mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-02-23 00:00:02 +03:00
Update bcachefs sources to ad68801b93 bcachefs: Use pcpu mode of six locks for interior nodes
This commit is contained in:
parent
9f69a652dc
commit
c88113e255
@ -1 +1 @@
|
||||
c7defb5793039b55066e8e9d41e76bae826a7894
|
||||
ad68801b939cdda0530f54cd07b3212e98fe1d75
|
||||
|
@ -80,7 +80,8 @@ union six_lock_state {
|
||||
};
|
||||
|
||||
struct {
|
||||
unsigned read_lock:28;
|
||||
unsigned read_lock:27;
|
||||
unsigned write_locking:1;
|
||||
unsigned intent_lock:1;
|
||||
unsigned waiters:3;
|
||||
/*
|
||||
@ -107,6 +108,7 @@ struct six_lock {
|
||||
unsigned intent_lock_recurse;
|
||||
struct task_struct *owner;
|
||||
struct optimistic_spin_queue osq;
|
||||
unsigned __percpu *readers;
|
||||
|
||||
raw_spinlock_t wait_lock;
|
||||
struct list_head wait_list[2];
|
||||
@ -194,4 +196,7 @@ void six_lock_increment(struct six_lock *, enum six_lock_type);
|
||||
|
||||
void six_lock_wakeup_all(struct six_lock *);
|
||||
|
||||
void six_lock_pcpu_free(struct six_lock *);
|
||||
void six_lock_pcpu_alloc(struct six_lock *);
|
||||
|
||||
#endif /* _LINUX_SIX_H */
|
||||
|
@ -146,6 +146,11 @@ int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
|
||||
b->c.level = level;
|
||||
b->c.btree_id = id;
|
||||
|
||||
if (level)
|
||||
six_lock_pcpu_alloc(&b->c.lock);
|
||||
else
|
||||
six_lock_pcpu_free(&b->c.lock);
|
||||
|
||||
mutex_lock(&bc->lock);
|
||||
ret = __bch2_btree_node_hash_insert(bc, b);
|
||||
if (!ret)
|
||||
@ -386,6 +391,7 @@ void bch2_fs_btree_cache_exit(struct bch_fs *c)
|
||||
while (!list_empty(&bc->freed)) {
|
||||
b = list_first_entry(&bc->freed, struct btree, list);
|
||||
list_del(&b->list);
|
||||
six_lock_pcpu_free(&b->c.lock);
|
||||
kfree(b);
|
||||
}
|
||||
|
||||
|
@ -167,7 +167,7 @@ static int bch2_check_fix_ptrs(struct bch_fs *c, enum btree_id btree_id,
|
||||
{
|
||||
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(*k);
|
||||
const union bch_extent_entry *entry;
|
||||
struct extent_ptr_decoded p;
|
||||
struct extent_ptr_decoded p = { 0 };
|
||||
bool do_update = false;
|
||||
int ret = 0;
|
||||
|
||||
|
@ -988,6 +988,11 @@ static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
|
||||
list_del_init(&b->list);
|
||||
mutex_unlock(&c->btree_cache.lock);
|
||||
|
||||
if (b->c.level)
|
||||
six_lock_pcpu_alloc(&b->c.lock);
|
||||
else
|
||||
six_lock_pcpu_free(&b->c.lock);
|
||||
|
||||
mutex_lock(&c->btree_root_lock);
|
||||
BUG_ON(btree_node_root(c, b) &&
|
||||
(b->c.level < btree_node_root(c, b)->c.level ||
|
||||
|
@ -632,7 +632,7 @@ unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
|
||||
{
|
||||
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
||||
const union bch_extent_entry *entry;
|
||||
struct extent_ptr_decoded p;
|
||||
struct extent_ptr_decoded p = { 0 };
|
||||
unsigned replicas = 0;
|
||||
|
||||
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
||||
|
@ -883,7 +883,7 @@ int bch2_scan_old_btree_nodes(struct bch_fs *c, struct bch_move_stats *stats)
|
||||
ret = bch2_move_btree(c,
|
||||
0, POS_MIN,
|
||||
BTREE_ID_NR, POS_MAX,
|
||||
rewrite_old_nodes_pred, c, stats) ?: ret;
|
||||
rewrite_old_nodes_pred, c, stats);
|
||||
if (!ret) {
|
||||
mutex_lock(&c->sb_lock);
|
||||
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_EXTENTS_ABOVE_BTREE_UPDATES_DONE;
|
||||
|
374
linux/six.c
374
linux/six.c
@ -2,6 +2,7 @@
|
||||
|
||||
#include <linux/export.h>
|
||||
#include <linux/log2.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/preempt.h>
|
||||
#include <linux/rcupdate.h>
|
||||
#include <linux/sched.h>
|
||||
@ -41,7 +42,7 @@ struct six_lock_vals {
|
||||
#define LOCK_VALS { \
|
||||
[SIX_LOCK_read] = { \
|
||||
.lock_val = __SIX_VAL(read_lock, 1), \
|
||||
.lock_fail = __SIX_LOCK_HELD_write, \
|
||||
.lock_fail = __SIX_LOCK_HELD_write + __SIX_VAL(write_locking, 1),\
|
||||
.unlock_val = -__SIX_VAL(read_lock, 1), \
|
||||
.held_mask = __SIX_LOCK_HELD_read, \
|
||||
.unlock_wakeup = SIX_LOCK_write, \
|
||||
@ -76,36 +77,195 @@ static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
|
||||
}
|
||||
}
|
||||
|
||||
static inline unsigned pcpu_read_count(struct six_lock *lock)
|
||||
{
|
||||
unsigned read_count = 0;
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
read_count += *per_cpu_ptr(lock->readers, cpu);
|
||||
return read_count;
|
||||
}
|
||||
|
||||
struct six_lock_waiter {
|
||||
struct list_head list;
|
||||
struct task_struct *task;
|
||||
};
|
||||
|
||||
/* This is probably up there with the more evil things I've done */
|
||||
#define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l))
|
||||
|
||||
static inline void six_lock_wakeup(struct six_lock *lock,
|
||||
union six_lock_state state,
|
||||
unsigned waitlist_id)
|
||||
{
|
||||
if (waitlist_id == SIX_LOCK_write) {
|
||||
if (state.write_locking && !state.read_lock) {
|
||||
struct task_struct *p = READ_ONCE(lock->owner);
|
||||
if (p)
|
||||
wake_up_process(p);
|
||||
}
|
||||
} else {
|
||||
struct list_head *wait_list = &lock->wait_list[waitlist_id];
|
||||
struct six_lock_waiter *w, *next;
|
||||
|
||||
if (!(state.waiters & (1 << waitlist_id)))
|
||||
return;
|
||||
|
||||
clear_bit(waitlist_bitnr(waitlist_id),
|
||||
(unsigned long *) &lock->state.v);
|
||||
|
||||
raw_spin_lock(&lock->wait_lock);
|
||||
|
||||
list_for_each_entry_safe(w, next, wait_list, list) {
|
||||
list_del_init(&w->list);
|
||||
|
||||
if (wake_up_process(w->task) &&
|
||||
waitlist_id != SIX_LOCK_read) {
|
||||
if (!list_empty(wait_list))
|
||||
set_bit(waitlist_bitnr(waitlist_id),
|
||||
(unsigned long *) &lock->state.v);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
raw_spin_unlock(&lock->wait_lock);
|
||||
}
|
||||
}
|
||||
|
||||
static __always_inline bool do_six_trylock_type(struct six_lock *lock,
|
||||
enum six_lock_type type)
|
||||
enum six_lock_type type,
|
||||
bool try)
|
||||
{
|
||||
const struct six_lock_vals l[] = LOCK_VALS;
|
||||
union six_lock_state old;
|
||||
u64 v = READ_ONCE(lock->state.v);
|
||||
union six_lock_state old, new;
|
||||
bool ret;
|
||||
u64 v;
|
||||
|
||||
EBUG_ON(type == SIX_LOCK_write && lock->owner != current);
|
||||
EBUG_ON(type == SIX_LOCK_write && (lock->state.seq & 1));
|
||||
|
||||
EBUG_ON(type == SIX_LOCK_write && (try != !(lock->state.write_locking)));
|
||||
|
||||
/*
|
||||
* Percpu reader mode:
|
||||
*
|
||||
* The basic idea behind this algorithm is that you can implement a lock
|
||||
* between two threads without any atomics, just memory barriers:
|
||||
*
|
||||
* For two threads you'll need two variables, one variable for "thread a
|
||||
* has the lock" and another for "thread b has the lock".
|
||||
*
|
||||
* To take the lock, a thread sets its variable indicating that it holds
|
||||
* the lock, then issues a full memory barrier, then reads from the
|
||||
* other thread's variable to check if the other thread thinks it has
|
||||
* the lock. If we raced, we backoff and retry/sleep.
|
||||
*/
|
||||
|
||||
if (type == SIX_LOCK_read && lock->readers) {
|
||||
retry:
|
||||
preempt_disable();
|
||||
this_cpu_inc(*lock->readers); /* signal that we own lock */
|
||||
|
||||
smp_mb();
|
||||
|
||||
old.v = READ_ONCE(lock->state.v);
|
||||
ret = !(old.v & l[type].lock_fail);
|
||||
|
||||
this_cpu_sub(*lock->readers, !ret);
|
||||
preempt_enable();
|
||||
|
||||
/*
|
||||
* If we failed because a writer was trying to take the
|
||||
* lock, issue a wakeup because we might have caused a
|
||||
* spurious trylock failure:
|
||||
*/
|
||||
if (old.write_locking) {
|
||||
struct task_struct *p = READ_ONCE(lock->owner);
|
||||
|
||||
if (p)
|
||||
wake_up_process(p);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we failed from the lock path and the waiting bit wasn't
|
||||
* set, set it:
|
||||
*/
|
||||
if (!try && !ret) {
|
||||
v = old.v;
|
||||
|
||||
do {
|
||||
old.v = v;
|
||||
new.v = old.v = v;
|
||||
|
||||
EBUG_ON(type == SIX_LOCK_write &&
|
||||
((old.v & __SIX_LOCK_HELD_write) ||
|
||||
!(old.v & __SIX_LOCK_HELD_intent)));
|
||||
if (!(old.v & l[type].lock_fail))
|
||||
goto retry;
|
||||
|
||||
if (old.v & l[type].lock_fail)
|
||||
return false;
|
||||
if (new.waiters & (1 << type))
|
||||
break;
|
||||
|
||||
new.waiters |= 1 << type;
|
||||
} while ((v = atomic64_cmpxchg(&lock->state.counter,
|
||||
old.v, new.v)) != old.v);
|
||||
}
|
||||
} else if (type == SIX_LOCK_write && lock->readers) {
|
||||
if (try) {
|
||||
atomic64_add(__SIX_VAL(write_locking, 1),
|
||||
&lock->state.counter);
|
||||
smp_mb__after_atomic();
|
||||
}
|
||||
|
||||
ret = !pcpu_read_count(lock);
|
||||
|
||||
/*
|
||||
* On success, we increment lock->seq; also we clear
|
||||
* write_locking unless we failed from the lock path:
|
||||
*/
|
||||
v = 0;
|
||||
if (ret)
|
||||
v += __SIX_VAL(seq, 1);
|
||||
if (ret || try)
|
||||
v -= __SIX_VAL(write_locking, 1);
|
||||
|
||||
if (try && !ret) {
|
||||
old.v = atomic64_add_return(v, &lock->state.counter);
|
||||
six_lock_wakeup(lock, old, SIX_LOCK_read);
|
||||
} else {
|
||||
atomic64_add(v, &lock->state.counter);
|
||||
}
|
||||
} else {
|
||||
v = READ_ONCE(lock->state.v);
|
||||
do {
|
||||
new.v = old.v = v;
|
||||
|
||||
if (!(old.v & l[type].lock_fail)) {
|
||||
new.v += l[type].lock_val;
|
||||
|
||||
if (type == SIX_LOCK_write)
|
||||
new.write_locking = 0;
|
||||
} else if (!try && type != SIX_LOCK_write &&
|
||||
!(new.waiters & (1 << type)))
|
||||
new.waiters |= 1 << type;
|
||||
else
|
||||
break; /* waiting bit already set */
|
||||
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
|
||||
old.v,
|
||||
old.v + l[type].lock_val)) != old.v);
|
||||
old.v, new.v)) != old.v);
|
||||
|
||||
ret = !(old.v & l[type].lock_fail);
|
||||
}
|
||||
|
||||
if (ret)
|
||||
six_set_owner(lock, type, old);
|
||||
return true;
|
||||
|
||||
EBUG_ON(ret && !(lock->state.v & l[type].held_mask));
|
||||
EBUG_ON(type == SIX_LOCK_write && (try || ret) && (lock->state.write_locking));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
__always_inline __flatten
|
||||
static bool __six_trylock_type(struct six_lock *lock, enum six_lock_type type)
|
||||
{
|
||||
if (!do_six_trylock_type(lock, type))
|
||||
if (!do_six_trylock_type(lock, type, true))
|
||||
return false;
|
||||
|
||||
if (type != SIX_LOCK_write)
|
||||
@ -119,8 +279,40 @@ static bool __six_relock_type(struct six_lock *lock, enum six_lock_type type,
|
||||
{
|
||||
const struct six_lock_vals l[] = LOCK_VALS;
|
||||
union six_lock_state old;
|
||||
u64 v = READ_ONCE(lock->state.v);
|
||||
u64 v;
|
||||
|
||||
EBUG_ON(type == SIX_LOCK_write);
|
||||
|
||||
if (type == SIX_LOCK_read &&
|
||||
lock->readers) {
|
||||
bool ret;
|
||||
|
||||
preempt_disable();
|
||||
this_cpu_inc(*lock->readers);
|
||||
|
||||
smp_mb();
|
||||
|
||||
old.v = READ_ONCE(lock->state.v);
|
||||
ret = !(old.v & l[type].lock_fail) && old.seq == seq;
|
||||
|
||||
this_cpu_sub(*lock->readers, !ret);
|
||||
preempt_enable();
|
||||
|
||||
/*
|
||||
* Similar to the lock path, we may have caused a spurious write
|
||||
* lock fail and need to issue a wakeup:
|
||||
*/
|
||||
if (old.write_locking) {
|
||||
struct task_struct *p = READ_ONCE(lock->owner);
|
||||
|
||||
if (p)
|
||||
wake_up_process(p);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
v = READ_ONCE(lock->state.v);
|
||||
do {
|
||||
old.v = v;
|
||||
|
||||
@ -136,14 +328,6 @@ static bool __six_relock_type(struct six_lock *lock, enum six_lock_type type,
|
||||
return true;
|
||||
}
|
||||
|
||||
struct six_lock_waiter {
|
||||
struct list_head list;
|
||||
struct task_struct *task;
|
||||
};
|
||||
|
||||
/* This is probably up there with the more evil things I've done */
|
||||
#define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l))
|
||||
|
||||
#ifdef CONFIG_LOCK_SPIN_ON_OWNER
|
||||
|
||||
static inline int six_can_spin_on_owner(struct six_lock *lock)
|
||||
@ -218,7 +402,7 @@ static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type
|
||||
if (owner && !six_spin_on_owner(lock, owner))
|
||||
break;
|
||||
|
||||
if (do_six_trylock_type(lock, type)) {
|
||||
if (do_six_trylock_type(lock, type, false)) {
|
||||
osq_unlock(&lock->osq);
|
||||
preempt_enable();
|
||||
return true;
|
||||
@ -270,18 +454,22 @@ noinline
|
||||
static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type type,
|
||||
six_lock_should_sleep_fn should_sleep_fn, void *p)
|
||||
{
|
||||
const struct six_lock_vals l[] = LOCK_VALS;
|
||||
union six_lock_state old, new;
|
||||
union six_lock_state old;
|
||||
struct six_lock_waiter wait;
|
||||
int ret = 0;
|
||||
u64 v;
|
||||
|
||||
if (type == SIX_LOCK_write) {
|
||||
EBUG_ON(lock->state.write_locking);
|
||||
atomic64_add(__SIX_VAL(write_locking, 1), &lock->state.counter);
|
||||
smp_mb__after_atomic();
|
||||
}
|
||||
|
||||
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
|
||||
if (ret)
|
||||
return ret;
|
||||
goto out_before_sleep;
|
||||
|
||||
if (six_optimistic_spin(lock, type))
|
||||
return 0;
|
||||
goto out_before_sleep;
|
||||
|
||||
lock_contended(&lock->dep_map, _RET_IP_);
|
||||
|
||||
@ -298,32 +486,16 @@ static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type ty
|
||||
raw_spin_unlock(&lock->wait_lock);
|
||||
}
|
||||
|
||||
if (do_six_trylock_type(lock, type, false))
|
||||
break;
|
||||
|
||||
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
|
||||
if (ret)
|
||||
break;
|
||||
|
||||
v = READ_ONCE(lock->state.v);
|
||||
do {
|
||||
new.v = old.v = v;
|
||||
|
||||
if (!(old.v & l[type].lock_fail))
|
||||
new.v += l[type].lock_val;
|
||||
else if (!(new.waiters & (1 << type)))
|
||||
new.waiters |= 1 << type;
|
||||
else
|
||||
break; /* waiting bit already set */
|
||||
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
|
||||
old.v, new.v)) != old.v);
|
||||
|
||||
if (!(old.v & l[type].lock_fail))
|
||||
break;
|
||||
|
||||
schedule();
|
||||
}
|
||||
|
||||
if (!ret)
|
||||
six_set_owner(lock, type, old);
|
||||
|
||||
__set_current_state(TASK_RUNNING);
|
||||
|
||||
if (!list_empty_careful(&wait.list)) {
|
||||
@ -331,6 +503,12 @@ static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type ty
|
||||
list_del_init(&wait.list);
|
||||
raw_spin_unlock(&lock->wait_lock);
|
||||
}
|
||||
out_before_sleep:
|
||||
if (ret && type == SIX_LOCK_write) {
|
||||
old.v = atomic64_sub_return(__SIX_VAL(write_locking, 1),
|
||||
&lock->state.counter);
|
||||
six_lock_wakeup(lock, old, SIX_LOCK_read);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -344,7 +522,7 @@ static int __six_lock_type(struct six_lock *lock, enum six_lock_type type,
|
||||
if (type != SIX_LOCK_write)
|
||||
six_acquire(&lock->dep_map, 0);
|
||||
|
||||
ret = do_six_trylock_type(lock, type) ? 0
|
||||
ret = do_six_trylock_type(lock, type, true) ? 0
|
||||
: __six_lock_type_slowpath(lock, type, should_sleep_fn, p);
|
||||
|
||||
if (ret && type != SIX_LOCK_write)
|
||||
@ -355,54 +533,12 @@ static int __six_lock_type(struct six_lock *lock, enum six_lock_type type,
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void six_lock_wakeup(struct six_lock *lock,
|
||||
union six_lock_state state,
|
||||
unsigned waitlist_id)
|
||||
{
|
||||
struct list_head *wait_list = &lock->wait_list[waitlist_id];
|
||||
struct six_lock_waiter *w, *next;
|
||||
|
||||
if (waitlist_id == SIX_LOCK_write && state.read_lock)
|
||||
return;
|
||||
|
||||
if (!(state.waiters & (1 << waitlist_id)))
|
||||
return;
|
||||
|
||||
clear_bit(waitlist_bitnr(waitlist_id),
|
||||
(unsigned long *) &lock->state.v);
|
||||
|
||||
if (waitlist_id == SIX_LOCK_write) {
|
||||
struct task_struct *p = READ_ONCE(lock->owner);
|
||||
|
||||
if (p)
|
||||
wake_up_process(p);
|
||||
return;
|
||||
}
|
||||
|
||||
raw_spin_lock(&lock->wait_lock);
|
||||
|
||||
list_for_each_entry_safe(w, next, wait_list, list) {
|
||||
list_del_init(&w->list);
|
||||
|
||||
if (wake_up_process(w->task) &&
|
||||
waitlist_id != SIX_LOCK_read) {
|
||||
if (!list_empty(wait_list))
|
||||
set_bit(waitlist_bitnr(waitlist_id),
|
||||
(unsigned long *) &lock->state.v);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
raw_spin_unlock(&lock->wait_lock);
|
||||
}
|
||||
|
||||
__always_inline __flatten
|
||||
static void __six_unlock_type(struct six_lock *lock, enum six_lock_type type)
|
||||
{
|
||||
const struct six_lock_vals l[] = LOCK_VALS;
|
||||
union six_lock_state state;
|
||||
|
||||
EBUG_ON(!(lock->state.v & l[type].held_mask));
|
||||
EBUG_ON(type == SIX_LOCK_write &&
|
||||
!(lock->state.v & __SIX_LOCK_HELD_intent));
|
||||
|
||||
@ -420,8 +556,17 @@ static void __six_unlock_type(struct six_lock *lock, enum six_lock_type type)
|
||||
lock->owner = NULL;
|
||||
}
|
||||
|
||||
if (type == SIX_LOCK_read &&
|
||||
lock->readers) {
|
||||
smp_mb(); /* unlock barrier */
|
||||
this_cpu_dec(*lock->readers);
|
||||
state.v = READ_ONCE(lock->state.v);
|
||||
} else {
|
||||
EBUG_ON(!(lock->state.v & l[type].held_mask));
|
||||
state.v = atomic64_add_return_release(l[type].unlock_val,
|
||||
&lock->state.counter);
|
||||
}
|
||||
|
||||
six_lock_wakeup(lock, state, l[type].unlock_wakeup);
|
||||
}
|
||||
|
||||
@ -467,26 +612,28 @@ EXPORT_SYMBOL_GPL(six_lock_downgrade);
|
||||
|
||||
bool six_lock_tryupgrade(struct six_lock *lock)
|
||||
{
|
||||
const struct six_lock_vals l[] = LOCK_VALS;
|
||||
union six_lock_state old, new;
|
||||
u64 v = READ_ONCE(lock->state.v);
|
||||
|
||||
do {
|
||||
new.v = old.v = v;
|
||||
|
||||
EBUG_ON(!(old.v & l[SIX_LOCK_read].held_mask));
|
||||
|
||||
new.v += l[SIX_LOCK_read].unlock_val;
|
||||
|
||||
if (new.v & l[SIX_LOCK_intent].lock_fail)
|
||||
if (new.intent_lock)
|
||||
return false;
|
||||
|
||||
new.v += l[SIX_LOCK_intent].lock_val;
|
||||
if (!lock->readers) {
|
||||
EBUG_ON(!new.read_lock);
|
||||
new.read_lock--;
|
||||
}
|
||||
|
||||
new.intent_lock = 1;
|
||||
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
|
||||
old.v, new.v)) != old.v);
|
||||
|
||||
if (lock->readers)
|
||||
this_cpu_dec(*lock->readers);
|
||||
|
||||
six_set_owner(lock, SIX_LOCK_intent, old);
|
||||
six_lock_wakeup(lock, new, l[SIX_LOCK_read].unlock_wakeup);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -518,16 +665,22 @@ void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
|
||||
{
|
||||
const struct six_lock_vals l[] = LOCK_VALS;
|
||||
|
||||
EBUG_ON(type == SIX_LOCK_write);
|
||||
six_acquire(&lock->dep_map, 0);
|
||||
|
||||
/* XXX: assert already locked, and that we don't overflow: */
|
||||
|
||||
switch (type) {
|
||||
case SIX_LOCK_read:
|
||||
if (lock->readers) {
|
||||
this_cpu_inc(*lock->readers);
|
||||
} else {
|
||||
EBUG_ON(!lock->state.read_lock &&
|
||||
!lock->state.intent_lock);
|
||||
atomic64_add(l[type].lock_val, &lock->state.counter);
|
||||
}
|
||||
break;
|
||||
case SIX_LOCK_intent:
|
||||
EBUG_ON(!lock->state.intent_lock);
|
||||
lock->intent_lock_recurse++;
|
||||
break;
|
||||
case SIX_LOCK_write:
|
||||
@ -551,3 +704,24 @@ void six_lock_wakeup_all(struct six_lock *lock)
|
||||
raw_spin_unlock(&lock->wait_lock);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
|
||||
|
||||
void six_lock_pcpu_free(struct six_lock *lock)
|
||||
{
|
||||
BUG_ON(lock->readers && pcpu_read_count(lock));
|
||||
BUG_ON(lock->state.read_lock);
|
||||
|
||||
free_percpu(lock->readers);
|
||||
lock->readers = NULL;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(six_lock_pcpu_free);
|
||||
|
||||
void six_lock_pcpu_alloc(struct six_lock *lock)
|
||||
{
|
||||
BUG_ON(lock->readers && pcpu_read_count(lock));
|
||||
BUG_ON(lock->state.read_lock);
|
||||
#ifdef __KERNEL__
|
||||
if (!lock->readers)
|
||||
lock->readers = alloc_percpu(unsigned);
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(six_lock_pcpu_alloc);
|
||||
|
Loading…
Reference in New Issue
Block a user