Update bcachefs sources to 3610542890 bcachefs: Convert to skcipher interface for chacha20

This commit is contained in:
Kent Overstreet 2017-05-05 01:49:48 -08:00
parent e004b95b88
commit f9395eeca5
35 changed files with 2610 additions and 892 deletions

View File

@ -1 +1 @@
fb365e1745d352401a2af47aedb43ab1bf6f8ce1
3610542890c4b8329d83361ba48fa874d27c97a8

View File

@ -134,5 +134,5 @@ update-bcachefs-sources:
.PHONE: update-commit-bcachefs-sources
update-commit-bcachefs-sources: update-bcachefs-sources
git commit -m "Update bcachefs sources to `cut -b1-10 .bcachefs_revision`" \
git commit -m "Update bcachefs sources to `cd $(LINUX_DIR); git show --oneline --no-patch`"\
.bcachefs_revision libbcachefs/

View File

@ -13,6 +13,7 @@
#define _CRYPTO_ALGAPI_H
#include <linux/crypto.h>
#include <crypto/skcipher.h>
struct crypto_type {
unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);

149
include/crypto/skcipher.h Normal file
View File

@ -0,0 +1,149 @@
/*
* Symmetric key ciphers.
*
* Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#ifndef _CRYPTO_SKCIPHER_H
#define _CRYPTO_SKCIPHER_H
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/slab.h>
struct skcipher_request {
unsigned int cryptlen;
u8 *iv;
struct scatterlist *src;
struct scatterlist *dst;
struct crypto_tfm *tfm;
//struct crypto_async_request base;
void *__ctx[] CRYPTO_MINALIGN_ATTR;
};
struct crypto_skcipher {
int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int (*encrypt)(struct skcipher_request *req);
int (*decrypt)(struct skcipher_request *req);
unsigned int ivsize;
unsigned int reqsize;
unsigned int keysize;
struct crypto_tfm base;
};
struct skcipher_alg {
int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int (*encrypt)(struct skcipher_request *req);
int (*decrypt)(struct skcipher_request *req);
int (*init)(struct crypto_skcipher *tfm);
void (*exit)(struct crypto_skcipher *tfm);
unsigned int min_keysize;
unsigned int max_keysize;
unsigned int ivsize;
unsigned int chunksize;
unsigned int walksize;
struct crypto_alg base;
};
#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
char __##name##_desc[sizeof(struct skcipher_request) + \
crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
struct skcipher_request *name = (void *)__##name##_desc
static inline void *crypto_skcipher_ctx(struct crypto_skcipher *tfm)
{
return crypto_tfm_ctx(&tfm->base);
}
static inline struct crypto_skcipher *__crypto_skcipher_cast(
struct crypto_tfm *tfm)
{
return container_of(tfm, struct crypto_skcipher, base);
}
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
u32 type, u32 mask);
static inline struct crypto_tfm *crypto_skcipher_tfm(
struct crypto_skcipher *tfm)
{
return &tfm->base;
}
static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
{
crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
}
static inline struct skcipher_alg *crypto_skcipher_alg(
struct crypto_skcipher *tfm)
{
return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
struct skcipher_alg, base);
}
static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
return tfm->setkey(tfm, key, keylen);
}
static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
struct skcipher_request *req)
{
return __crypto_skcipher_cast(req->tfm);
}
static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
return tfm->encrypt(req);
}
static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
return tfm->decrypt(req);
}
static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
{
return tfm->reqsize;
}
static inline void skcipher_request_set_tfm(struct skcipher_request *req,
struct crypto_skcipher *tfm)
{
req->tfm = crypto_skcipher_tfm(tfm);
}
static inline void skcipher_request_set_crypt(
struct skcipher_request *req,
struct scatterlist *src, struct scatterlist *dst,
unsigned int cryptlen, void *iv)
{
req->src = src;
req->dst = dst;
req->cryptlen = cryptlen;
req->iv = iv;
}
#endif /* _CRYPTO_SKCIPHER_H */

View File

@ -60,7 +60,7 @@ static inline struct inode *file_inode(const struct file *f)
#define BDEVNAME_SIZE 32
struct request_queue {
struct backing_dev_info backing_dev_info;
struct backing_dev_info *backing_dev_info;
};
struct gendisk {
@ -82,6 +82,9 @@ struct block_device {
struct gendisk __bd_disk;
int bd_fd;
int bd_sync_fd;
struct backing_dev_info *bd_bdi;
struct backing_dev_info __bd_bdi;
};
void generic_make_request(struct bio *);
@ -100,13 +103,6 @@ int blkdev_issue_discard(struct block_device *, sector_t,
#define blk_queue_discard(q) ((void) (q), 0)
#define blk_queue_nonrot(q) ((void) (q), 0)
static inline struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
return &q->backing_dev_info;
}
unsigned bdev_logical_block_size(struct block_device *bdev);
sector_t get_capacity(struct gendisk *disk);

View File

@ -1,87 +1,648 @@
#ifndef __LZ4_H__
#define __LZ4_H__
/*
* LZ4 Kernel Interface
/* LZ4 Kernel Interface
*
* Copyright (C) 2013, LG Electronics, Kyungsik Lee <kyungsik.lee@lge.com>
* Copyright (C) 2016, Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This file is based on the original header file
* for LZ4 - Fast LZ compression algorithm.
*
* LZ4 - Fast LZ compression algorithm
* Copyright (C) 2011-2016, Yann Collet.
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* You can contact the author at :
* - LZ4 homepage : http://www.lz4.org
* - LZ4 source repository : https://github.com/lz4/lz4
*/
#define LZ4_MEM_COMPRESS (16384)
#define LZ4HC_MEM_COMPRESS (262144 + (2 * sizeof(unsigned char *)))
#ifndef __LZ4_H__
#define __LZ4_H__
#include <linux/types.h>
#include <linux/string.h> /* memset, memcpy */
/*-************************************************************************
* CONSTANTS
**************************************************************************/
/*
* LZ4_MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes
* (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
*/
#define LZ4_MEMORY_USAGE 14
#define LZ4_MAX_INPUT_SIZE 0x7E000000 /* 2 113 929 216 bytes */
#define LZ4_COMPRESSBOUND(isize) (\
(unsigned int)(isize) > (unsigned int)LZ4_MAX_INPUT_SIZE \
? 0 \
: (isize) + ((isize)/255) + 16)
#define LZ4_ACCELERATION_DEFAULT 1
#define LZ4_HASHLOG (LZ4_MEMORY_USAGE-2)
#define LZ4_HASHTABLESIZE (1 << LZ4_MEMORY_USAGE)
#define LZ4_HASH_SIZE_U32 (1 << LZ4_HASHLOG)
#define LZ4HC_MIN_CLEVEL 3
#define LZ4HC_DEFAULT_CLEVEL 9
#define LZ4HC_MAX_CLEVEL 16
#define LZ4HC_DICTIONARY_LOGSIZE 16
#define LZ4HC_MAXD (1<<LZ4HC_DICTIONARY_LOGSIZE)
#define LZ4HC_MAXD_MASK (LZ4HC_MAXD - 1)
#define LZ4HC_HASH_LOG (LZ4HC_DICTIONARY_LOGSIZE - 1)
#define LZ4HC_HASHTABLESIZE (1 << LZ4HC_HASH_LOG)
#define LZ4HC_HASH_MASK (LZ4HC_HASHTABLESIZE - 1)
/*-************************************************************************
* STREAMING CONSTANTS AND STRUCTURES
**************************************************************************/
#define LZ4_STREAMSIZE_U64 ((1 << (LZ4_MEMORY_USAGE - 3)) + 4)
#define LZ4_STREAMSIZE (LZ4_STREAMSIZE_U64 * sizeof(unsigned long long))
#define LZ4_STREAMHCSIZE 262192
#define LZ4_STREAMHCSIZE_SIZET (262192 / sizeof(size_t))
#define LZ4_STREAMDECODESIZE_U64 4
#define LZ4_STREAMDECODESIZE (LZ4_STREAMDECODESIZE_U64 * \
sizeof(unsigned long long))
/*
* lz4_compressbound()
* Provides the maximum size that LZ4 may output in a "worst case" scenario
* (input data not compressible)
* LZ4_stream_t - information structure to track an LZ4 stream.
*/
static inline size_t lz4_compressbound(size_t isize)
typedef struct {
uint32_t hashTable[LZ4_HASH_SIZE_U32];
uint32_t currentOffset;
uint32_t initCheck;
const uint8_t *dictionary;
uint8_t *bufferStart;
uint32_t dictSize;
} LZ4_stream_t_internal;
typedef union {
unsigned long long table[LZ4_STREAMSIZE_U64];
LZ4_stream_t_internal internal_donotuse;
} LZ4_stream_t;
/*
* LZ4_streamHC_t - information structure to track an LZ4HC stream.
*/
typedef struct {
unsigned int hashTable[LZ4HC_HASHTABLESIZE];
unsigned short chainTable[LZ4HC_MAXD];
/* next block to continue on current prefix */
const unsigned char *end;
/* All index relative to this position */
const unsigned char *base;
/* alternate base for extDict */
const unsigned char *dictBase;
/* below that point, need extDict */
unsigned int dictLimit;
/* below that point, no more dict */
unsigned int lowLimit;
/* index from which to continue dict update */
unsigned int nextToUpdate;
unsigned int compressionLevel;
} LZ4HC_CCtx_internal;
typedef union {
size_t table[LZ4_STREAMHCSIZE_SIZET];
LZ4HC_CCtx_internal internal_donotuse;
} LZ4_streamHC_t;
/*
* LZ4_streamDecode_t - information structure to track an
* LZ4 stream during decompression.
*
* init this structure using LZ4_setStreamDecode (or memset()) before first use
*/
typedef struct {
const uint8_t *externalDict;
size_t extDictSize;
const uint8_t *prefixEnd;
size_t prefixSize;
} LZ4_streamDecode_t_internal;
typedef union {
unsigned long long table[LZ4_STREAMDECODESIZE_U64];
LZ4_streamDecode_t_internal internal_donotuse;
} LZ4_streamDecode_t;
/*-************************************************************************
* SIZE OF STATE
**************************************************************************/
#define LZ4_MEM_COMPRESS LZ4_STREAMSIZE
#define LZ4HC_MEM_COMPRESS LZ4_STREAMHCSIZE
/*-************************************************************************
* Compression Functions
**************************************************************************/
/**
* LZ4_compressBound() - Max. output size in worst case szenarios
* @isize: Size of the input data
*
* Return: Max. size LZ4 may output in a "worst case" szenario
* (data not compressible)
*/
static inline int LZ4_compressBound(size_t isize)
{
return isize + (isize / 255) + 16;
return LZ4_COMPRESSBOUND(isize);
}
/*
* lz4_compress()
* src : source address of the original data
* src_len : size of the original data
* dst : output buffer address of the compressed data
* This requires 'dst' of size LZ4_COMPRESSBOUND.
* dst_len : is the output size, which is returned after compress done
* workmem : address of the working memory.
* This requires 'workmem' of size LZ4_MEM_COMPRESS.
* return : Success if return 0
* Error if return (< 0)
* note : Destination buffer and workmem must be already allocated with
* the defined size.
/**
* LZ4_compress_default() - Compress data from source to dest
* @source: source address of the original data
* @dest: output buffer address of the compressed data
* @inputSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxOutputSize: full or partial size of buffer 'dest'
* which must be already allocated
* @wrkmem: address of the working memory.
* This requires 'workmem' of LZ4_MEM_COMPRESS.
*
* Compresses 'sourceSize' bytes from buffer 'source'
* into already allocated 'dest' buffer of size 'maxOutputSize'.
* Compression is guaranteed to succeed if
* 'maxOutputSize' >= LZ4_compressBound(inputSize).
* It also runs faster, so it's a recommended setting.
* If the function cannot compress 'source' into a more limited 'dest' budget,
* compression stops *immediately*, and the function result is zero.
* As a consequence, 'dest' content is not valid.
*
* Return: Number of bytes written into buffer 'dest'
* (necessarily <= maxOutputSize) or 0 if compression fails
*/
int lz4_compress(const unsigned char *src, size_t src_len,
unsigned char *dst, size_t *dst_len, void *wrkmem);
int LZ4_compress_default(const char *source, char *dest, int inputSize,
int maxOutputSize, void *wrkmem);
/*
* lz4hc_compress()
* src : source address of the original data
* src_len : size of the original data
* dst : output buffer address of the compressed data
* This requires 'dst' of size LZ4_COMPRESSBOUND.
* dst_len : is the output size, which is returned after compress done
* workmem : address of the working memory.
* This requires 'workmem' of size LZ4HC_MEM_COMPRESS.
* return : Success if return 0
* Error if return (< 0)
* note : Destination buffer and workmem must be already allocated with
* the defined size.
*/
int lz4hc_compress(const unsigned char *src, size_t src_len,
unsigned char *dst, size_t *dst_len, void *wrkmem);
/*
* lz4_decompress()
* src : source address of the compressed data
* src_len : is the input size, whcih is returned after decompress done
* dest : output buffer address of the decompressed data
* actual_dest_len: is the size of uncompressed data, supposing it's known
* return : Success if return 0
* Error if return (< 0)
* note : Destination buffer must be already allocated.
* slightly faster than lz4_decompress_unknownoutputsize()
/**
* LZ4_compress_fast() - As LZ4_compress_default providing an acceleration param
* @source: source address of the original data
* @dest: output buffer address of the compressed data
* @inputSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxOutputSize: full or partial size of buffer 'dest'
* which must be already allocated
* @acceleration: acceleration factor
* @wrkmem: address of the working memory.
* This requires 'workmem' of LZ4_MEM_COMPRESS.
*
* Same as LZ4_compress_default(), but allows to select an "acceleration"
* factor. The larger the acceleration value, the faster the algorithm,
* but also the lesser the compression. It's a trade-off. It can be fine tuned,
* with each successive value providing roughly +~3% to speed.
* An acceleration value of "1" is the same as regular LZ4_compress_default()
* Values <= 0 will be replaced by LZ4_ACCELERATION_DEFAULT, which is 1.
*
* Return: Number of bytes written into buffer 'dest'
* (necessarily <= maxOutputSize) or 0 if compression fails
*/
int lz4_decompress(const unsigned char *src, size_t *src_len,
unsigned char *dest, size_t actual_dest_len);
int LZ4_compress_fast(const char *source, char *dest, int inputSize,
int maxOutputSize, int acceleration, void *wrkmem);
/*
* lz4_decompress_unknownoutputsize()
* src : source address of the compressed data
* src_len : is the input size, therefore the compressed size
* dest : output buffer address of the decompressed data
* dest_len: is the max size of the destination buffer, which is
* returned with actual size of decompressed data after
* decompress done
* return : Success if return 0
* Error if return (< 0)
* note : Destination buffer must be already allocated.
/**
* LZ4_compress_destSize() - Compress as much data as possible
* from source to dest
* @source: source address of the original data
* @dest: output buffer address of the compressed data
* @sourceSizePtr: will be modified to indicate how many bytes where read
* from 'source' to fill 'dest'. New value is necessarily <= old value.
* @targetDestSize: Size of buffer 'dest' which must be already allocated
* @wrkmem: address of the working memory.
* This requires 'workmem' of LZ4_MEM_COMPRESS.
*
* Reverse the logic, by compressing as much data as possible
* from 'source' buffer into already allocated buffer 'dest'
* of size 'targetDestSize'.
* This function either compresses the entire 'source' content into 'dest'
* if it's large enough, or fill 'dest' buffer completely with as much data as
* possible from 'source'.
*
* Return: Number of bytes written into 'dest' (necessarily <= targetDestSize)
* or 0 if compression fails
*/
int lz4_decompress_unknownoutputsize(const unsigned char *src, size_t src_len,
unsigned char *dest, size_t *dest_len);
int LZ4_compress_destSize(const char *source, char *dest, int *sourceSizePtr,
int targetDestSize, void *wrkmem);
/*-************************************************************************
* Decompression Functions
**************************************************************************/
/**
* LZ4_decompress_fast() - Decompresses data from 'source' into 'dest'
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated with 'originalSize' bytes
* @originalSize: is the original and therefore uncompressed size
*
* Decompresses data from 'source' into 'dest'.
* This function fully respect memory boundaries for properly formed
* compressed data.
* It is a bit faster than LZ4_decompress_safe().
* However, it does not provide any protection against intentionally
* modified data stream (malicious input).
* Use this function in trusted environment only
* (data to decode comes from a trusted source).
*
* Return: number of bytes read from the source buffer
* or a negative result if decompression fails.
*/
int LZ4_decompress_fast(const char *source, char *dest, int originalSize);
/**
* LZ4_decompress_safe() - Decompression protected against buffer overflow
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated
* @compressedSize: is the precise full size of the compressed block
* @maxDecompressedSize: is the size of 'dest' buffer
*
* Decompresses data fom 'source' into 'dest'.
* If the source stream is detected malformed, the function will
* stop decoding and return a negative result.
* This function is protected against buffer overflow exploits,
* including malicious data packets. It never writes outside output buffer,
* nor reads outside input buffer.
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_safe(const char *source, char *dest, int compressedSize,
int maxDecompressedSize);
/**
* LZ4_decompress_safe_partial() - Decompress a block of size 'compressedSize'
* at position 'source' into buffer 'dest'
* @source: source address of the compressed data
* @dest: output buffer address of the decompressed data which must be
* already allocated
* @compressedSize: is the precise full size of the compressed block.
* @targetOutputSize: the decompression operation will try
* to stop as soon as 'targetOutputSize' has been reached
* @maxDecompressedSize: is the size of destination buffer
*
* This function decompresses a compressed block of size 'compressedSize'
* at position 'source' into destination buffer 'dest'
* of size 'maxDecompressedSize'.
* The function tries to stop decompressing operation as soon as
* 'targetOutputSize' has been reached, reducing decompression time.
* This function never writes outside of output buffer,
* and never reads outside of input buffer.
* It is therefore protected against malicious data packets.
*
* Return: the number of bytes decoded in the destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*
*/
int LZ4_decompress_safe_partial(const char *source, char *dest,
int compressedSize, int targetOutputSize, int maxDecompressedSize);
/*-************************************************************************
* LZ4 HC Compression
**************************************************************************/
/**
* LZ4_compress_HC() - Compress data from `src` into `dst`, using HC algorithm
* @src: source address of the original data
* @dst: output buffer address of the compressed data
* @srcSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @dstCapacity: full or partial size of buffer 'dst',
* which must be already allocated
* @compressionLevel: Recommended values are between 4 and 9, although any
* value between 1 and LZ4HC_MAX_CLEVEL will work.
* Values >LZ4HC_MAX_CLEVEL behave the same as 16.
* @wrkmem: address of the working memory.
* This requires 'wrkmem' of size LZ4HC_MEM_COMPRESS.
*
* Compress data from 'src' into 'dst', using the more powerful
* but slower "HC" algorithm. Compression is guaranteed to succeed if
* `dstCapacity >= LZ4_compressBound(srcSize)
*
* Return : the number of bytes written into 'dst' or 0 if compression fails.
*/
int LZ4_compress_HC(const char *src, char *dst, int srcSize, int dstCapacity,
int compressionLevel, void *wrkmem);
/**
* LZ4_resetStreamHC() - Init an allocated 'LZ4_streamHC_t' structure
* @streamHCPtr: pointer to the 'LZ4_streamHC_t' structure
* @compressionLevel: Recommended values are between 4 and 9, although any
* value between 1 and LZ4HC_MAX_CLEVEL will work.
* Values >LZ4HC_MAX_CLEVEL behave the same as 16.
*
* An LZ4_streamHC_t structure can be allocated once
* and re-used multiple times.
* Use this function to init an allocated `LZ4_streamHC_t` structure
* and start a new compression.
*/
void LZ4_resetStreamHC(LZ4_streamHC_t *streamHCPtr, int compressionLevel);
/**
* LZ4_loadDictHC() - Load a static dictionary into LZ4_streamHC
* @streamHCPtr: pointer to the LZ4HC_stream_t
* @dictionary: dictionary to load
* @dictSize: size of dictionary
*
* Use this function to load a static dictionary into LZ4HC_stream.
* Any previous data will be forgotten, only 'dictionary'
* will remain in memory.
* Loading a size of 0 is allowed.
*
* Return : dictionary size, in bytes (necessarily <= 64 KB)
*/
int LZ4_loadDictHC(LZ4_streamHC_t *streamHCPtr, const char *dictionary,
int dictSize);
/**
* LZ4_compress_HC_continue() - Compress 'src' using data from previously
* compressed blocks as a dictionary using the HC algorithm
* @streamHCPtr: Pointer to the previous 'LZ4_streamHC_t' structure
* @src: source address of the original data
* @dst: output buffer address of the compressed data,
* which must be already allocated
* @srcSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxDstSize: full or partial size of buffer 'dest'
* which must be already allocated
*
* These functions compress data in successive blocks of any size, using
* previous blocks as dictionary. One key assumption is that previous
* blocks (up to 64 KB) remain read-accessible while
* compressing next blocks. There is an exception for ring buffers,
* which can be smaller than 64 KB.
* Ring buffers scenario is automatically detected and handled by
* LZ4_compress_HC_continue().
* Before starting compression, state must be properly initialized,
* using LZ4_resetStreamHC().
* A first "fictional block" can then be designated as
* initial dictionary, using LZ4_loadDictHC() (Optional).
* Then, use LZ4_compress_HC_continue()
* to compress each successive block. Previous memory blocks
* (including initial dictionary when present) must remain accessible
* and unmodified during compression.
* 'dst' buffer should be sized to handle worst case scenarios, using
* LZ4_compressBound(), to ensure operation success.
* If, for any reason, previous data blocks can't be preserved unmodified
* in memory during next compression block,
* you must save it to a safer memory space, using LZ4_saveDictHC().
* Return value of LZ4_saveDictHC() is the size of dictionary
* effectively saved into 'safeBuffer'.
*
* Return: Number of bytes written into buffer 'dst' or 0 if compression fails
*/
int LZ4_compress_HC_continue(LZ4_streamHC_t *streamHCPtr, const char *src,
char *dst, int srcSize, int maxDstSize);
/**
* LZ4_saveDictHC() - Save static dictionary from LZ4HC_stream
* @streamHCPtr: pointer to the 'LZ4HC_stream_t' structure
* @safeBuffer: buffer to save dictionary to, must be already allocated
* @maxDictSize: size of 'safeBuffer'
*
* If previously compressed data block is not guaranteed
* to remain available at its memory location,
* save it into a safer place (char *safeBuffer).
* Note : you don't need to call LZ4_loadDictHC() afterwards,
* dictionary is immediately usable, you can therefore call
* LZ4_compress_HC_continue().
*
* Return : saved dictionary size in bytes (necessarily <= maxDictSize),
* or 0 if error.
*/
int LZ4_saveDictHC(LZ4_streamHC_t *streamHCPtr, char *safeBuffer,
int maxDictSize);
/*-*********************************************
* Streaming Compression Functions
***********************************************/
/**
* LZ4_resetStream() - Init an allocated 'LZ4_stream_t' structure
* @LZ4_stream: pointer to the 'LZ4_stream_t' structure
*
* An LZ4_stream_t structure can be allocated once
* and re-used multiple times.
* Use this function to init an allocated `LZ4_stream_t` structure
* and start a new compression.
*/
void LZ4_resetStream(LZ4_stream_t *LZ4_stream);
/**
* LZ4_loadDict() - Load a static dictionary into LZ4_stream
* @streamPtr: pointer to the LZ4_stream_t
* @dictionary: dictionary to load
* @dictSize: size of dictionary
*
* Use this function to load a static dictionary into LZ4_stream.
* Any previous data will be forgotten, only 'dictionary'
* will remain in memory.
* Loading a size of 0 is allowed.
*
* Return : dictionary size, in bytes (necessarily <= 64 KB)
*/
int LZ4_loadDict(LZ4_stream_t *streamPtr, const char *dictionary,
int dictSize);
/**
* LZ4_saveDict() - Save static dictionary from LZ4_stream
* @streamPtr: pointer to the 'LZ4_stream_t' structure
* @safeBuffer: buffer to save dictionary to, must be already allocated
* @dictSize: size of 'safeBuffer'
*
* If previously compressed data block is not guaranteed
* to remain available at its memory location,
* save it into a safer place (char *safeBuffer).
* Note : you don't need to call LZ4_loadDict() afterwards,
* dictionary is immediately usable, you can therefore call
* LZ4_compress_fast_continue().
*
* Return : saved dictionary size in bytes (necessarily <= dictSize),
* or 0 if error.
*/
int LZ4_saveDict(LZ4_stream_t *streamPtr, char *safeBuffer, int dictSize);
/**
* LZ4_compress_fast_continue() - Compress 'src' using data from previously
* compressed blocks as a dictionary
* @streamPtr: Pointer to the previous 'LZ4_stream_t' structure
* @src: source address of the original data
* @dst: output buffer address of the compressed data,
* which must be already allocated
* @srcSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxDstSize: full or partial size of buffer 'dest'
* which must be already allocated
* @acceleration: acceleration factor
*
* Compress buffer content 'src', using data from previously compressed blocks
* as dictionary to improve compression ratio.
* Important : Previous data blocks are assumed to still
* be present and unmodified !
* If maxDstSize >= LZ4_compressBound(srcSize),
* compression is guaranteed to succeed, and runs faster.
*
* Return: Number of bytes written into buffer 'dst' or 0 if compression fails
*/
int LZ4_compress_fast_continue(LZ4_stream_t *streamPtr, const char *src,
char *dst, int srcSize, int maxDstSize, int acceleration);
/**
* LZ4_setStreamDecode() - Instruct where to find dictionary
* @LZ4_streamDecode: the 'LZ4_streamDecode_t' structure
* @dictionary: dictionary to use
* @dictSize: size of dictionary
*
* Use this function to instruct where to find the dictionary.
* Setting a size of 0 is allowed (same effect as reset).
*
* Return: 1 if OK, 0 if error
*/
int LZ4_setStreamDecode(LZ4_streamDecode_t *LZ4_streamDecode,
const char *dictionary, int dictSize);
/**
* LZ4_decompress_fast_continue() - Decompress blocks in streaming mode
* @LZ4_streamDecode: the 'LZ4_streamDecode_t' structure
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated
* @compressedSize: is the precise full size of the compressed block
* @maxDecompressedSize: is the size of 'dest' buffer
*
* These decoding function allows decompression of multiple blocks
* in "streaming" mode.
* Previously decoded blocks *must* remain available at the memory position
* where they were decoded (up to 64 KB)
* In the case of a ring buffers, decoding buffer must be either :
* - Exactly same size as encoding buffer, with same update rule
* (block boundaries at same positions) In which case,
* the decoding & encoding ring buffer can have any size,
* including very small ones ( < 64 KB).
* - Larger than encoding buffer, by a minimum of maxBlockSize more bytes.
* maxBlockSize is implementation dependent.
* It's the maximum size you intend to compress into a single block.
* In which case, encoding and decoding buffers do not need
* to be synchronized, and encoding ring buffer can have any size,
* including small ones ( < 64 KB).
* - _At least_ 64 KB + 8 bytes + maxBlockSize.
* In which case, encoding and decoding buffers do not need to be
* synchronized, and encoding ring buffer can have any size,
* including larger than decoding buffer. W
* Whenever these conditions are not possible, save the last 64KB of decoded
* data into a safe buffer, and indicate where it is saved
* using LZ4_setStreamDecode()
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_safe_continue(LZ4_streamDecode_t *LZ4_streamDecode,
const char *source, char *dest, int compressedSize,
int maxDecompressedSize);
/**
* LZ4_decompress_fast_continue() - Decompress blocks in streaming mode
* @LZ4_streamDecode: the 'LZ4_streamDecode_t' structure
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated with 'originalSize' bytes
* @originalSize: is the original and therefore uncompressed size
*
* These decoding function allows decompression of multiple blocks
* in "streaming" mode.
* Previously decoded blocks *must* remain available at the memory position
* where they were decoded (up to 64 KB)
* In the case of a ring buffers, decoding buffer must be either :
* - Exactly same size as encoding buffer, with same update rule
* (block boundaries at same positions) In which case,
* the decoding & encoding ring buffer can have any size,
* including very small ones ( < 64 KB).
* - Larger than encoding buffer, by a minimum of maxBlockSize more bytes.
* maxBlockSize is implementation dependent.
* It's the maximum size you intend to compress into a single block.
* In which case, encoding and decoding buffers do not need
* to be synchronized, and encoding ring buffer can have any size,
* including small ones ( < 64 KB).
* - _At least_ 64 KB + 8 bytes + maxBlockSize.
* In which case, encoding and decoding buffers do not need to be
* synchronized, and encoding ring buffer can have any size,
* including larger than decoding buffer. W
* Whenever these conditions are not possible, save the last 64KB of decoded
* data into a safe buffer, and indicate where it is saved
* using LZ4_setStreamDecode()
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_fast_continue(LZ4_streamDecode_t *LZ4_streamDecode,
const char *source, char *dest, int originalSize);
/**
* LZ4_decompress_safe_usingDict() - Same as LZ4_setStreamDecode()
* followed by LZ4_decompress_safe_continue()
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated
* @compressedSize: is the precise full size of the compressed block
* @maxDecompressedSize: is the size of 'dest' buffer
* @dictStart: pointer to the start of the dictionary in memory
* @dictSize: size of dictionary
*
* These decoding function works the same as
* a combination of LZ4_setStreamDecode() followed by
* LZ4_decompress_safe_continue()
* It is stand-alone, and don'tn eed a LZ4_streamDecode_t structure.
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_safe_usingDict(const char *source, char *dest,
int compressedSize, int maxDecompressedSize, const char *dictStart,
int dictSize);
/**
* LZ4_decompress_fast_usingDict() - Same as LZ4_setStreamDecode()
* followed by LZ4_decompress_fast_continue()
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated with 'originalSize' bytes
* @originalSize: is the original and therefore uncompressed size
* @dictStart: pointer to the start of the dictionary in memory
* @dictSize: size of dictionary
*
* These decoding function works the same as
* a combination of LZ4_setStreamDecode() followed by
* LZ4_decompress_safe_continue()
* It is stand-alone, and don'tn eed a LZ4_streamDecode_t structure.
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_fast_usingDict(const char *source, char *dest,
int originalSize, const char *dictStart, int dictSize);
#endif

View File

View File

View File

@ -71,6 +71,8 @@
#include <linux/math64.h>
#include <linux/random.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
#include <trace/events/bcachefs.h>
static void __bch2_bucket_free(struct bch_dev *, struct bucket *);
@ -283,8 +285,8 @@ int bch2_prio_write(struct bch_dev *ca)
r < ca->mi.nbuckets && d < end;
r++, d++) {
g = ca->buckets + r;
d->read_prio = cpu_to_le16(g->read_prio);
d->write_prio = cpu_to_le16(g->write_prio);
d->prio[READ] = cpu_to_le16(g->prio[READ]);
d->prio[WRITE] = cpu_to_le16(g->prio[WRITE]);
d->gen = ca->buckets[r].mark.gen;
}
@ -445,8 +447,8 @@ int bch2_prio_read(struct bch_dev *ca)
d = p->data;
}
ca->buckets[b].read_prio = le16_to_cpu(d->read_prio);
ca->buckets[b].write_prio = le16_to_cpu(d->write_prio);
ca->buckets[b].prio[READ] = le16_to_cpu(d->prio[READ]);
ca->buckets[b].prio[WRITE] = le16_to_cpu(d->prio[WRITE]);
bucket_cmpxchg(&ca->buckets[b], new, new.gen = d->gen);
}
@ -469,9 +471,9 @@ fsck_err:
* If there aren't enough available buckets to fill up free_inc, wait until
* there are.
*/
static int wait_buckets_available(struct bch_dev *ca)
static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
unsigned long gc_count = c->gc_count;
int ret = 0;
while (1) {
@ -481,27 +483,18 @@ static int wait_buckets_available(struct bch_dev *ca)
break;
}
if (ca->inc_gen_needs_gc >= fifo_free(&ca->free_inc)) {
if (c->gc_thread) {
trace_gc_cannot_inc_gens(ca->fs);
atomic_inc(&c->kick_gc);
wake_up_process(ca->fs->gc_thread);
}
if (gc_count != c->gc_count)
ca->inc_gen_really_needs_gc = 0;
/*
* We are going to wait for GC to wake us up, even if
* bucket counters tell us enough buckets are available,
* because we are actually waiting for GC to rewrite
* nodes with stale pointers
*/
} else if (dev_buckets_available(ca) >=
fifo_free(&ca->free_inc))
if ((ssize_t) (dev_buckets_available(ca) -
ca->inc_gen_really_needs_gc) >=
(ssize_t) fifo_free(&ca->free_inc))
break;
up_read(&ca->fs->gc_lock);
up_read(&c->gc_lock);
schedule();
try_to_freeze();
down_read(&ca->fs->gc_lock);
down_read(&c->gc_lock);
}
__set_current_state(TASK_RUNNING);
@ -639,9 +632,12 @@ static bool bch2_can_invalidate_bucket(struct bch_dev *ca, struct bucket *g,
if (!is_available_bucket(mark))
return false;
if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX - 1)
if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX / 2)
ca->inc_gen_needs_gc++;
if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX)
ca->inc_gen_really_needs_gc++;
return can_inc_bucket_gen(ca, g);
}
@ -651,8 +647,8 @@ static void bch2_invalidate_one_bucket(struct bch_dev *ca, struct bucket *g)
bch2_invalidate_bucket(ca, g);
g->read_prio = ca->fs->prio_clock[READ].hand;
g->write_prio = ca->fs->prio_clock[WRITE].hand;
g->prio[READ] = ca->fs->prio_clock[READ].hand;
g->prio[WRITE] = ca->fs->prio_clock[WRITE].hand;
verify_not_on_freelist(ca, g - ca->buckets);
BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets));
@ -672,40 +668,34 @@ static void bch2_invalidate_one_bucket(struct bch_dev *ca, struct bucket *g)
* - The number of sectors of cached data in the bucket, which gives us an
* indication of the cost in cache misses this eviction will cause.
*
* - The difference between the bucket's current gen and oldest gen of any
* pointer into it, which gives us an indication of the cost of an eventual
* btree GC to rewrite nodes with stale pointers.
* - If hotness * sectors used compares equal, we pick the bucket with the
* smallest bucket_gc_gen() - since incrementing the same bucket's generation
* number repeatedly forces us to run mark and sweep gc to avoid generation
* number wraparound.
*/
static unsigned long bucket_sort_key(bucket_heap *h,
struct bucket_heap_entry e)
static unsigned long bucket_sort_key(struct bch_dev *ca,
struct bucket *g,
struct bucket_mark m)
{
struct bch_dev *ca = container_of(h, struct bch_dev, alloc_heap);
struct bucket *g = ca->buckets + e.bucket;
unsigned long prio = g->read_prio - ca->min_prio[READ];
prio = (prio * 7) / (ca->fs->prio_clock[READ].hand -
ca->min_prio[READ]);
unsigned long hotness =
(g->prio[READ] - ca->min_prio[READ]) * 7 /
(ca->fs->prio_clock[READ].hand - ca->min_prio[READ]);
return (prio + 1) * bucket_sectors_used(e.mark);
return (((hotness + 1) * bucket_sectors_used(m)) << 8) |
bucket_gc_gen(ca, g);
}
static inline int bucket_alloc_cmp(bucket_heap *h,
struct bucket_heap_entry l,
struct bucket_heap_entry r)
static inline int bucket_alloc_cmp(alloc_heap *h,
struct alloc_heap_entry l,
struct alloc_heap_entry r)
{
return bucket_sort_key(h, l) - bucket_sort_key(h, r);
}
static inline long bucket_idx_cmp(bucket_heap *h,
struct bucket_heap_entry l,
struct bucket_heap_entry r)
{
return l.bucket - r.bucket;
return (l.key > r.key) - (l.key < r.key);
}
static void invalidate_buckets_lru(struct bch_dev *ca)
{
struct bucket_heap_entry e;
struct alloc_heap_entry e;
struct bucket *g;
ca->alloc_heap.used = 0;
@ -721,23 +711,26 @@ static void invalidate_buckets_lru(struct bch_dev *ca)
*/
for_each_bucket(g, ca) {
struct bucket_mark m = READ_ONCE(g->mark);
struct bucket_heap_entry e = { g - ca->buckets, m };
if (!bch2_can_invalidate_bucket(ca, g, m))
continue;
e = (struct alloc_heap_entry) {
.bucket = g - ca->buckets,
.key = bucket_sort_key(ca, g, m)
};
heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp);
}
/* Sort buckets by physical location on disk for better locality */
heap_resort(&ca->alloc_heap, bucket_idx_cmp);
heap_resort(&ca->alloc_heap, bucket_alloc_cmp);
/*
* If we run out of buckets to invalidate, bch2_allocator_thread() will
* kick stuff and retry us
*/
while (!fifo_full(&ca->free_inc) &&
heap_pop(&ca->alloc_heap, e, bucket_idx_cmp))
heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp))
bch2_invalidate_one_bucket(ca, &ca->buckets[e.bucket]);
mutex_unlock(&ca->fs->bucket_lock);
@ -790,6 +783,7 @@ static void invalidate_buckets_random(struct bch_dev *ca)
static void invalidate_buckets(struct bch_dev *ca)
{
ca->inc_gen_needs_gc = 0;
ca->inc_gen_really_needs_gc = 0;
switch (ca->mi.replacement) {
case CACHE_REPLACEMENT_LRU:
@ -852,8 +846,8 @@ static void bch2_find_empty_buckets(struct bch_fs *c, struct bch_dev *ca)
spin_lock(&ca->freelist_lock);
bch2_mark_alloc_bucket(ca, g, true);
g->read_prio = c->prio_clock[READ].hand;
g->write_prio = c->prio_clock[WRITE].hand;
g->prio[READ] = c->prio_clock[READ].hand;
g->prio[WRITE] = c->prio_clock[WRITE].hand;
verify_not_on_freelist(ca, g - ca->buckets);
BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets));
@ -866,6 +860,13 @@ static void bch2_find_empty_buckets(struct bch_fs *c, struct bch_dev *ca)
}
}
static int size_t_cmp(const void *_l, const void *_r)
{
const size_t *l = _l, *r = _r;
return (*l > *r) - (*l < *r);
}
/**
* bch_allocator_thread - move buckets from free_inc to reserves
*
@ -923,27 +924,13 @@ static int bch2_allocator_thread(void *arg)
__set_current_state(TASK_RUNNING);
}
down_read(&c->gc_lock);
/*
* See if we have buckets we can reuse without invalidating them
* or forcing a journal commit:
*/
//bch2_find_empty_buckets(c, ca);
if (fifo_used(&ca->free_inc) * 2 > ca->free_inc.size) {
up_read(&c->gc_lock);
continue;
}
/* We've run out of free buckets! */
while (!fifo_full(&ca->free_inc)) {
if (wait_buckets_available(ca)) {
up_read(&c->gc_lock);
goto out;
}
BUG_ON(fifo_used(&ca->free_inc));
ca->free_inc.front = ca->free_inc.back = 0;
down_read(&c->gc_lock);
while (1) {
/*
* Find some buckets that we can invalidate, either
* they're completely unused, or only contain clean data
@ -952,12 +939,38 @@ static int bch2_allocator_thread(void *arg)
*/
invalidate_buckets(ca);
trace_alloc_batch(ca, fifo_used(&ca->free_inc),
ca->free_inc.size);
}
trace_alloc_batch(ca, fifo_used(&ca->free_inc),
ca->free_inc.size);
if ((ca->inc_gen_needs_gc >= ca->free_inc.size ||
(!fifo_full(&ca->free_inc) &&
ca->inc_gen_really_needs_gc >=
fifo_free(&ca->free_inc))) &&
c->gc_thread) {
atomic_inc(&c->kick_gc);
wake_up_process(c->gc_thread);
}
if (fifo_full(&ca->free_inc))
break;
if (wait_buckets_available(c, ca)) {
up_read(&c->gc_lock);
goto out;
}
}
up_read(&c->gc_lock);
BUG_ON(ca->free_inc.front);
spin_lock(&ca->freelist_lock);
sort(ca->free_inc.data,
ca->free_inc.back,
sizeof(ca->free_inc.data[0]),
size_t_cmp, NULL);
spin_unlock(&ca->freelist_lock);
/*
* free_inc is full of newly-invalidated buckets, must write out
* prios and gens before they can be re-used
@ -1022,8 +1035,8 @@ out:
g = ca->buckets + r;
g->read_prio = ca->fs->prio_clock[READ].hand;
g->write_prio = ca->fs->prio_clock[WRITE].hand;
g->prio[READ] = ca->fs->prio_clock[READ].hand;
g->prio[WRITE] = ca->fs->prio_clock[WRITE].hand;
return r;
}
@ -1031,9 +1044,6 @@ out:
static void __bch2_bucket_free(struct bch_dev *ca, struct bucket *g)
{
bch2_mark_free_bucket(ca, g);
g->read_prio = ca->fs->prio_clock[READ].hand;
g->write_prio = ca->fs->prio_clock[WRITE].hand;
}
enum bucket_alloc_ret {
@ -1614,8 +1624,7 @@ void bch2_recalc_capacity(struct bch_fs *c)
unsigned i, j;
for_each_online_member(ca, c, i) {
struct backing_dev_info *bdi =
blk_get_backing_dev_info(ca->disk_sb.bdev);
struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi;
ra_pages += bdi->ra_pages;
}

View File

@ -99,4 +99,11 @@ struct write_point {
*/
};
struct alloc_heap_entry {
size_t bucket;
unsigned long key;
};
typedef HEAP(struct alloc_heap_entry) alloc_heap;
#endif /* _BCACHE_ALLOC_TYPES_H */

View File

@ -240,8 +240,6 @@ do { \
"btree node it traverses") \
BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \
"Disables rewriting of btree nodes during mark and sweep")\
BCH_DEBUG_PARAM(btree_gc_coalesce_disabled, \
"Disables coalescing of btree nodes") \
BCH_DEBUG_PARAM(btree_shrinker_disabled, \
"Disables the shrinker callback for the btree node cache")
@ -273,7 +271,6 @@ do { \
#define BCH_TIME_STATS() \
BCH_TIME_STAT(btree_node_mem_alloc, sec, us) \
BCH_TIME_STAT(btree_gc, sec, ms) \
BCH_TIME_STAT(btree_coalesce, sec, ms) \
BCH_TIME_STAT(btree_split, sec, us) \
BCH_TIME_STAT(btree_sort, ms, us) \
BCH_TIME_STAT(btree_read, ms, us) \
@ -417,8 +414,9 @@ struct bch_dev {
atomic_long_t saturated_count;
size_t inc_gen_needs_gc;
size_t inc_gen_really_needs_gc;
bucket_heap alloc_heap;
alloc_heap alloc_heap;
bucket_heap copygc_heap;
/* Moving GC: */
@ -681,6 +679,7 @@ struct bch_fs {
/* GARBAGE COLLECTION */
struct task_struct *gc_thread;
atomic_t kick_gc;
unsigned long gc_count;
/*
* Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
@ -716,7 +715,7 @@ struct bch_fs {
mempool_t compression_bounce[2];
struct crypto_shash *sha256;
struct crypto_blkcipher *chacha20;
struct crypto_skcipher *chacha20;
struct crypto_shash *poly1305;
atomic64_t key_version;
@ -762,6 +761,7 @@ struct bch_fs {
/* The rest of this all shows up in sysfs */
atomic_long_t read_realloc_races;
unsigned btree_gc_periodic:1;
unsigned foreground_write_ratelimit_enabled:1;
unsigned copy_gc_enabled:1;
unsigned tiering_enabled:1;

View File

@ -1208,8 +1208,7 @@ struct prio_set {
__le64 next_bucket;
struct bucket_disk {
__le16 read_prio;
__le16 write_prio;
__le16 prio[2];
__u8 gen;
} __attribute__((packed)) data[];
} __attribute__((packed, aligned(8)));

View File

@ -166,14 +166,14 @@ fsck_err:
return ret;
}
static bool btree_gc_mark_node(struct bch_fs *c, struct btree *b)
static unsigned btree_gc_mark_node(struct bch_fs *c, struct btree *b)
{
if (btree_node_has_ptrs(b)) {
struct btree_node_iter iter;
struct bkey unpacked;
struct bkey_s_c k;
u8 stale = 0;
struct btree_node_iter iter;
struct bkey unpacked;
struct bkey_s_c k;
u8 stale = 0;
if (btree_node_has_ptrs(b))
for_each_btree_node_key_unpack(b, k, &iter,
btree_node_is_extents(b),
&unpacked) {
@ -182,17 +182,7 @@ static bool btree_gc_mark_node(struct bch_fs *c, struct btree *b)
btree_node_type(b), k));
}
if (btree_gc_rewrite_disabled(c))
return false;
if (stale > 10)
return true;
}
if (btree_gc_always_rewrite(c))
return true;
return false;
return stale;
}
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
@ -212,10 +202,10 @@ static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id)
{
struct btree_iter iter;
struct btree *b;
bool should_rewrite;
struct range_checks r;
unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1;
int ret;
unsigned max_stale;
int ret = 0;
/*
* if expensive_debug_checks is on, run range_checks on all leaf nodes:
@ -231,12 +221,21 @@ static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id)
bch2_verify_btree_nr_keys(b);
should_rewrite = btree_gc_mark_node(c, b);
max_stale = btree_gc_mark_node(c, b);
gc_pos_set(c, gc_pos_btree_node(b));
if (should_rewrite)
bch2_btree_node_rewrite(&iter, b, NULL);
if (max_stale > 32)
bch2_btree_node_rewrite(c, &iter,
b->data->keys.seq,
BTREE_INSERT_USE_RESERVE|
BTREE_INSERT_GC_LOCK_HELD);
else if (!btree_gc_rewrite_disabled(c) &&
(btree_gc_always_rewrite(c) || max_stale > 16))
bch2_btree_node_rewrite(c, &iter,
b->data->keys.seq,
BTREE_INSERT_NOWAIT|
BTREE_INSERT_GC_LOCK_HELD);
bch2_btree_iter_cond_resched(&iter);
}
@ -507,6 +506,7 @@ void bch2_gc(struct bch_fs *c)
/* Indicates that gc is no longer in progress: */
gc_pos_set(c, gc_phase(GC_PHASE_DONE));
c->gc_count++;
up_write(&c->gc_lock);
trace_gc_end(c);
@ -835,7 +835,6 @@ static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
*/
void bch2_coalesce(struct bch_fs *c)
{
u64 start_time;
enum btree_id id;
if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
@ -843,7 +842,6 @@ void bch2_coalesce(struct bch_fs *c)
down_read(&c->gc_lock);
trace_gc_coalesce_start(c);
start_time = local_clock();
for (id = 0; id < BTREE_ID_NR; id++) {
int ret = c->btree_roots[id].b
@ -858,7 +856,6 @@ void bch2_coalesce(struct bch_fs *c)
}
}
bch2_time_stats_update(&c->btree_coalesce_time, start_time);
trace_gc_coalesce_end(c);
up_read(&c->gc_lock);
}
@ -873,9 +870,7 @@ static int bch2_gc_thread(void *arg)
set_freezable();
while (1) {
unsigned long next = last + c->capacity / 16;
while (atomic_long_read(&clock->now) < next) {
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
@ -883,21 +878,28 @@ static int bch2_gc_thread(void *arg)
return 0;
}
if (atomic_read(&c->kick_gc) != last_kick) {
__set_current_state(TASK_RUNNING);
if (atomic_read(&c->kick_gc) != last_kick)
break;
if (c->btree_gc_periodic) {
unsigned long next = last + c->capacity / 16;
if (atomic_long_read(&clock->now) >= next)
break;
bch2_io_clock_schedule_timeout(clock, next);
} else {
schedule();
}
bch2_io_clock_schedule_timeout(clock, next);
try_to_freeze();
}
__set_current_state(TASK_RUNNING);
last = atomic_long_read(&clock->now);
last_kick = atomic_read(&c->kick_gc);
bch2_gc(c);
if (!btree_gc_coalesce_disabled(c))
bch2_coalesce(c);
debug_check_no_locks_held();
}

View File

@ -533,6 +533,9 @@ static struct btree_reserve *__bch2_btree_reserve_get(struct bch_fs *c,
if (flags & BTREE_INSERT_NOFAIL)
disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL;
if (flags & BTREE_INSERT_NOWAIT)
cl = NULL;
/*
* This check isn't necessary for correctness - it's just to potentially
* prevent us from doing a lot of work that'll end up being wasted:
@ -2279,30 +2282,13 @@ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
return ret;
}
/**
* bch_btree_node_rewrite - Rewrite/move a btree node
*
* Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
* btree_check_reserve() has to wait)
*/
int bch2_btree_node_rewrite(struct btree_iter *iter, struct btree *b,
struct closure *cl)
static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
struct btree *b, unsigned flags,
struct closure *cl)
{
struct bch_fs *c = iter->c;
struct btree *n, *parent = iter->nodes[b->level + 1];
struct btree_reserve *reserve;
struct btree_interior_update *as;
unsigned flags = BTREE_INSERT_NOFAIL;
/*
* if caller is going to wait if allocating reserve fails, then this is
* a rewrite that must succeed:
*/
if (cl)
flags |= BTREE_INSERT_USE_RESERVE;
if (!bch2_btree_iter_set_locks_want(iter, U8_MAX))
return -EINTR;
reserve = bch2_btree_reserve_get(c, b, 0, flags, cl);
if (IS_ERR(reserve)) {
@ -2341,3 +2327,57 @@ int bch2_btree_node_rewrite(struct btree_iter *iter, struct btree *b,
bch2_btree_reserve_put(c, reserve);
return 0;
}
/**
* bch_btree_node_rewrite - Rewrite/move a btree node
*
* Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
* btree_check_reserve() has to wait)
*/
int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
__le64 seq, unsigned flags)
{
unsigned locks_want = iter->locks_want;
struct closure cl;
struct btree *b;
int ret;
flags |= BTREE_INSERT_NOFAIL;
closure_init_stack(&cl);
bch2_btree_iter_set_locks_want(iter, U8_MAX);
if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) {
if (!down_read_trylock(&c->gc_lock)) {
bch2_btree_iter_unlock(iter);
down_read(&c->gc_lock);
}
}
while (1) {
ret = bch2_btree_iter_traverse(iter);
if (ret)
break;
b = bch2_btree_iter_peek_node(iter);
if (!b || b->data->keys.seq != seq)
break;
ret = __btree_node_rewrite(c, iter, b, flags, &cl);
if (ret != -EAGAIN &&
ret != -EINTR)
break;
bch2_btree_iter_unlock(iter);
closure_sync(&cl);
}
bch2_btree_iter_set_locks_want(iter, locks_want);
if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
up_read(&c->gc_lock);
closure_sync(&cl);
return ret;
}

View File

@ -380,6 +380,10 @@ int __bch2_btree_insert_at(struct btree_insert *);
*/
#define BTREE_INSERT_JOURNAL_REPLAY (1 << 3)
/* Don't block on allocation failure (for new btree nodes: */
#define BTREE_INSERT_NOWAIT (1 << 4)
#define BTREE_INSERT_GC_LOCK_HELD (1 << 5)
int bch2_btree_delete_at(struct btree_iter *, unsigned);
int bch2_btree_insert_list_at(struct btree_iter *, struct keylist *,
@ -416,7 +420,8 @@ int bch2_btree_delete_range(struct bch_fs *, enum btree_id,
struct disk_reservation *,
struct extent_insert_hook *, u64 *);
int bch2_btree_node_rewrite(struct btree_iter *, struct btree *, struct closure *);
int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *,
__le64, unsigned);
#endif /* _BCACHE_BTREE_INSERT_H */

View File

@ -50,13 +50,7 @@ struct bucket_mark {
};
struct bucket {
union {
struct {
u16 read_prio;
u16 write_prio;
};
u16 prio[2];
};
u16 prio[2];
union {
struct bucket_mark _mark;

View File

@ -178,18 +178,21 @@ static u64 bch2_checksum_update(unsigned type, u64 crc, const void *data, size_t
}
}
static inline void do_encrypt_sg(struct crypto_blkcipher *tfm,
static inline void do_encrypt_sg(struct crypto_skcipher *tfm,
struct nonce nonce,
struct scatterlist *sg, size_t len)
{
struct blkcipher_desc desc = { .tfm = tfm, .info = nonce.d };
SKCIPHER_REQUEST_ON_STACK(req, tfm);
int ret;
ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_crypt(req, sg, sg, len, nonce.d);
ret = crypto_skcipher_encrypt(req);
BUG_ON(ret);
}
static inline void do_encrypt(struct crypto_blkcipher *tfm,
static inline void do_encrypt(struct crypto_skcipher *tfm,
struct nonce nonce,
void *buf, size_t len)
{
@ -202,20 +205,20 @@ static inline void do_encrypt(struct crypto_blkcipher *tfm,
int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce,
void *buf, size_t len)
{
struct crypto_blkcipher *chacha20 =
crypto_alloc_blkcipher("chacha20", 0, CRYPTO_ALG_ASYNC);
struct crypto_skcipher *chacha20 =
crypto_alloc_skcipher("chacha20", 0, 0);
int ret;
if (!chacha20)
return PTR_ERR(chacha20);
ret = crypto_blkcipher_setkey(chacha20, (void *) key, sizeof(*key));
ret = crypto_skcipher_setkey(chacha20, (void *) key, sizeof(*key));
if (ret)
goto err;
do_encrypt(chacha20, nonce, buf, len);
err:
crypto_free_blkcipher(chacha20);
crypto_free_skcipher(chacha20);
return ret;
}
@ -377,7 +380,7 @@ int bch2_request_key(struct bch_sb *sb, struct bch_key *key)
return PTR_ERR(keyring_key);
down_read(&keyring_key->sem);
ukp = user_key_payload(keyring_key);
ukp = dereference_key_locked(keyring_key);
if (ukp->datalen == sizeof(*key)) {
memcpy(key, ukp->data, ukp->datalen);
ret = 0;
@ -454,8 +457,7 @@ err:
static int bch2_alloc_ciphers(struct bch_fs *c)
{
if (!c->chacha20)
c->chacha20 = crypto_alloc_blkcipher("chacha20", 0,
CRYPTO_ALG_ASYNC);
c->chacha20 = crypto_alloc_skcipher("chacha20", 0, 0);
if (IS_ERR(c->chacha20))
return PTR_ERR(c->chacha20);
@ -532,7 +534,7 @@ int bch2_enable_encryption(struct bch_fs *c, bool keyed)
goto err;
}
ret = crypto_blkcipher_setkey(c->chacha20,
ret = crypto_skcipher_setkey(c->chacha20,
(void *) &key.key, sizeof(key.key));
if (ret)
goto err;
@ -560,7 +562,7 @@ void bch2_fs_encryption_exit(struct bch_fs *c)
if (!IS_ERR_OR_NULL(c->poly1305))
crypto_free_shash(c->poly1305);
if (!IS_ERR_OR_NULL(c->chacha20))
crypto_free_blkcipher(c->chacha20);
crypto_free_skcipher(c->chacha20);
if (!IS_ERR_OR_NULL(c->sha256))
crypto_free_shash(c->sha256);
}
@ -587,7 +589,7 @@ int bch2_fs_encryption_init(struct bch_fs *c)
if (ret)
goto err;
ret = crypto_blkcipher_setkey(c->chacha20,
ret = crypto_skcipher_setkey(c->chacha20,
(void *) &key.key, sizeof(key.key));
err:
memzero_explicit(&key, sizeof(key));

View File

@ -148,9 +148,10 @@ static int __bio_uncompress(struct bch_fs *c, struct bio *src,
switch (crc.compression_type) {
case BCH_COMPRESSION_LZ4:
ret = lz4_decompress(src_data, &src_len,
dst_data, dst_len);
if (ret) {
ret = LZ4_decompress_safe(src_data, dst_data,
src_len, dst_len);
if (ret != dst_len) {
ret = -EIO;
goto err;
}
@ -286,32 +287,27 @@ static int __bio_compress(struct bch_fs *c,
switch (compression_type) {
case BCH_COMPRESSION_LZ4: {
void *workspace;
*dst_len = dst->bi_iter.bi_size;
*src_len = src->bi_iter.bi_size;
int srclen = src->bi_iter.bi_size;
ret = 0;
workspace = mempool_alloc(&c->lz4_workspace_pool, GFP_NOIO);
while (*src_len > block_bytes(c) &&
(ret = lz4_compress(src_data, *src_len,
dst_data, dst_len,
workspace))) {
/*
* On error, the compressed data was bigger than
* dst_len, and -ret is the amount of data we were able
* to compress - round down to nearest block and try
* again:
*/
BUG_ON(ret > 0);
BUG_ON(-ret >= *src_len);
*src_len = round_down(-ret, block_bytes(c));
while (srclen > block_bytes(c) &&
(ret = LZ4_compress_destSize(src_data, dst_data,
&srclen, dst->bi_iter.bi_size,
workspace)) &&
(srclen & (block_bytes(c) - 1))) {
/* Round down to nearest block and try again: */
srclen = round_down(srclen, block_bytes(c));
}
mempool_free(workspace, &c->lz4_workspace_pool);
if (ret)
if (!ret)
goto err;
*src_len = srclen;
*dst_len = ret;
break;
}
case BCH_COMPRESSION_GZIP: {

View File

@ -559,10 +559,10 @@ static void btree_ptr_debugcheck(struct bch_fs *c, struct btree *b,
return;
err:
bch2_bkey_val_to_text(c, btree_node_type(b), buf, sizeof(buf), k);
bch2_fs_bug(c, "%s btree pointer %s: bucket %zi prio %i "
bch2_fs_bug(c, "%s btree pointer %s: bucket %zi "
"gen %i last_gc %i mark %08x",
err, buf, PTR_BUCKET_NR(ca, ptr),
g->read_prio, PTR_BUCKET(ca, ptr)->mark.gen,
PTR_BUCKET(ca, ptr)->mark.gen,
ca->oldest_gens[PTR_BUCKET_NR(ca, ptr)],
(unsigned) g->mark.counter);
}
@ -1769,10 +1769,9 @@ static void bch2_extent_debugcheck_extent(struct bch_fs *c, struct btree *b,
bad_ptr:
bch2_bkey_val_to_text(c, btree_node_type(b), buf,
sizeof(buf), e.s_c);
bch2_fs_bug(c, "extent pointer bad gc mark: %s:\nbucket %zu prio %i "
bch2_fs_bug(c, "extent pointer bad gc mark: %s:\nbucket %zu "
"gen %i last_gc %i mark 0x%08x",
buf, PTR_BUCKET_NR(ca, ptr),
g->read_prio, PTR_BUCKET(ca, ptr)->mark.gen,
buf, PTR_BUCKET_NR(ca, ptr), PTR_BUCKET(ca, ptr)->mark.gen,
ca->oldest_gens[PTR_BUCKET_NR(ca, ptr)],
(unsigned) g->mark.counter);
return;

View File

@ -757,7 +757,7 @@ static void bchfs_read(struct bch_fs *c, struct btree_iter *iter,
flags |= BCH_READ_IS_LAST;
if (pick.ca) {
PTR_BUCKET(pick.ca, &pick.ptr)->read_prio =
PTR_BUCKET(pick.ca, &pick.ptr)->prio[READ] =
c->prio_clock[READ].hand;
bch2_read_extent(c, rbio, k, &pick, flags);
@ -1775,16 +1775,17 @@ ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
return ret;
}
int bch2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
int bch2_page_mkwrite(struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vma->vm_file);
struct file *file = vmf->vma->vm_file;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
struct bch_fs *c = inode->i_sb->s_fs_info;
int ret = VM_FAULT_LOCKED;
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
file_update_time(file);
/*
* Not strictly necessary, but helps avoid dio writes livelocking in

View File

@ -29,7 +29,7 @@ long bch2_fallocate_dispatch(struct file *, int, loff_t, loff_t);
loff_t bch2_llseek(struct file *, loff_t, int);
int bch2_page_mkwrite(struct vm_area_struct *, struct vm_fault *);
int bch2_page_mkwrite(struct vm_fault *);
void bch2_invalidatepage(struct page *, unsigned int, unsigned int);
int bch2_releasepage(struct page *, gfp_t);
int bch2_migrate_page(struct address_space *, struct page *,

View File

@ -1300,11 +1300,11 @@ static void bch2_read_iter(struct bch_fs *c, struct bch_read_bio *rbio,
flags |= BCH_READ_IS_LAST;
if (pick.ca) {
PTR_BUCKET(pick.ca, &pick.ptr)->read_prio =
PTR_BUCKET(pick.ca, &pick.ptr)->prio[READ] =
c->prio_clock[READ].hand;
bch2_read_extent_iter(c, rbio, bvec_iter,
k, &pick, flags);
k, &pick, flags);
flags &= ~BCH_READ_MAY_REUSE_BIO;
} else {

View File

@ -164,21 +164,15 @@ static void journal_seq_blacklist_flush(struct journal *j,
mutex_unlock(&j->blacklist_lock);
__bch2_btree_iter_init(&iter, c, n.btree_id, n.pos, 0, 0, 0);
redo_peek:
b = bch2_btree_iter_peek_node(&iter);
/* The node might have already been rewritten: */
if (b->data->keys.seq == n.seq) {
ret = bch2_btree_node_rewrite(&iter, b, &cl);
ret = bch2_btree_node_rewrite(c, &iter, n.seq, 0);
if (ret) {
bch2_btree_iter_unlock(&iter);
closure_sync(&cl);
if (ret == -EAGAIN ||
ret == -EINTR)
goto redo_peek;
bch2_fs_fatal_error(c,
"error %i rewriting btree node with blacklisted journal seq",
ret);
@ -190,8 +184,6 @@ redo_peek:
bch2_btree_iter_unlock(&iter);
}
closure_sync(&cl);
for (i = 0;; i++) {
struct btree_interior_update *as;
struct pending_btree_node_free *d;

View File

@ -156,9 +156,9 @@ next:
* This walks the btree, and for any node on the relevant device it moves the
* node elsewhere.
*/
static int bch2_move_btree_off(struct bch_dev *ca, enum btree_id id)
static int bch2_move_btree_off(struct bch_fs *c, struct bch_dev *ca,
enum btree_id id)
{
struct bch_fs *c = ca->fs;
struct btree_iter iter;
struct closure cl;
struct btree *b;
@ -170,22 +170,11 @@ static int bch2_move_btree_off(struct bch_dev *ca, enum btree_id id)
for_each_btree_node(&iter, c, id, POS_MIN, BTREE_ITER_PREFETCH, b) {
struct bkey_s_c_extent e = bkey_i_to_s_c_extent(&b->key);
retry:
if (!bch2_extent_has_device(e, ca->dev_idx))
continue;
ret = bch2_btree_node_rewrite(&iter, b, &cl);
if (ret == -EINTR || ret == -ENOSPC) {
/*
* Drop locks to upgrade locks or wait on
* reserve: after retaking, recheck in case we
* raced.
*/
bch2_btree_iter_unlock(&iter);
closure_sync(&cl);
b = bch2_btree_iter_peek_node(&iter);
goto retry;
}
ret = bch2_btree_node_rewrite(c, &iter, b->data->keys.seq, 0);
if (ret) {
bch2_btree_iter_unlock(&iter);
return ret;
@ -268,7 +257,7 @@ int bch2_move_metadata_off_device(struct bch_dev *ca)
/* 1st, Move the btree nodes off the device */
for (i = 0; i < BTREE_ID_NR; i++) {
ret = bch2_move_btree_off(ca, i);
ret = bch2_move_btree_off(c, ca, i);
if (ret)
return ret;
}

View File

@ -442,7 +442,7 @@ static const char *bch2_blkdev_open(const char *path, fmode_t mode,
return "failed to open device";
if (mode & FMODE_WRITE)
bdev_get_queue(bdev)->backing_dev_info.capabilities
bdev_get_queue(bdev)->backing_dev_info->capabilities
|= BDI_CAP_STABLE_WRITES;
*ret = bdev;

View File

@ -148,7 +148,7 @@ int bch2_congested(struct bch_fs *c, int bdi_bits)
if (bdi_bits & (1 << WB_sync_congested)) {
/* Reads - check all devices: */
for_each_readable_member(ca, c, i) {
bdi = blk_get_backing_dev_info(ca->disk_sb.bdev);
bdi = ca->disk_sb.bdev->bd_bdi;
if (bdi_congested(bdi, bdi_bits)) {
ret = 1;
@ -162,7 +162,7 @@ int bch2_congested(struct bch_fs *c, int bdi_bits)
rcu_read_lock();
group_for_each_dev(ca, grp, i) {
bdi = blk_get_backing_dev_info(ca->disk_sb.bdev);
bdi = ca->disk_sb.bdev->bd_bdi;
if (bdi_congested(bdi, bdi_bits)) {
ret = 1;
@ -1144,7 +1144,7 @@ static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
movinggc_reserve, GFP_KERNEL) ||
!init_fifo(&ca->free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
!init_fifo(&ca->free_inc, free_inc_reserve, GFP_KERNEL) ||
!init_heap(&ca->alloc_heap, heap_size, GFP_KERNEL) ||
!init_heap(&ca->alloc_heap, free_inc_reserve, GFP_KERNEL) ||
!init_heap(&ca->copygc_heap,heap_size, GFP_KERNEL) ||
!(ca->oldest_gens = kvpmalloc(ca->mi.nbuckets *
sizeof(u8),

View File

@ -24,6 +24,7 @@
#include <linux/blkdev.h>
#include <linux/sort.h>
#include <linux/sched/clock.h>
#include "util.h"
@ -124,6 +125,7 @@ write_attribute(trigger_journal_flush);
write_attribute(trigger_btree_coalesce);
write_attribute(trigger_gc);
write_attribute(prune_cache);
rw_attribute(btree_gc_periodic);
read_attribute(uuid);
read_attribute(minor);
@ -319,6 +321,8 @@ SHOW(bch2_fs)
sysfs_print(read_realloc_races,
atomic_long_read(&c->read_realloc_races));
sysfs_printf(btree_gc_periodic, "%u", (int) c->btree_gc_periodic);
sysfs_printf(foreground_write_ratelimit_enabled, "%i",
c->foreground_write_ratelimit_enabled);
sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled);
@ -367,6 +371,14 @@ STORE(__bch2_fs)
sysfs_strtoul(foreground_write_ratelimit_enabled,
c->foreground_write_ratelimit_enabled);
if (attr == &sysfs_btree_gc_periodic) {
ssize_t ret = strtoul_safe(buf, c->btree_gc_periodic)
?: (ssize_t) size;
wake_up_process(c->gc_thread);
return ret;
}
if (attr == &sysfs_copy_gc_enabled) {
struct bch_dev *ca;
unsigned i;

View File

@ -17,6 +17,7 @@
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched/clock.h>
#include "util.h"

View File

@ -5,9 +5,9 @@
#include <linux/blkdev.h>
#include <linux/closure.h>
#include <linux/errno.h>
#include <linux/blkdev.h>
#include <linux/freezer.h>
#include <linux/kernel.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/log2.h>
#include <linux/ratelimit.h>

View File

@ -194,6 +194,8 @@ struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
bdev->bd_sync_fd = sync_fd;
bdev->bd_holder = holder;
bdev->bd_disk = &bdev->__bd_disk;
bdev->bd_bdi = &bdev->__bd_bdi;
bdev->queue.backing_dev_info = bdev->bd_bdi;
return bdev;
}

View File

@ -201,3 +201,36 @@ int crypto_register_alg(struct crypto_alg *alg)
return 0;
}
/* skcipher: */
static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
skcipher->setkey = alg->setkey;
skcipher->encrypt = alg->encrypt;
skcipher->decrypt = alg->decrypt;
skcipher->ivsize = alg->ivsize;
skcipher->keysize = alg->max_keysize;
if (alg->init)
return alg->init(skcipher);
return 0;
}
static const struct crypto_type crypto_skcipher_type2 = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_skcipher_init_tfm,
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
.tfmsize = offsetof(struct crypto_skcipher, base),
};
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
u32 type, u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
}

View File

@ -18,6 +18,7 @@
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/chacha20.h>
#include <crypto/skcipher.h>
#include <sodium/crypto_stream_chacha20.h>
@ -25,10 +26,10 @@ struct chacha20_ctx {
u32 key[8];
};
static int crypto_chacha20_setkey(struct crypto_tfm *tfm, const u8 *key,
static int crypto_chacha20_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keysize)
{
struct chacha20_ctx *ctx = crypto_tfm_ctx(tfm);
struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm);
int i;
if (keysize != CHACHA20_KEY_SIZE)
@ -40,19 +41,18 @@ static int crypto_chacha20_setkey(struct crypto_tfm *tfm, const u8 *key,
return 0;
}
static int crypto_chacha20_crypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src,
unsigned nbytes)
static int crypto_chacha20_crypt(struct skcipher_request *req)
{
struct chacha20_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct scatterlist *sg = src;
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm);
struct scatterlist *sg = req->src;
unsigned nbytes = req->cryptlen;
u32 iv[4];
int ret;
BUG_ON(src != dst);
BUG_ON(req->src != req->dst);
memcpy(iv, desc->info, sizeof(iv));
memcpy(iv, req->iv, sizeof(iv));
while (1) {
ret = crypto_stream_chacha20_xor_ic(sg_virt(sg),
@ -78,22 +78,21 @@ static int crypto_chacha20_crypt(struct blkcipher_desc *desc,
return 0;
}
static struct crypto_alg alg = {
.cra_name = "chacha20",
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_type = &crypto_blkcipher_type,
.cra_ctxsize = sizeof(struct chacha20_ctx),
.cra_u = {
.blkcipher = {
.setkey = crypto_chacha20_setkey,
.encrypt = crypto_chacha20_crypt,
.decrypt = crypto_chacha20_crypt,
},
},
static struct skcipher_alg alg = {
.base.cra_name = "chacha20",
.base.cra_ctxsize = sizeof(struct chacha20_ctx),
.min_keysize = CHACHA20_KEY_SIZE,
.max_keysize = CHACHA20_KEY_SIZE,
.ivsize = CHACHA20_IV_SIZE,
.chunksize = CHACHA20_BLOCK_SIZE,
.setkey = crypto_chacha20_setkey,
.encrypt = crypto_chacha20_crypt,
.decrypt = crypto_chacha20_crypt,
};
__attribute__((constructor(110)))
static int chacha20_generic_mod_init(void)
{
return crypto_register_alg(&alg);
return crypto_register_alg(&alg.base);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +1,16 @@
/*
* LZ4 Decompressor for Linux kernel
*
* Copyright (C) 2013, LG Electronics, Kyungsik Lee <kyungsik.lee@lge.com>
*
* Based on LZ4 implementation by Yann Collet.
*
* LZ4 - Fast LZ compression algorithm
* Copyright (C) 2011-2012, Yann Collet.
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Copyright (C) 2011 - 2016, Yann Collet.
* BSD 2 - Clause License (http://www.opensource.org/licenses/bsd - license.php)
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@ -31,286 +22,471 @@
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* You can contact the author at :
* - LZ4 homepage : http://www.lz4.org
* - LZ4 source repository : https://github.com/lz4/lz4
*
* You can contact the author at :
* - LZ4 homepage : http://fastcompression.blogspot.com/p/lz4.html
* - LZ4 source repository : http://code.google.com/p/lz4/
* Changed for kernel usage by:
* Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
*/
#ifndef STATIC
#include <linux/module.h>
#include <linux/kernel.h>
#endif
/*-************************************
* Dependencies
**************************************/
#include <linux/lz4.h>
#include "lz4defs.h"
#include <linux/kernel.h>
#include <asm/unaligned.h>
static const int dec32table[8] = {0, 3, 2, 3, 0, 0, 0, 0};
#if LZ4_ARCH64
static const int dec64table[8] = {0, 0, 0, -1, 0, 1, 2, 3};
#else
static const int dec64table[8] = {0, 0, 0, 0, 0, 0, 0, 0};
#endif
static inline size_t get_length(const u8 **ip, size_t length)
{
if (length == LENGTH_LONG) {
size_t len;
do {
length += (len = *(*ip)++);
} while (len == 255);
}
return length;
}
static int lz4_uncompress(const u8 *source, u8 *dest, int osize)
{
const u8 *ip = source;
const u8 *ref;
u8 *op = dest;
u8 * const oend = op + osize;
u8 *cpy;
unsigned token, offset;
ssize_t length;
while (1) {
/* get runlength */
token = *ip++;
length = get_length(&ip, token >> ML_BITS);
/* copy literals */
if (unlikely(op + length > oend - COPYLENGTH)) {
/*
* Error: not enough place for another match
* (min 4) + 5 literals
*/
if (op + length != oend)
goto _output_error;
MEMCPY_ADVANCE(op, ip, length);
break; /* EOF */
}
MEMCPY_ADVANCE_CHUNKED(op, ip, length);
/* get match offset */
offset = GET_LE16_ADVANCE(ip);
ref = op - offset;
/* Error: offset create reference outside destination buffer */
if (unlikely(ref < (u8 *const) dest))
goto _output_error;
/* get match length */
length = get_length(&ip, token & ML_MASK);
length += MINMATCH;
/* copy first STEPSIZE bytes of match: */
if (unlikely(offset < STEPSIZE)) {
MEMCPY_ADVANCE_BYTES(op, ref, 4);
ref -= dec32table[offset];
memcpy(op, ref, 4);
op += STEPSIZE - 4;
ref -= dec64table[offset];
} else {
MEMCPY_ADVANCE(op, ref, STEPSIZE);
}
length -= STEPSIZE;
/*-*****************************
* Decompression functions
*******************************/
/* LZ4_decompress_generic() :
* This generic decompression function cover all use cases.
* It shall be instantiated several times, using different sets of directives
* Note that it is important this generic function is really inlined,
* in order to remove useless branches during compilation optimization.
*/
static FORCE_INLINE int LZ4_decompress_generic(
const char * const source,
char * const dest,
int inputSize,
/*
* Note - length could have been < STEPSIZE; that's ok, length
* will now be negative and we'll just end up rewinding op:
* If endOnInput == endOnInputSize,
* this value is the max size of Output Buffer.
*/
int outputSize,
/* endOnOutputSize, endOnInputSize */
int endOnInput,
/* full, partial */
int partialDecoding,
/* only used if partialDecoding == partial */
int targetOutputSize,
/* noDict, withPrefix64k, usingExtDict */
int dict,
/* == dest when no prefix */
const BYTE * const lowPrefix,
/* only if dict == usingExtDict */
const BYTE * const dictStart,
/* note : = 0 if noDict */
const size_t dictSize
)
{
/* Local Variables */
const BYTE *ip = (const BYTE *) source;
const BYTE * const iend = ip + inputSize;
/* copy rest of match: */
cpy = op + length;
if (cpy > oend - COPYLENGTH) {
/* Error: request to write beyond destination buffer */
if (cpy > oend ||
ref + COPYLENGTH > oend)
BYTE *op = (BYTE *) dest;
BYTE * const oend = op + outputSize;
BYTE *cpy;
BYTE *oexit = op + targetOutputSize;
const BYTE * const lowLimit = lowPrefix - dictSize;
const BYTE * const dictEnd = (const BYTE *)dictStart + dictSize;
const unsigned int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };
const int dec64table[] = { 0, 0, 0, -1, 0, 1, 2, 3 };
const int safeDecode = (endOnInput == endOnInputSize);
const int checkOffset = ((safeDecode) && (dictSize < (int)(64 * KB)));
/* Special cases */
/* targetOutputSize too high => decode everything */
if ((partialDecoding) && (oexit > oend - MFLIMIT))
oexit = oend - MFLIMIT;
/* Empty output buffer */
if ((endOnInput) && (unlikely(outputSize == 0)))
return ((inputSize == 1) && (*ip == 0)) ? 0 : -1;
if ((!endOnInput) && (unlikely(outputSize == 0)))
return (*ip == 0 ? 1 : -1);
/* Main Loop : decode sequences */
while (1) {
size_t length;
const BYTE *match;
size_t offset;
/* get literal length */
unsigned int const token = *ip++;
length = token>>ML_BITS;
if (length == RUN_MASK) {
unsigned int s;
do {
s = *ip++;
length += s;
} while (likely(endOnInput
? ip < iend - RUN_MASK
: 1) & (s == 255));
if ((safeDecode)
&& unlikely(
(size_t)(op + length) < (size_t)(op))) {
/* overflow detection */
goto _output_error;
#if !LZ4_ARCH64
if (op + COPYLENGTH > oend)
}
if ((safeDecode)
&& unlikely(
(size_t)(ip + length) < (size_t)(ip))) {
/* overflow detection */
goto _output_error;
#endif
MEMCPY_ADVANCE_CHUNKED_NOFIXUP(op, ref, oend - COPYLENGTH);
/* op could be > cpy here */
while (op < cpy)
*op++ = *ref++;
op = cpy;
/*
* Check EOF (should never happen, since last 5 bytes
* are supposed to be literals)
*/
if (op == oend)
goto _output_error;
} else {
MEMCPY_ADVANCE_CHUNKED(op, ref, length);
}
}
}
/* end of decoding */
return ip - source;
/* write overflow error detected */
_output_error:
return -1;
}
static inline ssize_t get_length_safe(const u8 **ip, ssize_t length)
{
if (length == 15) {
size_t len;
do {
length += (len = *(*ip)++);
if (unlikely((ssize_t) length < 0))
return -1;
length += len;
} while (len == 255);
}
return length;
}
static int lz4_uncompress_unknownoutputsize(const u8 *source, u8 *dest,
int isize, size_t maxoutputsize)
{
const u8 *ip = source;
const u8 *const iend = ip + isize;
const u8 *ref;
u8 *op = dest;
u8 * const oend = op + maxoutputsize;
u8 *cpy;
unsigned token, offset;
size_t length;
/* Main Loop */
while (ip < iend) {
/* get runlength */
token = *ip++;
length = get_length_safe(&ip, token >> ML_BITS);
if (unlikely((ssize_t) length < 0))
goto _output_error;
/* copy literals */
if ((op + length > oend - COPYLENGTH) ||
(ip + length > iend - COPYLENGTH)) {
cpy = op + length;
if (((endOnInput) && ((cpy > (partialDecoding ? oexit : oend - MFLIMIT))
|| (ip + length > iend - (2 + 1 + LASTLITERALS))))
|| ((!endOnInput) && (cpy > oend - WILDCOPYLENGTH))) {
if (partialDecoding) {
if (cpy > oend) {
/*
* Error :
* write attempt beyond end of output buffer
*/
goto _output_error;
}
if ((endOnInput)
&& (ip + length > iend)) {
/*
* Error :
* read attempt beyond
* end of input buffer
*/
goto _output_error;
}
} else {
if ((!endOnInput)
&& (cpy != oend)) {
/*
* Error :
* block decoding must
* stop exactly there
*/
goto _output_error;
}
if ((endOnInput)
&& ((ip + length != iend)
|| (cpy > oend))) {
/*
* Error :
* input must be consumed
*/
goto _output_error;
}
}
if (op + length > oend)
goto _output_error;/* writes beyond buffer */
if (ip + length != iend)
goto _output_error;/*
* Error: LZ4 format requires
* to consume all input
* at this stage
*/
MEMCPY_ADVANCE(op, ip, length);
break;/* Necessarily EOF, due to parsing restrictions */
memcpy(op, ip, length);
ip += length;
op += length;
/* Necessarily EOF, due to parsing restrictions */
break;
}
MEMCPY_ADVANCE_CHUNKED(op, ip, length);
/* get match offset */
offset = GET_LE16_ADVANCE(ip);
ref = op - offset;
LZ4_wildCopy(op, ip, cpy);
ip += length;
op = cpy;
/* Error: offset create reference outside destination buffer */
if (ref < (u8 * const) dest)
/* get offset */
offset = LZ4_readLE16(ip);
ip += 2;
match = op - offset;
if ((checkOffset) && (unlikely(match < lowLimit))) {
/* Error : offset outside buffers */
goto _output_error;
}
/* get match length */
length = get_length_safe(&ip, token & ML_MASK);
if (unlikely((ssize_t) length < 0))
goto _output_error;
/* costs ~1%; silence an msan warning when offset == 0 */
LZ4_write32(op, (U32)offset);
/* get matchlength */
length = token & ML_MASK;
if (length == ML_MASK) {
unsigned int s;
do {
s = *ip++;
if ((endOnInput) && (ip > iend - LASTLITERALS))
goto _output_error;
length += s;
} while (s == 255);
if ((safeDecode)
&& unlikely(
(size_t)(op + length) < (size_t)op)) {
/* overflow detection */
goto _output_error;
}
}
length += MINMATCH;
/* copy first STEPSIZE bytes of match: */
if (unlikely(offset < STEPSIZE)) {
MEMCPY_ADVANCE_BYTES(op, ref, 4);
ref -= dec32table[offset];
/* check external dictionary */
if ((dict == usingExtDict) && (match < lowPrefix)) {
if (unlikely(op + length > oend - LASTLITERALS)) {
/* doesn't respect parsing restriction */
goto _output_error;
}
memcpy(op, ref, 4);
op += STEPSIZE - 4;
ref -= dec64table[offset];
} else {
MEMCPY_ADVANCE(op, ref, STEPSIZE);
if (length <= (size_t)(lowPrefix - match)) {
/*
* match can be copied as a single segment
* from external dictionary
*/
memmove(op, dictEnd - (lowPrefix - match),
length);
op += length;
} else {
/*
* match encompass external
* dictionary and current block
*/
size_t const copySize = (size_t)(lowPrefix - match);
size_t const restSize = length - copySize;
memcpy(op, dictEnd - copySize, copySize);
op += copySize;
if (restSize > (size_t)(op - lowPrefix)) {
/* overlap copy */
BYTE * const endOfMatch = op + restSize;
const BYTE *copyFrom = lowPrefix;
while (op < endOfMatch)
*op++ = *copyFrom++;
} else {
memcpy(op, lowPrefix, restSize);
op += restSize;
}
}
continue;
}
length -= STEPSIZE;
/* copy rest of match: */
/* copy match within block */
cpy = op + length;
if (cpy > oend - COPYLENGTH) {
/* Error: request to write beyond destination buffer */
if (cpy > oend ||
ref + COPYLENGTH > oend)
goto _output_error;
#if !LZ4_ARCH64
if (op + COPYLENGTH > oend)
goto _output_error;
#endif
MEMCPY_ADVANCE_CHUNKED_NOFIXUP(op, ref, oend - COPYLENGTH);
while (op < cpy)
*op++ = *ref++;
op = cpy;
/*
* Check EOF (should never happen, since last 5 bytes
* are supposed to be literals)
*/
if (op == oend)
goto _output_error;
} else {
MEMCPY_ADVANCE_CHUNKED(op, ref, length);
}
}
/* end of decoding */
return op - dest;
/* write overflow error detected */
if (unlikely(offset < 8)) {
const int dec64 = dec64table[offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[offset];
memcpy(op + 4, match, 4);
match -= dec64;
} else {
LZ4_copy8(op, match);
match += 8;
}
op += 8;
if (unlikely(cpy > oend - 12)) {
BYTE * const oCopyLimit = oend - (WILDCOPYLENGTH - 1);
if (cpy > oend - LASTLITERALS) {
/*
* Error : last LASTLITERALS bytes
* must be literals (uncompressed)
*/
goto _output_error;
}
if (op < oCopyLimit) {
LZ4_wildCopy(op, match, oCopyLimit);
match += oCopyLimit - op;
op = oCopyLimit;
}
while (op < cpy)
*op++ = *match++;
} else {
LZ4_copy8(op, match);
if (length > 16)
LZ4_wildCopy(op + 8, match + 8, cpy);
}
op = cpy; /* correction */
}
/* end of decoding */
if (endOnInput) {
/* Nb of output bytes decoded */
return (int) (((char *)op) - dest);
} else {
/* Nb of input bytes read */
return (int) (((const char *)ip) - source);
}
/* Overflow error detected */
_output_error:
return -1;
}
int lz4_decompress(const unsigned char *src, size_t *src_len,
unsigned char *dest, size_t actual_dest_len)
int LZ4_decompress_safe(const char *source, char *dest,
int compressedSize, int maxDecompressedSize)
{
int ret = -1;
int input_len = 0;
input_len = lz4_uncompress(src, dest, actual_dest_len);
if (input_len < 0)
goto exit_0;
*src_len = input_len;
return 0;
exit_0:
return ret;
return LZ4_decompress_generic(source, dest, compressedSize,
maxDecompressedSize, endOnInputSize, full, 0,
noDict, (BYTE *)dest, NULL, 0);
}
#ifndef STATIC
EXPORT_SYMBOL(lz4_decompress);
#endif
int lz4_decompress_unknownoutputsize(const unsigned char *src, size_t src_len,
unsigned char *dest, size_t *dest_len)
int LZ4_decompress_safe_partial(const char *source, char *dest,
int compressedSize, int targetOutputSize, int maxDecompressedSize)
{
int ret = -1;
int out_len = 0;
out_len = lz4_uncompress_unknownoutputsize(src, dest, src_len,
*dest_len);
if (out_len < 0)
goto exit_0;
*dest_len = out_len;
return 0;
exit_0:
return ret;
return LZ4_decompress_generic(source, dest, compressedSize,
maxDecompressedSize, endOnInputSize, partial,
targetOutputSize, noDict, (BYTE *)dest, NULL, 0);
}
#ifndef STATIC
EXPORT_SYMBOL(lz4_decompress_unknownoutputsize);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("LZ4 Decompressor");
#endif
int LZ4_decompress_fast(const char *source, char *dest, int originalSize)
{
return LZ4_decompress_generic(source, dest, 0, originalSize,
endOnOutputSize, full, 0, withPrefix64k,
(BYTE *)(dest - 64 * KB), NULL, 64 * KB);
}
int LZ4_setStreamDecode(LZ4_streamDecode_t *LZ4_streamDecode,
const char *dictionary, int dictSize)
{
LZ4_streamDecode_t_internal *lz4sd = (LZ4_streamDecode_t_internal *) LZ4_streamDecode;
lz4sd->prefixSize = (size_t) dictSize;
lz4sd->prefixEnd = (const BYTE *) dictionary + dictSize;
lz4sd->externalDict = NULL;
lz4sd->extDictSize = 0;
return 1;
}
/*
* *_continue() :
* These decoding functions allow decompression of multiple blocks
* in "streaming" mode.
* Previously decoded blocks must still be available at the memory
* position where they were decoded.
* If it's not possible, save the relevant part of
* decoded data into a safe buffer,
* and indicate where it stands using LZ4_setStreamDecode()
*/
int LZ4_decompress_safe_continue(LZ4_streamDecode_t *LZ4_streamDecode,
const char *source, char *dest, int compressedSize, int maxOutputSize)
{
LZ4_streamDecode_t_internal *lz4sd = &LZ4_streamDecode->internal_donotuse;
int result;
if (lz4sd->prefixEnd == (BYTE *)dest) {
result = LZ4_decompress_generic(source, dest,
compressedSize,
maxOutputSize,
endOnInputSize, full, 0,
usingExtDict, lz4sd->prefixEnd - lz4sd->prefixSize,
lz4sd->externalDict,
lz4sd->extDictSize);
if (result <= 0)
return result;
lz4sd->prefixSize += result;
lz4sd->prefixEnd += result;
} else {
lz4sd->extDictSize = lz4sd->prefixSize;
lz4sd->externalDict = lz4sd->prefixEnd - lz4sd->extDictSize;
result = LZ4_decompress_generic(source, dest,
compressedSize, maxOutputSize,
endOnInputSize, full, 0,
usingExtDict, (BYTE *)dest,
lz4sd->externalDict, lz4sd->extDictSize);
if (result <= 0)
return result;
lz4sd->prefixSize = result;
lz4sd->prefixEnd = (BYTE *)dest + result;
}
return result;
}
int LZ4_decompress_fast_continue(LZ4_streamDecode_t *LZ4_streamDecode,
const char *source, char *dest, int originalSize)
{
LZ4_streamDecode_t_internal *lz4sd = &LZ4_streamDecode->internal_donotuse;
int result;
if (lz4sd->prefixEnd == (BYTE *)dest) {
result = LZ4_decompress_generic(source, dest, 0, originalSize,
endOnOutputSize, full, 0,
usingExtDict,
lz4sd->prefixEnd - lz4sd->prefixSize,
lz4sd->externalDict, lz4sd->extDictSize);
if (result <= 0)
return result;
lz4sd->prefixSize += originalSize;
lz4sd->prefixEnd += originalSize;
} else {
lz4sd->extDictSize = lz4sd->prefixSize;
lz4sd->externalDict = lz4sd->prefixEnd - lz4sd->extDictSize;
result = LZ4_decompress_generic(source, dest, 0, originalSize,
endOnOutputSize, full, 0,
usingExtDict, (BYTE *)dest,
lz4sd->externalDict, lz4sd->extDictSize);
if (result <= 0)
return result;
lz4sd->prefixSize = originalSize;
lz4sd->prefixEnd = (BYTE *)dest + originalSize;
}
return result;
}
/*
* Advanced decoding functions :
* *_usingDict() :
* These decoding functions work the same as "_continue" ones,
* the dictionary must be explicitly provided within parameters
*/
static FORCE_INLINE int LZ4_decompress_usingDict_generic(const char *source,
char *dest, int compressedSize, int maxOutputSize, int safe,
const char *dictStart, int dictSize)
{
if (dictSize == 0)
return LZ4_decompress_generic(source, dest,
compressedSize, maxOutputSize, safe, full, 0,
noDict, (BYTE *)dest, NULL, 0);
if (dictStart + dictSize == dest) {
if (dictSize >= (int)(64 * KB - 1))
return LZ4_decompress_generic(source, dest,
compressedSize, maxOutputSize, safe, full, 0,
withPrefix64k, (BYTE *)dest - 64 * KB, NULL, 0);
return LZ4_decompress_generic(source, dest, compressedSize,
maxOutputSize, safe, full, 0, noDict,
(BYTE *)dest - dictSize, NULL, 0);
}
return LZ4_decompress_generic(source, dest, compressedSize,
maxOutputSize, safe, full, 0, usingExtDict,
(BYTE *)dest, (const BYTE *)dictStart, dictSize);
}
int LZ4_decompress_safe_usingDict(const char *source, char *dest,
int compressedSize, int maxOutputSize,
const char *dictStart, int dictSize)
{
return LZ4_decompress_usingDict_generic(source, dest,
compressedSize, maxOutputSize, 1, dictStart, dictSize);
}
int LZ4_decompress_fast_usingDict(const char *source, char *dest,
int originalSize, const char *dictStart, int dictSize)
{
return LZ4_decompress_usingDict_generic(source, dest, 0,
originalSize, 0, dictStart, dictSize);
}

View File

@ -1,181 +1,228 @@
/*
* lz4defs.h -- architecture specific defines
*
* Copyright (C) 2013, LG Electronics, Kyungsik Lee <kyungsik.lee@lge.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __LZ4DEFS_H__
#define __LZ4DEFS_H__
/*
* Detects 64 bits mode
* lz4defs.h -- common and architecture specific defines for the kernel usage
* LZ4 - Fast LZ compression algorithm
* Copyright (C) 2011-2016, Yann Collet.
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* You can contact the author at :
* - LZ4 homepage : http://www.lz4.org
* - LZ4 source repository : https://github.com/lz4/lz4
*
* Changed for kernel usage by:
* Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
*/
#if __SIZEOF_POINTER__ == 8
#include <asm/unaligned.h>
#include <linux/bitops.h>
#include <linux/string.h> /* memset, memcpy */
#define FORCE_INLINE __always_inline
/*-************************************
* Basic Types
**************************************/
#include <linux/types.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef uintptr_t uptrval;
/*-************************************
* Architecture specifics
**************************************/
#if defined(CONFIG_64BIT)
#define LZ4_ARCH64 1
#else
#define LZ4_ARCH64 0
#endif
#include <linux/string.h>
#include <asm/unaligned.h>
#if defined(__LITTLE_ENDIAN)
#define LZ4_LITTLE_ENDIAN 1
#else
#define LZ4_LITTLE_ENDIAN 0
#endif
#define A32(_p) get_unaligned((u32 *) (_p))
#define A16(_p) get_unaligned((u16 *) (_p))
/*-************************************
* Constants
**************************************/
#define MINMATCH 4
#define GET_LE16_ADVANCE(_src) \
({ \
u16 _r = get_unaligned_le16(_src); \
(_src) += 2; \
_r; \
})
#define WILDCOPYLENGTH 8
#define LASTLITERALS 5
#define MFLIMIT (WILDCOPYLENGTH + MINMATCH)
#define PUT_LE16_ADVANCE(_dst, _v) \
do { \
put_unaligned_le16((_v), (_dst)); \
(_dst) += 2; \
} while (0)
/* Increase this value ==> compression run slower on incompressible data */
#define LZ4_SKIPTRIGGER 6
#define LENGTH_LONG 15
#define COPYLENGTH 8
#define ML_BITS 4
#define ML_MASK ((1U << ML_BITS) - 1)
#define RUN_BITS (8 - ML_BITS)
#define RUN_MASK ((1U << RUN_BITS) - 1)
#define MEMORY_USAGE 14
#define MINMATCH 4
#define SKIPSTRENGTH 6
#define LASTLITERALS 5
#define MFLIMIT (COPYLENGTH + MINMATCH)
#define MINLENGTH (MFLIMIT + 1)
#define MAXD_LOG 16
#define MAXD (1 << MAXD_LOG)
#define MAXD_MASK (u32)(MAXD - 1)
#define MAX_DISTANCE (MAXD - 1)
#define HASH_LOG (MAXD_LOG - 1)
#define HASHTABLESIZE (1 << HASH_LOG)
#define MAX_NB_ATTEMPTS 256
#define OPTIMAL_ML (int)((ML_MASK-1)+MINMATCH)
#define LZ4_64KLIMIT ((1<<16) + (MFLIMIT - 1))
#define HASH_UNIT sizeof(size_t)
#define __HASH_VALUE(p, bits) \
(((A32(p)) * 2654435761U) >> (32 - (bits)))
#define KB (1 << 10)
#define MB (1 << 20)
#define GB (1U << 30)
#define HASH_VALUE(p) __HASH_VALUE(p, HASH_LOG)
#define MAXD_LOG 16
#define MAX_DISTANCE ((1 << MAXD_LOG) - 1)
#define STEPSIZE sizeof(size_t)
#define MEMCPY_ADVANCE(_dst, _src, length) \
do { \
typeof(length) _length = (length); \
memcpy(_dst, _src, _length); \
_src += _length; \
_dst += _length; \
} while (0)
#define ML_BITS 4
#define ML_MASK ((1U << ML_BITS) - 1)
#define RUN_BITS (8 - ML_BITS)
#define RUN_MASK ((1U << RUN_BITS) - 1)
#define MEMCPY_ADVANCE_BYTES(_dst, _src, _length) \
do { \
const u8 *_end = (_src) + (_length); \
while ((_src) < _end) \
*_dst++ = *_src++; \
} while (0)
/*-************************************
* Reading and writing into memory
**************************************/
static FORCE_INLINE U16 LZ4_read16(const void *ptr)
{
return get_unaligned((const U16 *)ptr);
}
#define STEPSIZE __SIZEOF_LONG__
static FORCE_INLINE U32 LZ4_read32(const void *ptr)
{
return get_unaligned((const U32 *)ptr);
}
#define LZ4_COPYPACKET(_src, _dst) \
do { \
MEMCPY_ADVANCE(_dst, _src, STEPSIZE); \
MEMCPY_ADVANCE(_dst, _src, COPYLENGTH - STEPSIZE);\
} while (0)
static FORCE_INLINE size_t LZ4_read_ARCH(const void *ptr)
{
return get_unaligned((const size_t *)ptr);
}
static FORCE_INLINE void LZ4_write16(void *memPtr, U16 value)
{
put_unaligned(value, (U16 *)memPtr);
}
static FORCE_INLINE void LZ4_write32(void *memPtr, U32 value)
{
put_unaligned(value, (U32 *)memPtr);
}
static FORCE_INLINE U16 LZ4_readLE16(const void *memPtr)
{
return get_unaligned_le16(memPtr);
}
static FORCE_INLINE void LZ4_writeLE16(void *memPtr, U16 value)
{
return put_unaligned_le16(value, memPtr);
}
static FORCE_INLINE void LZ4_copy8(void *dst, const void *src)
{
#if LZ4_ARCH64
U64 a = get_unaligned((const U64 *)src);
put_unaligned(a, (U64 *)dst);
#else
U32 a = get_unaligned((const U32 *)src);
U32 b = get_unaligned((const U32 *)src + 1);
put_unaligned(a, (U32 *)dst);
put_unaligned(b, (U32 *)dst + 1);
#endif
}
/*
* Equivalent to MEMCPY_ADVANCE - except may overrun @_dst and @_src by
* COPYLENGTH:
*
* Note: src and dst may overlap (with src < dst) - we must do the copy in
* STEPSIZE chunks for correctness
*
* Note also: length may be negative - we must not call memcpy if length is
* negative, but still adjust dst and src by length
* customized variant of memcpy,
* which can overwrite up to 7 bytes beyond dstEnd
*/
#define MEMCPY_ADVANCE_CHUNKED(_dst, _src, _length) \
do { \
u8 *_end = (_dst) + (_length); \
while ((_dst) < _end) \
LZ4_COPYPACKET(_src, _dst); \
_src -= (_dst) - _end; \
_dst = _end; \
} while (0)
#define MEMCPY_ADVANCE_CHUNKED_NOFIXUP(_dst, _src, _end)\
do { \
while ((_dst) < (_end)) \
LZ4_COPYPACKET((_src), (_dst)); \
} while (0)
struct lz4_hashtable {
#if LZ4_ARCH64
const u8 * const base;
u32 *table;
#else
const int base;
const u8 *table;
#endif
};
#if LZ4_ARCH64
#define HTYPE u32
#else /* 32-bit */
#define HTYPE const u8*
#endif
#ifdef __BIG_ENDIAN
#define LZ4_NBCOMMONBYTES(val) (__builtin_clzl(val) >> 3)
#else
#define LZ4_NBCOMMONBYTES(val) (__builtin_ctzl(val) >> 3)
#endif
static inline unsigned common_length(const u8 *l, const u8 *r,
const u8 *const l_end)
static FORCE_INLINE void LZ4_wildCopy(void *dstPtr,
const void *srcPtr, void *dstEnd)
{
const u8 *l_start = l;
BYTE *d = (BYTE *)dstPtr;
const BYTE *s = (const BYTE *)srcPtr;
BYTE *const e = (BYTE *)dstEnd;
while (likely(l <= l_end - sizeof(long))) {
unsigned long diff =
get_unaligned((unsigned long *) l) ^
get_unaligned((unsigned long *) r);
if (diff)
return l + LZ4_NBCOMMONBYTES(diff) - l_start;
l += sizeof(long);
r += sizeof(long);
}
#if LZ4_ARCH64
if (l <= l_end - 4 && A32(r) == A32(l)) {
l += 4;
r += 4;
}
#endif
if (l <= l_end - 2 && A16(r) == A16(l)) {
l += 2;
r += 2;
}
if (l <= l_end - 1 && *r == *l) {
l++;
r++;
}
return l - l_start;
do {
LZ4_copy8(d, s);
d += 8;
s += 8;
} while (d < e);
}
static inline unsigned encode_length(u8 **op, unsigned length)
static FORCE_INLINE unsigned int LZ4_NbCommonBytes(register size_t val)
{
if (length >= LENGTH_LONG) {
length -= LENGTH_LONG;
for (; length > 254 ; length -= 255)
*(*op)++ = 255;
*(*op)++ = length;
return LENGTH_LONG;
} else
return length;
#if LZ4_LITTLE_ENDIAN
return __ffs(val) >> 3;
#else
return (BITS_PER_LONG - 1 - __fls(val)) >> 3;
#endif
}
static FORCE_INLINE unsigned int LZ4_count(
const BYTE *pIn,
const BYTE *pMatch,
const BYTE *pInLimit)
{
const BYTE *const pStart = pIn;
while (likely(pIn < pInLimit - (STEPSIZE - 1))) {
size_t const diff = LZ4_read_ARCH(pMatch) ^ LZ4_read_ARCH(pIn);
if (!diff) {
pIn += STEPSIZE;
pMatch += STEPSIZE;
continue;
}
pIn += LZ4_NbCommonBytes(diff);
return (unsigned int)(pIn - pStart);
}
#if LZ4_ARCH64
if ((pIn < (pInLimit - 3))
&& (LZ4_read32(pMatch) == LZ4_read32(pIn))) {
pIn += 4;
pMatch += 4;
}
#endif
if ((pIn < (pInLimit - 1))
&& (LZ4_read16(pMatch) == LZ4_read16(pIn))) {
pIn += 2;
pMatch += 2;
}
if ((pIn < pInLimit) && (*pMatch == *pIn))
pIn++;
return (unsigned int)(pIn - pStart);
}
typedef enum { noLimit = 0, limitedOutput = 1 } limitedOutput_directive;
typedef enum { byPtr, byU32, byU16 } tableType_t;
typedef enum { noDict = 0, withPrefix64k, usingExtDict } dict_directive;
typedef enum { noDictIssue = 0, dictSmall } dictIssue_directive;
typedef enum { endOnOutputSize = 0, endOnInputSize = 1 } endCondition_directive;
typedef enum { full = 0, partial = 1 } earlyEnd_directive;
#endif