].sectors);
u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented);
}
}
percpu_up_read(&c->mark_lock);
for (i = 0; i < 2; i++) {
struct jset_entry_clock *clock =
container_of(jset_entry_init(end, sizeof(*clock)),
struct jset_entry_clock, entry);
clock->entry.type = BCH_JSET_ENTRY_clock;
clock->rw = i;
clock->time = cpu_to_le64(atomic64_read(&c->io_clock[i].now));
}
}
void bch2_fs_mark_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *sb_clean;
struct jset_entry *entry;
unsigned u64s;
int ret;
mutex_lock(&c->sb_lock);
if (BCH_SB_CLEAN(c->disk_sb.sb))
goto out;
SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata);
c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates));
c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled));
u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s);
if (!sb_clean) {
bch_err(c, "error resizing superblock while setting filesystem clean");
goto out;
}
sb_clean->flags = 0;
sb_clean->journal_seq = cpu_to_le64(atomic64_read(&c->journal.seq));
/* Trying to catch outstanding bug: */
BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
entry = sb_clean->start;
bch2_journal_super_entries_add_common(c, &entry, 0);
entry = bch2_btree_roots_to_journal_entries(c, entry, entry);
BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
memset(entry, 0,
vstruct_end(&sb_clean->field) - (void *) entry);
/*
* this should be in the write path, and we should be validating every
* superblock section:
*/
ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE);
if (ret) {
bch_err(c, "error writing marking filesystem clean: validate error");
goto out;
}
bch2_write_super(c);
out:
mutex_unlock(&c->sb_lock);
}
static int bch2_sb_clean_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
if (vstruct_bytes(&clean->field) < sizeof(*clean)) {
prt_printf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&clean->field), sizeof(*clean));
return -BCH_ERR_invalid_sb_clean;
}
return 0;
}
static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
struct jset_entry *entry;
prt_printf(out, "flags: %x", le32_to_cpu(clean->flags));
prt_newline(out);
prt_printf(out, "journal_seq: %llu", le64_to_cpu(clean->journal_seq));
prt_newline(out);
for (entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
if (entry->type == BCH_JSET_ENTRY_btree_keys &&
!entry->u64s)
continue;
bch2_journal_entry_to_text(out, NULL, entry);
prt_newline(out);
}
}
static const struct bch_sb_field_ops bch_sb_field_ops_clean = {
.validate = bch2_sb_clean_validate,
.to_text = bch2_sb_clean_to_text,
};
static const struct bch_sb_field_ops *bch2_sb_field_ops[] = {
#define x(f, nr) \
[BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f,

View File

@ -121,19 +121,9 @@ static inline struct bch_member_cpu bch2_mi_to_cpu(struct bch_member *mi)
};
}
/* BCH_SB_FIELD_clean: */
void bch2_journal_super_entries_add_common(struct bch_fs *,
struct jset_entry **, u64);
int bch2_sb_clean_validate_late(struct bch_fs *, struct bch_sb_field_clean *, int);
void bch2_sb_maybe_downgrade(struct bch_fs *);
void bch2_sb_upgrade(struct bch_fs *, unsigned);
int bch2_fs_mark_dirty(struct bch_fs *);
void bch2_fs_mark_clean(struct bch_fs *);
void bch2_sb_field_to_text(struct printbuf *, struct bch_sb *,
struct bch_sb_field *);
void bch2_sb_layout_to_text(struct printbuf *, struct bch_sb_layout *);

View File

@ -13,6 +13,7 @@
#include "bkey_sort.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_journal_iter.h"
#include "btree_key_cache.h"
#include "btree_update_interior.h"
#include "btree_io.h"
@ -30,6 +31,8 @@
#include "error.h"
#include "fs.h"
#include "fs-io.h"
#include "fs-io-buffered.h"
#include "fs-io-direct.h"
#include "fsck.h"
#include "inode.h"
#include "io.h"
@ -44,6 +47,7 @@
#include "rebalance.h"
#include "recovery.h"
#include "replicas.h"
#include "sb-clean.h"
#include "subvolume.h"
#include "super.h"
#include "super-io.h"
@ -469,6 +473,8 @@ static void __bch2_fs_free(struct bch_fs *c)
bch2_fs_counters_exit(c);
bch2_fs_snapshots_exit(c);
bch2_fs_quota_exit(c);
bch2_fs_fs_io_direct_exit(c);
bch2_fs_fs_io_buffered_exit(c);
bch2_fs_fsio_exit(c);
bch2_fs_ec_exit(c);
bch2_fs_encryption_exit(c);
@ -844,7 +850,9 @@ static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
bch2_fs_encryption_init(c) ?:
bch2_fs_compress_init(c) ?:
bch2_fs_ec_init(c) ?:
bch2_fs_fsio_init(c);
bch2_fs_fsio_init(c) ?:
bch2_fs_fs_io_buffered_init(c);
bch2_fs_fs_io_direct_init(c);
if (ret)
goto err;
@ -2000,6 +2008,7 @@ err:
BCH_DEBUG_PARAMS()
#undef BCH_DEBUG_PARAM
__maybe_unused
static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
module_param_named(version, bch2_metadata_version, uint, 0400);

View File

@ -8,220 +8,6 @@
#include <linux/math64.h>
static inline size_t sector_to_bucket(const struct bch_dev *ca, sector_t s)
{
return div_u64(s, ca->mi.bucket_size);
}
static inline sector_t bucket_to_sector(const struct bch_dev *ca, size_t b)
{
return ((sector_t) b) * ca->mi.bucket_size;
}
static inline sector_t bucket_remainder(const struct bch_dev *ca, sector_t s)
{
u32 remainder;
div_u64_rem(s, ca->mi.bucket_size, &remainder);
return remainder;
}
static inline size_t sector_to_bucket_and_offset(const struct bch_dev *ca, sector_t s,
u32 *offset)
{
return div_u64_rem(s, ca->mi.bucket_size, offset);
}
static inline bool bch2_dev_is_online(struct bch_dev *ca)
{
return !percpu_ref_is_zero(&ca->io_ref);
}
static inline bool bch2_dev_is_readable(struct bch_dev *ca)
{
return bch2_dev_is_online(ca) &&
ca->mi.state != BCH_MEMBER_STATE_failed;
}
static inline bool bch2_dev_get_ioref(struct bch_dev *ca, int rw)
{
if (!percpu_ref_tryget(&ca->io_ref))
return false;
if (ca->mi.state == BCH_MEMBER_STATE_rw ||
(ca->mi.state == BCH_MEMBER_STATE_ro && rw == READ))
return true;
percpu_ref_put(&ca->io_ref);
return false;
}
static inline unsigned dev_mask_nr(const struct bch_devs_mask *devs)
{
return bitmap_weight(devs->d, BCH_SB_MEMBERS_MAX);
}
static inline bool bch2_dev_list_has_dev(struct bch_devs_list devs,
unsigned dev)
{
unsigned i;
for (i = 0; i < devs.nr; i++)
if (devs.devs[i] == dev)
return true;
return false;
}
static inline void bch2_dev_list_drop_dev(struct bch_devs_list *devs,
unsigned dev)
{
unsigned i;
for (i = 0; i < devs->nr; i++)
if (devs->devs[i] == dev) {
array_remove_item(devs->devs, devs->nr, i);
return;
}
}
static inline void bch2_dev_list_add_dev(struct bch_devs_list *devs,
unsigned dev)
{
if (!bch2_dev_list_has_dev(*devs, dev)) {
BUG_ON(devs->nr >= ARRAY_SIZE(devs->devs));
devs->devs[devs->nr++] = dev;
}
}
static inline struct bch_devs_list bch2_dev_list_single(unsigned dev)
{
return (struct bch_devs_list) { .nr = 1, .devs[0] = dev };
}
static inline struct bch_dev *__bch2_next_dev(struct bch_fs *c, unsigned *iter,
const struct bch_devs_mask *mask)
{
struct bch_dev *ca = NULL;
while ((*iter = mask
? find_next_bit(mask->d, c->sb.nr_devices, *iter)
: *iter) < c->sb.nr_devices &&
!(ca = rcu_dereference_check(c->devs[*iter],
lockdep_is_held(&c->state_lock))))
(*iter)++;
return ca;
}
#define for_each_member_device_rcu(ca, c, iter, mask) \
for ((iter) = 0; ((ca) = __bch2_next_dev((c), &(iter), mask)); (iter)++)
static inline struct bch_dev *bch2_get_next_dev(struct bch_fs *c, unsigned *iter)
{
struct bch_dev *ca;
rcu_read_lock();
if ((ca = __bch2_next_dev(c, iter, NULL)))
percpu_ref_get(&ca->ref);
rcu_read_unlock();
return ca;
}
/*
* If you break early, you must drop your ref on the current device
*/
#define for_each_member_device(ca, c, iter) \
for ((iter) = 0; \
(ca = bch2_get_next_dev(c, &(iter))); \
percpu_ref_put(&ca->ref), (iter)++)
static inline struct bch_dev *bch2_get_next_online_dev(struct bch_fs *c,
unsigned *iter,
int state_mask)
{
struct bch_dev *ca;
rcu_read_lock();
while ((ca = __bch2_next_dev(c, iter, NULL)) &&
(!((1 << ca->mi.state) & state_mask) ||
!percpu_ref_tryget(&ca->io_ref)))
(*iter)++;
rcu_read_unlock();
return ca;
}
#define __for_each_online_member(ca, c, iter, state_mask) \
for ((iter) = 0; \
(ca = bch2_get_next_online_dev(c, &(iter), state_mask)); \
percpu_ref_put(&ca->io_ref), (iter)++)
#define for_each_online_member(ca, c, iter) \
__for_each_online_member(ca, c, iter, ~0)
#define for_each_rw_member(ca, c, iter) \
__for_each_online_member(ca, c, iter, 1 << BCH_MEMBER_STATE_rw)
#define for_each_readable_member(ca, c, iter) \
__for_each_online_member(ca, c, iter, \
(1 << BCH_MEMBER_STATE_rw)|(1 << BCH_MEMBER_STATE_ro))
/*
* If a key exists that references a device, the device won't be going away and
* we can omit rcu_read_lock():
*/
static inline struct bch_dev *bch_dev_bkey_exists(const struct bch_fs *c, unsigned idx)
{
EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]);
return rcu_dereference_check(c->devs[idx], 1);
}
static inline struct bch_dev *bch_dev_locked(struct bch_fs *c, unsigned idx)
{
EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]);
return rcu_dereference_protected(c->devs[idx],
lockdep_is_held(&c->sb_lock) ||
lockdep_is_held(&c->state_lock));
}
/* XXX kill, move to struct bch_fs */
static inline struct bch_devs_mask bch2_online_devs(struct bch_fs *c)
{
struct bch_devs_mask devs;
struct bch_dev *ca;
unsigned i;
memset(&devs, 0, sizeof(devs));
for_each_online_member(ca, c, i)
__set_bit(ca->dev_idx, devs.d);
return devs;
}
static inline bool is_superblock_bucket(struct bch_dev *ca, u64 b)
{
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
u64 b_offset = bucket_to_sector(ca, b);
u64 b_end = bucket_to_sector(ca, b + 1);
unsigned i;
if (!b)
return true;
for (i = 0; i < layout->nr_superblocks; i++) {
u64 offset = le64_to_cpu(layout->sb_offset[i]);
u64 end = offset + (1 << layout->sb_max_size_bits);
if (!(offset >= b_end || end <= b_offset))
return true;
}
return false;
}
struct bch_fs *bch2_dev_to_fs(dev_t);
struct bch_fs *bch2_uuid_to_fs(__uuid_t);