/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_BTREE_INTERIOR_H #define _BCACHEFS_BTREE_INTERIOR_H #include "btree/cache.h" #include "btree/locking.h" #include "btree/update.h" #include "data/write_types.h" #define BTREE_UPDATE_NODES_MAX ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES) int bch2_btree_node_check_topology(struct btree_trans *, struct btree *); #define BTREE_UPDATE_MODES() \ x(none) \ x(node) \ x(root) \ x(update) enum btree_update_mode { #define x(n) BTREE_UPDATE_##n, BTREE_UPDATE_MODES() #undef x }; struct btree_update_node { struct btree *b; unsigned level; bool root; bool update_node_key; __le64 seq; __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); }; typedef DARRAY_PREALLOCATED(struct btree_update_node, BTREE_UPDATE_NODES_MAX) btree_update_nodes; /* * Tracks an in progress split/rewrite of a btree node and the update to the * parent node: * * When we split/rewrite a node, we do all the updates in memory without * waiting for any writes to complete - we allocate the new node(s) and update * the parent node, possibly recursively up to the root. * * The end result is that we have one or more new nodes being written - * possibly several, if there were multiple splits - and then a write (updating * an interior node) which will make all these new nodes visible. * * Additionally, as we split/rewrite nodes we free the old nodes - but the old * nodes can't be freed (their space on disk can't be reclaimed) until the * update to the interior node that makes the new node visible completes - * until then, the old nodes are still reachable on disk. * */ struct btree_update { struct closure cl; struct bch_fs *c; u64 start_time; unsigned long ip_started; struct list_head list; struct list_head unwritten_list; enum btree_update_mode mode; enum bch_trans_commit_flags flags; unsigned nodes_written:1; unsigned took_gc_lock:1; enum btree_id btree_id; struct bpos node_start; struct bpos node_end; enum btree_node_rewrite_reason node_needed_rewrite; u16 node_written; u16 node_sectors; u16 node_remaining; unsigned update_level_start; unsigned update_level_end; struct disk_reservation disk_res; /* * BTREE_UPDATE_node: * The update that made the new nodes visible was a regular update to an * existing interior node - @b. We can't write out the update to @b * until the new nodes we created are finished writing, so we block @b * from writing by putting this btree_interior update on the * @b->write_blocked list with @write_blocked_list: */ struct btree *b; struct list_head write_blocked_list; /* * We may be freeing nodes that were dirty, and thus had journal entries * pinned: we need to transfer the oldest of those pins to the * btree_update operation, and release it when the new node(s) * are all persistent and reachable: */ struct journal_entry_pin journal; /* Preallocated nodes we reserve when we start the update: */ struct prealloc_nodes { struct btree *b[BTREE_UPDATE_NODES_MAX]; unsigned nr; } prealloc_nodes[2]; btree_update_nodes old_nodes; btree_update_nodes new_nodes; open_bucket_idx_t open_buckets[BTREE_UPDATE_NODES_MAX * BCH_REPLICAS_MAX]; open_bucket_idx_t nr_open_buckets; /* Only here to reduce stack usage on recursive splits: */ struct keylist parent_keys; /* * Enough room for btree_split's keys without realloc - btree node * pointers never have crc/compression info, so we only need to acount * for the pointers for three keys */ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; }; struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, struct btree_trans *, struct btree *, struct bkey_format); int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned); int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned); int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t, unsigned, unsigned, u64 *, enum btree_node_sibling); static inline bool btree_node_needs_merge(struct btree_trans *trans, struct btree *b, int d) { if (static_branch_unlikely(&bch2_btree_node_merging_disabled)) return false; return (int) min(b->sib_u64s[0], b->sib_u64s[1]) + d <= (int) trans->c->btree.foreground_merge_threshold; } static inline int bch2_foreground_maybe_merge(struct btree_trans *trans, btree_path_idx_t path_idx, unsigned level, unsigned flags, int u64s_delta, u64 *merge_count) { bch2_trans_verify_not_unlocked_or_in_restart(trans); struct btree_path *path = trans->paths + path_idx; struct btree *b = path->l[level].b; EBUG_ON(!btree_node_locked(path, level)); if (likely(!btree_node_needs_merge(trans, b, u64s_delta))) return 0; return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, merge_count, btree_prev_sib) ?: __bch2_foreground_maybe_merge(trans, path_idx, level, flags, merge_count, btree_next_sib); } int bch2_btree_node_get_iter(struct btree_trans *, struct btree_iter *, struct btree *); int bch2_btree_node_rewrite_key(struct btree_trans *, enum btree_id, unsigned, struct bkey_i *, enum bch_trans_commit_flags); int bch2_btree_node_rewrite_pos(struct btree_trans *, enum btree_id, unsigned, struct bpos, unsigned, enum bch_trans_commit_flags, enum bch_write_flags); void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *); void bch2_btree_node_merge_async(struct bch_fs *, struct btree *); int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *, struct btree *, struct bkey_i *, unsigned, bool); void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); int bch2_btree_root_alloc_fake_trans(struct btree_trans *, enum btree_id, unsigned); void bch2_btree_root_alloc_fake(struct bch_fs *, enum btree_id, unsigned); static inline unsigned btree_update_reserve_required(struct bch_fs *c, struct btree *b) { unsigned depth = btree_node_root(c, b)->c.level + 1; /* * Number of nodes we might have to allocate in a worst case btree * split operation - we split all the way up to the root, then allocate * a new root, unless we're already at max depth: */ if (depth < BTREE_MAX_DEPTH) return (depth - b->c.level) * 2 + 1; else return (depth - b->c.level) * 2 - 1; } static inline void btree_node_reset_sib_u64s(struct btree *b) { b->sib_u64s[0] = !bpos_eq(b->data->min_key, POS_MIN) ? b->nr.live_u64s : U16_MAX; b->sib_u64s[1] = !bpos_eq(b->key.k.p, SPOS_MAX) ? b->nr.live_u64s : U16_MAX; } static inline void *btree_data_end(struct btree *b) { return (void *) b->data + btree_buf_bytes(b); } static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b) { return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s); } static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b) { return btree_data_end(b); } static inline void *write_block(struct btree *b) { return (void *) b->data + (b->written << 9); } static inline bool __btree_addr_written(struct btree *b, void *p) { return p < write_block(b); } static inline bool bset_written(struct btree *b, struct bset *i) { return __btree_addr_written(b, i); } static inline bool bkey_written(struct btree *b, struct bkey_packed *k) { return __btree_addr_written(b, k); } static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end) { ssize_t used = bset_byte_offset(b, end) / sizeof(u64) + b->whiteout_u64s; ssize_t total = btree_buf_bytes(b) >> 3; /* Always leave one extra u64 for bch2_varint_decode: */ used++; return total - used; } static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b) { ssize_t remaining = __bch2_btree_u64s_remaining(b, btree_bkey_last(b, bset_tree_last(b))); BUG_ON(remaining < 0); if (bset_written(b, btree_bset_last(b))) return 0; return remaining; } #define BTREE_WRITE_SET_U64s_BITS 9 static inline unsigned btree_write_set_buffer(struct btree *b) { /* * Could buffer up larger amounts of keys for btrees with larger keys, * pending benchmarking: */ return 8 << BTREE_WRITE_SET_U64s_BITS; } static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b) { struct bset_tree *t = bset_tree_last(b); struct btree_node_entry *bne = max(write_block(b), (void *) btree_bkey_last(b, t)); ssize_t remaining_space = __bch2_btree_u64s_remaining(b, bne->keys.start); if (unlikely(bset_written(b, bset(b, t)))) { if (b->written + block_sectors(c) <= btree_sectors(c)) return bne; } else { if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) && remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3)) return bne; } return NULL; } static inline void push_whiteout(struct btree *b, struct bpos pos) { struct bkey_packed k; BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s); EBUG_ON(btree_node_just_written(b)); if (!bkey_pack_pos(&k, pos, b)) { struct bkey *u = (void *) &k; bkey_init(u); u->p = pos; } k.needs_whiteout = true; b->whiteout_u64s += k.u64s; bkey_p_copy(unwritten_whiteouts_start(b), &k); } /* * write lock must be held on @b (else the dirty bset that we were going to * insert into could be written out from under us) */ static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s) { if (unlikely(btree_node_need_rewrite(b))) return false; return u64s <= bch2_btree_keys_u64s_remaining(b); } void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *); bool bch2_btree_interior_updates_flush(struct bch_fs *); void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *); struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *, struct jset_entry *, unsigned long); void bch2_async_btree_node_rewrites_flush(struct bch_fs *); void bch2_do_pending_node_rewrites(struct bch_fs *); void bch2_free_pending_node_rewrites(struct bch_fs *); void bch2_btree_reserve_cache_to_text(struct printbuf *, struct bch_fs *); void bch2_fs_btree_interior_update_exit(struct bch_fs *); void bch2_fs_btree_interior_update_init_early(struct bch_fs *); int bch2_fs_btree_interior_update_init(struct bch_fs *); #endif /* _BCACHEFS_BTREE_INTERIOR_H */