Update bcachefs sources to 115e433659fe bcachefs: Fix double-free of journal_keys key

This commit is contained in:
Kent Overstreet 2025-09-23 17:29:34 -04:00
parent 4265385fb5
commit feb7049a58
17 changed files with 599 additions and 49 deletions

View File

@ -1 +1 @@
0c67e96b72019e02c92d2aed58de4c8b98e07d16
115e433659fea5a1fea1dec5a3de77312cf2da8c

View File

@ -99,9 +99,12 @@ bcachefs-y := \
util.o \
varint.o \
xattr.o \
vendor/closure.o
vendor/closure.o \
vendor/min_heap.o
ifndef CONFIG_BCACHEFS_DKMS
obj-$(CONFIG_MEAN_AND_VARIANCE_UNIT_TEST) += mean_and_variance_test.o
endif
# Silence "note: xyz changed in GCC X.X" messages
subdir-ccflags-y += $(call cc-disable-warning, psabi)

View File

@ -57,7 +57,7 @@ void bch2_acl_to_text(struct printbuf *out, const void *value, size_t size)
}
}
#ifdef CONFIG_BCACHEFS_POSIX_ACL
#ifndef NO_BCACHEFS_FS
#include "fs.h"
@ -437,4 +437,4 @@ err:
return ret;
}
#endif /* CONFIG_BCACHEFS_POSIX_ACL */
#endif /* NO_BCACHEFS_FS */

View File

@ -26,7 +26,7 @@ typedef struct {
void bch2_acl_to_text(struct printbuf *, const void *, size_t);
#ifdef CONFIG_BCACHEFS_POSIX_ACL
#ifndef NO_BCACHEFS_FS
struct posix_acl *bch2_get_acl(struct inode *, int, bool);
@ -55,6 +55,6 @@ static inline int bch2_acl_chmod(struct btree_trans *trans, subvol_inum inum,
return 0;
}
#endif /* CONFIG_BCACHEFS_POSIX_ACL */
#endif /* NO_BCACHEFS_FS */
#endif /* _BCACHEFS_ACL_H */

View File

@ -838,8 +838,10 @@ void bch2_shoot_down_journal_keys(struct bch_fs *c, enum btree_id btree,
bpos_ge(k->k.p, start) &&
bpos_le(k->k.p, end)))
keys->data[dst++] = *i;
else if (i->allocated)
else if (i->allocated) {
kfree(i->allocated_k);
i->allocated_k = NULL;
}
}
keys->nr = keys->gap = dst;
}

View File

@ -12,7 +12,6 @@
#include "recovery_passes.h"
#include <linux/kthread.h>
#include <linux/min_heap.h>
#include <linux/sched/sysctl.h>
#include <linux/sort.h>

View File

@ -2,7 +2,7 @@
#ifndef _BCACHEFS_CLOCK_TYPES_H
#define _BCACHEFS_CLOCK_TYPES_H
#include "util.h"
#include "vendor/min_heap.h"
#define NR_IO_TIMERS (BCH_SB_MEMBERS_MAX * 3)

View File

@ -91,8 +91,10 @@ bool __bkey_nocow_lock(struct bch_fs *c, struct moving_context *ctxt, struct bke
move_ctxt_wait_event(ctxt,
(locked = bch2_bucket_nocow_trylock(&c->nocow_locks, bucket, 0)) ||
list_empty(&ctxt->ios));
if (!locked)
if (!locked) {
bch2_trans_unlock(ctxt->trans);
bch2_bucket_nocow_lock(&c->nocow_locks, bucket, 0);
}
}
return true;
}

View File

@ -188,6 +188,11 @@
x(BCH_ERR_recovery_will_run, recovery_pass_will_run) \
x(0, data_update_done) \
x(0, bkey_was_deleted) \
x(0, bucket_not_moveable) \
x(BCH_ERR_bucket_not_moveable, bucket_not_moveable_dev_not_rw) \
x(BCH_ERR_bucket_not_moveable, bucket_not_moveable_bucket_open) \
x(BCH_ERR_bucket_not_moveable, bucket_not_moveable_bp_mismatch) \
x(BCH_ERR_bucket_not_moveable, bucket_not_moveable_lru_race) \
x(BCH_ERR_data_update_done, data_update_done_would_block) \
x(BCH_ERR_data_update_done, data_update_done_unwritten) \
x(BCH_ERR_data_update_done, data_update_done_no_writes_needed) \

View File

@ -541,11 +541,9 @@ __bch2_create(struct mnt_idmap *idmap,
* preallocate acls + vfs inode before btree transaction, so that
* nothing can fail after the transaction succeeds:
*/
#ifdef CONFIG_BCACHEFS_POSIX_ACL
ret = posix_acl_create(&dir->v, &mode, &default_acl, &acl);
if (ret)
return ERR_PTR(ret);
#endif
inode = __bch2_new_inode(c, GFP_NOFS);
if (unlikely(!inode)) {
@ -1751,10 +1749,8 @@ static const struct inode_operations bch_file_inode_operations = {
.setattr = bch2_setattr,
.fiemap = bch2_fiemap,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
.fileattr_get = bch2_fileattr_get,
.fileattr_set = bch2_fileattr_set,
};
@ -1773,10 +1769,8 @@ static const struct inode_operations bch_dir_inode_operations = {
.setattr = bch2_setattr,
.tmpfile = bch2_tmpfile,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
.fileattr_get = bch2_fileattr_get,
.fileattr_set = bch2_fileattr_set,
};
@ -1797,10 +1791,8 @@ static const struct inode_operations bch_symlink_inode_operations = {
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
.fileattr_get = bch2_fileattr_get,
.fileattr_set = bch2_fileattr_set,
};
@ -1809,10 +1801,8 @@ static const struct inode_operations bch_special_inode_operations = {
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
.fileattr_get = bch2_fileattr_get,
.fileattr_set = bch2_fileattr_set,
};
@ -2546,10 +2536,8 @@ got_sb:
c->dev = sb->s_dev;
#ifdef CONFIG_BCACHEFS_POSIX_ACL
if (c->opts.acl)
sb->s_flags |= SB_POSIXACL;
#endif
sb->s_shrink->seeks = 0;

View File

@ -62,33 +62,51 @@ static int bch2_bucket_is_movable(struct btree_trans *trans,
{
struct bch_fs *c = trans->c;
if (bch2_bucket_is_open(c, b->k.bucket.inode, b->k.bucket.offset))
/*
* Valid bucket?
*
* XXX: we should kill the LRU entry here if it's not
*/
CLASS(bch2_dev_bucket_tryget, ca)(c, b->k.bucket);
if (!ca)
return 0;
if (ca->mi.state != BCH_MEMBER_STATE_rw ||
!bch2_dev_is_online(ca)) {
bch_err_throw(c, bucket_not_moveable_dev_not_rw);
return 0;
}
/* Bucket still being written? */
if (bch2_bucket_is_open(c, b->k.bucket.inode, b->k.bucket.offset)) {
bch_err_throw(c, bucket_not_moveable_bucket_open);
return 0;
}
/* We won't be able to evacuate it if there's missing backpointers */
if (bch2_bucket_bitmap_test(&ca->bucket_backpointer_mismatch, b->k.bucket.offset)) {
bch_err_throw(c, bucket_not_moveable_bp_mismatch);
return 0;
}
CLASS(btree_iter, iter)(trans, BTREE_ID_alloc, b->k.bucket, BTREE_ITER_cached);
struct bkey_s_c k = bch2_btree_iter_peek_slot(&iter);
int ret = bkey_err(k);
if (ret)
return ret;
CLASS(bch2_dev_bucket_tryget, ca)(c, k.k->p);
if (!ca)
return 0;
if (bch2_bucket_bitmap_test(&ca->bucket_backpointer_mismatch, b->k.bucket.offset))
return 0;
if (ca->mi.state != BCH_MEMBER_STATE_rw ||
!bch2_dev_is_online(ca))
return 0;
struct bch_alloc_v4 _a;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &_a);
b->k.gen = a->gen;
b->sectors = bch2_bucket_sectors_dirty(*a);
u64 lru_idx = alloc_lru_idx_fragmentation(*a, ca);
return lru_idx && lru_idx <= time;
if (!lru_idx || lru_idx > time) {
bch_err_throw(c, bucket_not_moveable_lru_race);
return 0;
}
return true;
}
static void move_bucket_free(struct buckets_in_flight *list,

View File

@ -980,7 +980,7 @@ int bch2_check_inode_has_case_insensitive(struct btree_trans *trans,
ret = bch2_inum_snapshot_to_path(trans, inode->bi_inum, inode->bi_snapshot,
snapshot_overwrites, &buf);
if (ret)
return ret;
goto out;
if (fsck_err(trans, inode_has_case_insensitive_not_set, "%s", buf.buf)) {
inode->bi_flags |= BCH_INODE_has_case_insensitive;
@ -999,14 +999,14 @@ int bch2_check_inode_has_case_insensitive(struct btree_trans *trans,
if (dir.bi_parent_subvol) {
ret = bch2_subvolume_get_snapshot(trans, dir.bi_parent_subvol, &snapshot);
if (ret)
return ret;
goto out;
snapshot_overwrites = NULL;
}
ret = bch2_inode_find_by_inum_snapshot(trans, dir.bi_dir, snapshot, &dir, 0);
if (ret)
return ret;
goto out;
if (!(dir.bi_flags & BCH_INODE_has_case_insensitive)) {
prt_printf(&buf, "parent of casefolded dir with has_case_insensitive not set\n");
@ -1014,13 +1014,13 @@ int bch2_check_inode_has_case_insensitive(struct btree_trans *trans,
ret = bch2_inum_snapshot_to_path(trans, dir.bi_inum, dir.bi_snapshot,
snapshot_overwrites, &buf);
if (ret)
return ret;
goto out;
if (fsck_err(trans, inode_parent_has_case_insensitive_not_set, "%s", buf.buf)) {
dir.bi_flags |= BCH_INODE_has_case_insensitive;
ret = __bch2_fsck_write_inode(trans, &dir);
if (ret)
return ret;
goto out;
}
}
@ -1033,13 +1033,13 @@ int bch2_check_inode_has_case_insensitive(struct btree_trans *trans,
}
out:
fsck_err:
bch_err_fn(trans->c, ret);
if (ret)
return ret;
if (repairing_parents) {
if (repairing_parents)
return bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc) ?:
bch_err_throw(trans->c, transaction_restart_nested);
}
return 0;
}

View File

@ -649,10 +649,6 @@ int bch2_parse_one_mount_opt(struct bch_fs *c, struct bch_opts *opts,
if (!(bch2_opt_table[id].flags & OPT_MOUNT))
return -BCH_ERR_option_name;
if (id == Opt_acl &&
!IS_ENABLED(CONFIG_BCACHEFS_POSIX_ACL))
return -BCH_ERR_option_name;
if ((id == Opt_usrquota ||
id == Opt_grpquota) &&
!IS_ENABLED(CONFIG_BCACHEFS_QUOTA))

View File

@ -70,10 +70,12 @@ static void bch2_sb_errors_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field_error_entry *sorted = kvmalloc_array(nr, sizeof(*sorted), GFP_KERNEL);
if (sorted)
if (sorted) {
memcpy(sorted, e->entries, nr * sizeof(e->entries[0]));
sort(sorted, nr, sizeof(*sorted), error_entry_cmp, NULL);
else
} else {
sorted = e->entries;
}
if (out->nr_tabstops <= 1)
printbuf_tabstop_push(out, 16);

View File

@ -7,7 +7,6 @@
#include <linux/errno.h>
#include <linux/freezer.h>
#include <linux/kernel.h>
#include <linux/min_heap.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/log2.h>

59
libbcachefs/vendor/min_heap.c vendored Normal file
View File

@ -0,0 +1,59 @@
// SPDX-License-Identifier: GPL-2.0
#include "min_heap.h"
void __bch2_min_heap_init(min_heap_char *heap, void *data, size_t size)
{
__min_heap_init_inline(heap, data, size);
}
void *__bch2_min_heap_peek(struct min_heap_char *heap)
{
return __min_heap_peek_inline(heap);
}
bool __bch2_min_heap_full(min_heap_char *heap)
{
return __min_heap_full_inline(heap);
}
void __bch2_min_heap_sift_down(min_heap_char *heap, size_t pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
__min_heap_sift_down_inline(heap, pos, elem_size, func, args);
}
void __bch2_min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
__min_heap_sift_up_inline(heap, elem_size, idx, func, args);
}
void __bch2_min_heapify_all(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
__min_heapify_all_inline(heap, elem_size, func, args);
}
bool __bch2_min_heap_pop(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
return __min_heap_pop_inline(heap, elem_size, func, args);
}
void __bch2_min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
__min_heap_pop_push_inline(heap, element, elem_size, func, args);
}
bool __bch2_min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
return __min_heap_push_inline(heap, element, elem_size, func, args);
}
bool __bch2_min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
return __min_heap_del_inline(heap, elem_size, idx, func, args);
}

477
libbcachefs/vendor/min_heap.h vendored Normal file
View File

@ -0,0 +1,477 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MIN_HEAP_H
#define _LINUX_MIN_HEAP_H
#include <linux/bug.h>
#include <linux/string.h>
#include <linux/types.h>
/*
* The Min Heap API provides utilities for managing min-heaps, a binary tree
* structure where each node's value is less than or equal to its children's
* values, ensuring the smallest element is at the root.
*
* Users should avoid directly calling functions prefixed with __min_heap_*().
* Instead, use the provided macro wrappers.
*
* For further details and examples, refer to Documentation/core-api/min_heap.rst.
*/
/**
* Data structure to hold a min-heap.
* @nr: Number of elements currently in the heap.
* @size: Maximum number of elements that can be held in current storage.
* @data: Pointer to the start of array holding the heap elements.
* @preallocated: Start of the static preallocated array holding the heap elements.
*/
#define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \
struct _name { \
size_t nr; \
size_t size; \
_type *data; \
_type preallocated[_nr]; \
}
#define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
#define __minheap_cast(_heap) (typeof((_heap)->data[0]) *)
#define __minheap_obj_size(_heap) sizeof((_heap)->data[0])
/**
* struct min_heap_callbacks - Data/functions to customise the min_heap.
* @less: Partial order function for this heap.
* @swp: Swap elements function.
*/
struct min_heap_callbacks {
bool (*less)(const void *lhs, const void *rhs, void *args);
void (*swp)(void *lhs, void *rhs, void *args);
};
/**
* is_aligned - is this pointer & size okay for word-wide copying?
* @base: pointer to data
* @size: size of each element
* @align: required alignment (typically 4 or 8)
*
* Returns true if elements can be copied using word loads and stores.
* The size must be a multiple of the alignment, and the base address must
* be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
*
* For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
* to "if ((a | b) & mask)", so we do that by hand.
*/
__attribute_const__ __always_inline
static bool is_aligned(const void *base, size_t size, unsigned char align)
{
unsigned char lsbits = (unsigned char)size;
(void)base;
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
lsbits |= (unsigned char)(uintptr_t)base;
#endif
return (lsbits & (align - 1)) == 0;
}
/**
* swap_words_32 - swap two elements in 32-bit chunks
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size (must be a multiple of 4)
*
* Exchange the two objects in memory. This exploits base+index addressing,
* which basically all CPUs have, to minimize loop overhead computations.
*
* For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
* bottom of the loop, even though the zero flag is still valid from the
* subtract (since the intervening mov instructions don't alter the flags).
* Gcc 8.1.0 doesn't have that problem.
*/
static __always_inline
void swap_words_32(void *a, void *b, size_t n)
{
do {
u32 t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
} while (n);
}
/**
* swap_words_64 - swap two elements in 64-bit chunks
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size (must be a multiple of 8)
*
* Exchange the two objects in memory. This exploits base+index
* addressing, which basically all CPUs have, to minimize loop overhead
* computations.
*
* We'd like to use 64-bit loads if possible. If they're not, emulating
* one requires base+index+4 addressing which x86 has but most other
* processors do not. If CONFIG_64BIT, we definitely have 64-bit loads,
* but it's possible to have 64-bit loads without 64-bit pointers (e.g.
* x32 ABI). Are there any cases the kernel needs to worry about?
*/
static __always_inline
void swap_words_64(void *a, void *b, size_t n)
{
do {
#ifdef CONFIG_64BIT
u64 t = *(u64 *)(a + (n -= 8));
*(u64 *)(a + n) = *(u64 *)(b + n);
*(u64 *)(b + n) = t;
#else
/* Use two 32-bit transfers to avoid base+index+4 addressing */
u32 t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
#endif
} while (n);
}
/**
* swap_bytes - swap two elements a byte at a time
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size
*
* This is the fallback if alignment doesn't allow using larger chunks.
*/
static __always_inline
void swap_bytes(void *a, void *b, size_t n)
{
do {
char t = ((char *)a)[--n];
((char *)a)[n] = ((char *)b)[n];
((char *)b)[n] = t;
} while (n);
}
/*
* The values are arbitrary as long as they can't be confused with
* a pointer, but small integers make for the smallest compare
* instructions.
*/
#define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0)
#define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1)
#define SWAP_BYTES ((void (*)(void *, void *, void *))2)
/*
* Selects the appropriate swap function based on the element size.
*/
static __always_inline
void *select_swap_func(const void *base, size_t size)
{
if (is_aligned(base, size, 8))
return SWAP_WORDS_64;
else if (is_aligned(base, size, 4))
return SWAP_WORDS_32;
else
return SWAP_BYTES;
}
static __always_inline
void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args),
void *priv)
{
if (swap_func == SWAP_WORDS_64)
swap_words_64(a, b, size);
else if (swap_func == SWAP_WORDS_32)
swap_words_32(a, b, size);
else if (swap_func == SWAP_BYTES)
swap_bytes(a, b, size);
else
swap_func(a, b, priv);
}
/**
* parent - given the offset of the child, find the offset of the parent.
* @i: the offset of the heap element whose parent is sought. Non-zero.
* @lsbit: a precomputed 1-bit mask, equal to "size & -size"
* @size: size of each element
*
* In terms of array indexes, the parent of element j = @i/@size is simply
* (j-1)/2. But when working in byte offsets, we can't use implicit
* truncation of integer divides.
*
* Fortunately, we only need one bit of the quotient, not the full divide.
* @size has a least significant bit. That bit will be clear if @i is
* an even multiple of @size, and set if it's an odd multiple.
*
* Logically, we're doing "if (i & lsbit) i -= size;", but since the
* branch is unpredictable, it's done with a bit of clever branch-free
* code instead.
*/
__attribute_const__ __always_inline
static size_t parent(size_t i, unsigned int lsbit, size_t size)
{
i -= size;
i -= size & -(i & lsbit);
return i / 2;
}
/* Initialize a min-heap. */
static __always_inline
void __min_heap_init_inline(min_heap_char *heap, void *data, size_t size)
{
heap->nr = 0;
heap->size = size;
if (data)
heap->data = data;
else
heap->data = heap->preallocated;
}
#define min_heap_init_inline(_heap, _data, _size) \
__min_heap_init_inline(container_of(&(_heap)->nr, min_heap_char, nr), _data, _size)
/* Get the minimum element from the heap. */
static __always_inline
void *__min_heap_peek_inline(struct min_heap_char *heap)
{
return heap->nr ? heap->data : NULL;
}
#define min_heap_peek_inline(_heap) \
(__minheap_cast(_heap) \
__min_heap_peek_inline(container_of(&(_heap)->nr, min_heap_char, nr)))
/* Check if the heap is full. */
static __always_inline
bool __min_heap_full_inline(min_heap_char *heap)
{
return heap->nr == heap->size;
}
#define min_heap_full_inline(_heap) \
__min_heap_full_inline(container_of(&(_heap)->nr, min_heap_char, nr))
/* Sift the element at pos down the heap. */
static __always_inline
void __min_heap_sift_down_inline(min_heap_char *heap, size_t pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
const unsigned long lsbit = elem_size & -elem_size;
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
/* pre-scale counters for performance */
size_t a = pos * elem_size;
size_t b, c, d;
size_t n = heap->nr * elem_size;
if (!swp)
swp = select_swap_func(data, elem_size);
/* Find the sift-down path all the way to the leaves. */
for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;)
b = func->less(data + c, data + d, args) ? c : d;
/* Special case for the last leaf with no sibling. */
if (d == n)
b = c;
/* Backtrack to the correct location. */
while (b != a && func->less(data + a, data + b, args))
b = parent(b, lsbit, elem_size);
/* Shift the element into its correct place. */
c = b;
while (b != a) {
b = parent(b, lsbit, elem_size);
do_swap(data + b, data + c, elem_size, swp, args);
}
}
#define min_heap_sift_down_inline(_heap, _pos, _func, _args) \
__min_heap_sift_down_inline(container_of(&(_heap)->nr, min_heap_char, nr), _pos, \
__minheap_obj_size(_heap), _func, _args)
/* Sift up ith element from the heap, O(log2(nr)). */
static __always_inline
void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
const unsigned long lsbit = elem_size & -elem_size;
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
/* pre-scale counters for performance */
size_t a = idx * elem_size, b;
if (!swp)
swp = select_swap_func(data, elem_size);
while (a) {
b = parent(a, lsbit, elem_size);
if (func->less(data + b, data + a, args))
break;
do_swap(data + a, data + b, elem_size, swp, args);
a = b;
}
}
#define min_heap_sift_up_inline(_heap, _idx, _func, _args) \
__min_heap_sift_up_inline(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _idx, _func, _args)
/* Floyd's approach to heapification that is O(nr). */
static __always_inline
void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
ssize_t i;
for (i = heap->nr / 2 - 1; i >= 0; i--)
__min_heap_sift_down_inline(heap, i, elem_size, func, args);
}
#define min_heapify_all_inline(_heap, _func, _args) \
__min_heapify_all_inline(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _func, _args)
/* Remove minimum element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
memcpy(data, data + (heap->nr * elem_size), elem_size);
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
return true;
}
#define min_heap_pop_inline(_heap, _func, _args) \
__min_heap_pop_inline(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _func, _args)
/*
* Remove the minimum element and then push the given element. The
* implementation performs 1 sift (O(log2(nr))) and is therefore more
* efficient than a pop followed by a push that does 2.
*/
static __always_inline
void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
memcpy(heap->data, element, elem_size);
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
}
#define min_heap_pop_push_inline(_heap, _element, _func, _args) \
__min_heap_pop_push_inline(container_of(&(_heap)->nr, min_heap_char, nr), _element, \
__minheap_obj_size(_heap), _func, _args)
/* Push an element on to the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
size_t pos;
if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
return false;
/* Place at the end of data. */
pos = heap->nr;
memcpy(data + (pos * elem_size), element, elem_size);
heap->nr++;
/* Sift child at pos up. */
__min_heap_sift_up_inline(heap, elem_size, pos, func, args);
return true;
}
#define min_heap_push_inline(_heap, _element, _func, _args) \
__min_heap_push_inline(container_of(&(_heap)->nr, min_heap_char, nr), _element, \
__minheap_obj_size(_heap), _func, _args)
/* Remove ith element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
if (!swp)
swp = select_swap_func(data, elem_size);
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
if (idx == heap->nr)
return true;
do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args);
__min_heap_sift_up_inline(heap, elem_size, idx, func, args);
__min_heap_sift_down_inline(heap, idx, elem_size, func, args);
return true;
}
#define min_heap_del_inline(_heap, _idx, _func, _args) \
__min_heap_del_inline(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _idx, _func, _args)
void __bch2_min_heap_init(min_heap_char *heap, void *data, size_t size);
void *__bch2_min_heap_peek(struct min_heap_char *heap);
bool __bch2_min_heap_full(min_heap_char *heap);
void __bch2_min_heap_sift_down(min_heap_char *heap, size_t pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
void __bch2_min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args);
void __bch2_min_heapify_all(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __bch2_min_heap_pop(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
void __bch2_min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __bch2_min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __bch2_min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args);
#define min_heap_init(_heap, _data, _size) \
__bch2_min_heap_init(container_of(&(_heap)->nr, min_heap_char, nr), _data, _size)
#define min_heap_peek(_heap) \
(__minheap_cast(_heap) __bch2_min_heap_peek(container_of(&(_heap)->nr, min_heap_char, nr)))
#define min_heap_full(_heap) \
__bch2_min_heap_full(container_of(&(_heap)->nr, min_heap_char, nr))
#define min_heap_sift_down(_heap, _pos, _func, _args) \
__bch2_min_heap_sift_down(container_of(&(_heap)->nr, min_heap_char, nr), _pos, \
__minheap_obj_size(_heap), _func, _args)
#define min_heap_sift_up(_heap, _idx, _func, _args) \
__bch2_min_heap_sift_up(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _idx, _func, _args)
#define min_heapify_all(_heap, _func, _args) \
__bch2_min_heapify_all(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _func, _args)
#define min_heap_pop(_heap, _func, _args) \
__bch2_min_heap_pop(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _func, _args)
#define min_heap_pop_push(_heap, _element, _func, _args) \
__bch2_min_heap_pop_push(container_of(&(_heap)->nr, min_heap_char, nr), _element, \
__minheap_obj_size(_heap), _func, _args)
#define min_heap_push(_heap, _element, _func, _args) \
__bch2_min_heap_push(container_of(&(_heap)->nr, min_heap_char, nr), _element, \
__minheap_obj_size(_heap), _func, _args)
#define min_heap_del(_heap, _idx, _func, _args) \
__bch2_min_heap_del(container_of(&(_heap)->nr, min_heap_char, nr), \
__minheap_obj_size(_heap), _idx, _func, _args)
#endif /* _LINUX_MIN_HEAP_H */