diff --git a/include/linux/kernel.h b/include/linux/kernel.h index 44910d32..30451cb9 100644 --- a/include/linux/kernel.h +++ b/include/linux/kernel.h @@ -11,6 +11,7 @@ #include #include #include +#include #define __ARG_PLACEHOLDER_1 0, #define __take_second_arg(__ignored, val, ...) val @@ -78,8 +79,6 @@ #define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) -#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) - #ifndef offsetof #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) #endif @@ -97,16 +96,6 @@ (type *)((char *)__mptr - offsetof(type, member)); }) #endif -#define __round_mask(x, y) ((__typeof__(x))((y)-1)) -#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) -#define round_down(x, y) ((x) & ~__round_mask(x, y)) - -#define roundup(x, y) \ -({ \ - const typeof(y) __y = y; \ - (((x) + (__y - 1)) / __y) * __y; \ -}) - #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ diff --git a/include/linux/math.h b/include/linux/math.h new file mode 100644 index 00000000..3cf6726d --- /dev/null +++ b/include/linux/math.h @@ -0,0 +1,151 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_MATH_H +#define _LINUX_MATH_H + +/* + * This looks more complex than it should be. But we need to + * get the type for the ~ right in round_down (it needs to be + * as wide as the result!), and we want to evaluate the macro + * arguments just once each. + */ +#define __round_mask(x, y) ((__typeof__(x))((y)-1)) + +/** + * round_up - round up to next specified power of 2 + * @x: the value to round + * @y: multiple to round up to (must be a power of 2) + * + * Rounds @x up to next multiple of @y (which must be a power of 2). + * To perform arbitrary rounding up, use roundup() below. + */ +#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) + +/** + * round_down - round down to next specified power of 2 + * @x: the value to round + * @y: multiple to round down to (must be a power of 2) + * + * Rounds @x down to next multiple of @y (which must be a power of 2). + * To perform arbitrary rounding down, use rounddown() below. + */ +#define round_down(x, y) ((x) & ~__round_mask(x, y)) + +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) + +#define DIV_ROUND_DOWN_ULL(ll, d) \ + ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) + +#define DIV_ROUND_UP_ULL(ll, d) \ + DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) + +#if BITS_PER_LONG == 32 +# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) +#else +# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) +#endif + +/** + * roundup - round up to the next specified multiple + * @x: the value to up + * @y: multiple to round up to + * + * Rounds @x up to next multiple of @y. If @y will always be a power + * of 2, consider using the faster round_up(). + */ +#define roundup(x, y) ( \ +{ \ + typeof(y) __y = y; \ + (((x) + (__y - 1)) / __y) * __y; \ +} \ +) +/** + * rounddown - round down to next specified multiple + * @x: the value to round + * @y: multiple to round down to + * + * Rounds @x down to next multiple of @y. If @y will always be a power + * of 2, consider using the faster round_down(). + */ +#define rounddown(x, y) ( \ +{ \ + typeof(x) __x = (x); \ + __x - (__x % (y)); \ +} \ +) + +/* + * Divide positive or negative dividend by positive or negative divisor + * and round to closest integer. Result is undefined for negative + * divisors if the dividend variable type is unsigned and for negative + * dividends if the divisor variable type is unsigned. + */ +#define DIV_ROUND_CLOSEST(x, divisor)( \ +{ \ + typeof(x) __x = x; \ + typeof(divisor) __d = divisor; \ + (((typeof(x))-1) > 0 || \ + ((typeof(divisor))-1) > 0 || \ + (((__x) > 0) == ((__d) > 0))) ? \ + (((__x) + ((__d) / 2)) / (__d)) : \ + (((__x) - ((__d) / 2)) / (__d)); \ +} \ +) +/* + * Same as above but for u64 dividends. divisor must be a 32-bit + * number. + */ +#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ +{ \ + typeof(divisor) __d = divisor; \ + unsigned long long _tmp = (x) + (__d) / 2; \ + do_div(_tmp, __d); \ + _tmp; \ +} \ +) + +/* + * Multiplies an integer by a fraction, while avoiding unnecessary + * overflow or loss of precision. + */ +#define mult_frac(x, numer, denom)( \ +{ \ + typeof(x) quot = (x) / (denom); \ + typeof(x) rem = (x) % (denom); \ + (quot * (numer)) + ((rem * (numer)) / (denom)); \ +} \ +) + +#define sector_div(a, b) do_div(a, b) + +/** + * reciprocal_scale - "scale" a value into range [0, ep_ro) + * @val: value + * @ep_ro: right open interval endpoint + * + * Perform a "reciprocal multiplication" in order to "scale" a value into + * range [0, @ep_ro), where the upper interval endpoint is right-open. + * This is useful, e.g. for accessing a index of an array containing + * @ep_ro elements, for example. Think of it as sort of modulus, only that + * the result isn't that of modulo. ;) Note that if initial input is a + * small value, then result will return 0. + * + * Return: a result based on @val in interval [0, @ep_ro). + */ +static inline u32 reciprocal_scale(u32 val, u32 ep_ro) +{ + return (u32)(((u64) val * ep_ro) >> 32); +} + +u64 int_pow(u64 base, unsigned int exp); +unsigned long int_sqrt(unsigned long); + +#if BITS_PER_LONG < 64 +u32 int_sqrt64(u64 x); +#else +static inline u32 int_sqrt64(u64 x) +{ + return (u32)int_sqrt(x); +} +#endif + +#endif /* _LINUX_MATH_H */