Update log2.h from linux kernel

This fixes a build breakage where the old log2.g referenced
__ilog2_NaN() which we weren't defining.
This commit is contained in:
Kent Overstreet 2020-05-21 17:19:47 -04:00
parent e96c6508cf
commit f8d4cbe40b

View File

@ -1,30 +1,15 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Integer base 2 logarithm calculation /* Integer base 2 logarithm calculation
* *
* Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com) * Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/ */
#ifndef _TOOLS_LINUX_LOG2_H #ifndef _LINUX_LOG2_H
#define _TOOLS_LINUX_LOG2_H #define _LINUX_LOG2_H
#include <limits.h>
#ifndef PAGE_SHIFT
#define PAGE_SHIFT ilog2(PAGE_SIZE)
#endif
#include <linux/types.h>
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/compiler.h>
/*
* deal with unrepresentable constant logarithms
*/
extern __attribute__((const))
int ____ilog2_NaN(void);
/* /*
* non-constant log of base 2 calculators * non-constant log of base 2 calculators
@ -32,31 +17,39 @@ int ____ilog2_NaN(void);
* more efficiently than using fls() and fls64() * more efficiently than using fls() and fls64()
* - the arch is not required to handle n==0 if implementing the fallback * - the arch is not required to handle n==0 if implementing the fallback
*/ */
#ifndef CONFIG_ARCH_HAS_ILOG2_U32
static inline __attribute__((const)) static inline __attribute__((const))
int __ilog2_u32(u32 n) int __ilog2_u32(u32 n)
{ {
return fls(n) - 1; return fls(n) - 1;
} }
#endif
#ifndef CONFIG_ARCH_HAS_ILOG2_U64
static inline __attribute__((const)) static inline __attribute__((const))
int __ilog2_u64(u64 n) int __ilog2_u64(u64 n)
{ {
return fls64(n) - 1; return fls64(n) - 1;
} }
#endif
/* /**
* Determine whether some value is a power of two, where zero is * is_power_of_2() - check if a value is a power of two
* @n: the value to check
*
* Determine whether some value is a power of two, where zero is
* *not* considered a power of two. * *not* considered a power of two.
* Return: true if @n is a power of 2, otherwise false.
*/ */
static inline __attribute__((const)) static inline __attribute__((const))
bool is_power_of_2(unsigned long n) bool is_power_of_2(unsigned long n)
{ {
return (n != 0 && ((n & (n - 1)) == 0)); return (n != 0 && ((n & (n - 1)) == 0));
} }
/* /**
* round up to nearest power of two * __roundup_pow_of_two() - round up to nearest power of two
* @n: value to round up
*/ */
static inline __attribute__((const)) static inline __attribute__((const))
unsigned long __roundup_pow_of_two(unsigned long n) unsigned long __roundup_pow_of_two(unsigned long n)
@ -64,8 +57,9 @@ unsigned long __roundup_pow_of_two(unsigned long n)
return 1UL << fls_long(n - 1); return 1UL << fls_long(n - 1);
} }
/* /**
* round down to nearest power of two * __rounddown_pow_of_two() - round down to nearest power of two
* @n: value to round down
*/ */
static inline __attribute__((const)) static inline __attribute__((const))
unsigned long __rounddown_pow_of_two(unsigned long n) unsigned long __rounddown_pow_of_two(unsigned long n)
@ -74,19 +68,16 @@ unsigned long __rounddown_pow_of_two(unsigned long n)
} }
/** /**
* ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value
* @n - parameter * @n: parameter
* *
* constant-capable log of base 2 calculation * Use this where sparse expects a true constant expression, e.g. for array
* - this can be used to initialise global variables from constant data, hence * indices.
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/ */
#define ilog2(n) \ #define const_ilog2(n) \
( \ ( \
__builtin_constant_p(n) ? ( \ __builtin_constant_p(n) ? ( \
(n) < 1 ? ____ilog2_NaN() : \ (n) < 2 ? 0 : \
(n) & (1ULL << 63) ? 63 : \ (n) & (1ULL << 63) ? 63 : \
(n) & (1ULL << 62) ? 62 : \ (n) & (1ULL << 62) ? 62 : \
(n) & (1ULL << 61) ? 61 : \ (n) & (1ULL << 61) ? 61 : \
@ -149,18 +140,31 @@ unsigned long __rounddown_pow_of_two(unsigned long n)
(n) & (1ULL << 4) ? 4 : \ (n) & (1ULL << 4) ? 4 : \
(n) & (1ULL << 3) ? 3 : \ (n) & (1ULL << 3) ? 3 : \
(n) & (1ULL << 2) ? 2 : \ (n) & (1ULL << 2) ? 2 : \
(n) & (1ULL << 1) ? 1 : \ 1) : \
(n) & (1ULL << 0) ? 0 : \ -1)
____ilog2_NaN() \
) : \ /**
(sizeof(n) <= 4) ? \ * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value
__ilog2_u32(n) : \ * @n: parameter
__ilog2_u64(n) \ *
* constant-capable log of base 2 calculation
* - this can be used to initialise global variables from constant data, hence
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/
#define ilog2(n) \
( \
__builtin_constant_p(n) ? \
const_ilog2(n) : \
(sizeof(n) <= 4) ? \
__ilog2_u32(n) : \
__ilog2_u64(n) \
) )
/** /**
* roundup_pow_of_two - round the given value up to nearest power of two * roundup_pow_of_two - round the given value up to nearest power of two
* @n - parameter * @n: parameter
* *
* round the given value up to the nearest power of two * round the given value up to the nearest power of two
* - the result is undefined when n == 0 * - the result is undefined when n == 0
@ -177,7 +181,7 @@ unsigned long __rounddown_pow_of_two(unsigned long n)
/** /**
* rounddown_pow_of_two - round the given value down to nearest power of two * rounddown_pow_of_two - round the given value down to nearest power of two
* @n - parameter * @n: parameter
* *
* round the given value down to the nearest power of two * round the given value down to the nearest power of two
* - the result is undefined when n == 0 * - the result is undefined when n == 0
@ -190,29 +194,105 @@ unsigned long __rounddown_pow_of_two(unsigned long n)
__rounddown_pow_of_two(n) \ __rounddown_pow_of_two(n) \
) )
static inline __attribute__((const)) static inline __attribute_const__
int __get_order(unsigned long size) int __order_base_2(unsigned long n)
{ {
int order; return n > 1 ? ilog2(n - 1) + 1 : 0;
}
/**
* order_base_2 - calculate the (rounded up) base 2 order of the argument
* @n: parameter
*
* The first few values calculated by this routine:
* ob2(0) = 0
* ob2(1) = 0
* ob2(2) = 1
* ob2(3) = 2
* ob2(4) = 2
* ob2(5) = 3
* ... and so on.
*/
#define order_base_2(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 0 || (n) == 1) ? 0 : \
ilog2((n) - 1) + 1) : \
__order_base_2(n) \
)
static inline __attribute__((const))
int __bits_per(unsigned long n)
{
if (n < 2)
return 1;
if (is_power_of_2(n))
return order_base_2(n) + 1;
return order_base_2(n);
}
/**
* bits_per - calculate the number of bits required for the argument
* @n: parameter
*
* This is constant-capable and can be used for compile time
* initializations, e.g bitfields.
*
* The first few values calculated by this routine:
* bf(0) = 1
* bf(1) = 1
* bf(2) = 2
* bf(3) = 2
* bf(4) = 3
* ... and so on.
*/
#define bits_per(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 0 || (n) == 1) \
? 1 : ilog2(n) + 1 \
) : \
__bits_per(n) \
)
/**
* get_order - Determine the allocation order of a memory size
* @size: The size for which to get the order
*
* Determine the allocation order of a particular sized block of memory. This
* is on a logarithmic scale, where:
*
* 0 -> 2^0 * PAGE_SIZE and below
* 1 -> 2^1 * PAGE_SIZE to 2^0 * PAGE_SIZE + 1
* 2 -> 2^2 * PAGE_SIZE to 2^1 * PAGE_SIZE + 1
* 3 -> 2^3 * PAGE_SIZE to 2^2 * PAGE_SIZE + 1
* 4 -> 2^4 * PAGE_SIZE to 2^3 * PAGE_SIZE + 1
* ...
*
* The order returned is used to find the smallest allocation granule required
* to hold an object of the specified size.
*
* The result is undefined if the size is 0.
*/
static inline __attribute_const__ int get_order(unsigned long size)
{
if (__builtin_constant_p(size)) {
if (!size)
return BITS_PER_LONG - PAGE_SHIFT;
if (size < (1UL << PAGE_SHIFT))
return 0;
return ilog2((size) - 1) - PAGE_SHIFT + 1;
}
size--; size--;
size >>= PAGE_SHIFT; size >>= PAGE_SHIFT;
#if BITS_PER_LONG == 32 #if BITS_PER_LONG == 32
order = fls(size); return fls(size);
#else #else
order = fls64(size); return fls64(size);
#endif #endif
return order;
} }
#define get_order(n) \ #endif /* _LINUX_LOG2_H */
( \
__builtin_constant_p(n) ? ( \
((n) == 0UL) ? BITS_PER_LONG - PAGE_SHIFT : \
(((n) < (1UL << PAGE_SHIFT)) ? 0 : \
ilog2((n) - 1) - PAGE_SHIFT + 1) \
) : \
__get_order(n) \
)
#endif /* _TOOLS_LINUX_LOG2_H */