// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc/accounting.h" #include "alloc/buckets.h" #include "alloc/replicas.h" #include "journal/journal.h" #include "sb/io.h" #include DEFINE_CLASS(bch_replicas_cpu, struct bch_replicas_cpu, kfree(_T.entries), (struct bch_replicas_cpu) {}, void) static inline struct bch_replicas_entry_cpu * cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i) { return (void *) r->entries + r->entry_size * i; } static inline unsigned __cpu_replicas_entry_bytes(unsigned v1_bytes) { return offsetof(struct bch_replicas_entry_cpu, e) + v1_bytes; } static inline unsigned cpu_replicas_entry_bytes(struct bch_replicas_entry_cpu *e) { return __cpu_replicas_entry_bytes(replicas_entry_bytes(&e->e)); } #define for_each_cpu_replicas_entry(_r, _i) \ for (struct bch_replicas_entry_cpu *_i = (_r)->entries; \ (void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size; \ _i = (void *) (_i) + (_r)->entry_size) static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, struct bch_replicas_cpu *); static int cpu_replicas_entry_cmp(const struct bch_replicas_entry_cpu *l, const struct bch_replicas_entry_cpu *r, size_t size) { return memcmp(&l->e, &r->e, size - offsetof(struct bch_replicas_entry_cpu, e)); } static int cpu_replicas_entry_cmp_r(const void *l, const void *r, const void *priv) { return cpu_replicas_entry_cmp(l, r, (size_t) priv); } /* Replicas tracking - in memory: */ static void verify_replicas_entry(struct bch_replicas_entry_v1 *e) { #ifdef CONFIG_BCACHEFS_DEBUG BUG_ON(!e->nr_devs); BUG_ON(e->nr_required > 1 && e->nr_required >= e->nr_devs); for (unsigned i = 0; i + 1 < e->nr_devs; i++) BUG_ON(e->devs[i] != BCH_SB_MEMBER_INVALID && e->devs[i] >= e->devs[i + 1]); #endif } void bch2_replicas_entry_sort(struct bch_replicas_entry_v1 *e) { bubble_sort(e->devs, e->nr_devs, u8_cmp); } static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) { eytzinger0_sort_r(r->entries, r->nr, r->entry_size, cpu_replicas_entry_cmp_r, NULL, (void *)(size_t)r->entry_size); } static void bch2_replicas_entry_v0_to_text(struct printbuf *out, struct bch_replicas_entry_v0 *e) { bch2_prt_data_type(out, e->data_type); prt_printf(out, ": %u [", e->nr_devs); for (unsigned i = 0; i < e->nr_devs; i++) prt_printf(out, i ? " %u" : "%u", e->devs[i]); prt_printf(out, "]"); } void bch2_replicas_entry_to_text(struct printbuf *out, struct bch_replicas_entry_v1 *e) { bch2_prt_data_type(out, e->data_type); prt_printf(out, ": %u/%u [", e->nr_required, e->nr_devs); for (unsigned i = 0; i < e->nr_devs; i++) prt_printf(out, i ? " %u" : "%u", e->devs[i]); prt_printf(out, "]"); } static void bch2_replicas_entry_cpu_to_text(struct printbuf *out, struct bch_replicas_entry_cpu *e) { prt_printf(out, "ref=%u ", atomic_read(&e->ref)); bch2_replicas_entry_to_text(out, &e->e); } __printf(3, 4) static int replicas_entry_invalid(struct bch_replicas_entry_v1 *r, struct printbuf *err, const char *fmt, ...) { va_list args; va_start(args, fmt); prt_vprintf(err, fmt, args); va_end(args); prt_str(err, " in entry "); bch2_replicas_entry_to_text(err, r); return -BCH_ERR_invalid_replicas_entry; } static int bch2_replicas_entry_sb_validate(struct bch_replicas_entry_v1 *r, struct bch_sb *sb, struct printbuf *err) { if (!r->nr_devs) return replicas_entry_invalid(r, err, "no devices"); if (r->nr_required > 1 && r->nr_required >= r->nr_devs) return replicas_entry_invalid(r, err, "bad nr_required"); for (unsigned i = 0; i < r->nr_devs; i++) if (r->devs[i] != BCH_SB_MEMBER_INVALID && !bch2_member_exists(sb, r->devs[i])) return replicas_entry_invalid(r, err, "invalid device %u", r->devs[i]); return 0; } int bch2_replicas_entry_validate(struct bch_replicas_entry_v1 *r, struct bch_fs *c, struct printbuf *err) { if (!r->nr_devs) return replicas_entry_invalid(r, err, "no devices"); if (r->nr_required > 1 && r->nr_required >= r->nr_devs) return replicas_entry_invalid(r, err, "bad nr_required"); for (unsigned i = 0; i < r->nr_devs; i++) if (r->devs[i] != BCH_SB_MEMBER_INVALID && !bch2_dev_exists(c, r->devs[i])) return replicas_entry_invalid(r, err, "invalid device %u", r->devs[i]); return 0; } void bch2_cpu_replicas_to_text(struct printbuf *out, struct bch_replicas_cpu *r) { bool first = true; for_each_cpu_replicas_entry(r, i) { if (!first) prt_printf(out, " "); first = false; bch2_replicas_entry_cpu_to_text(out, i); } } static void extent_to_replicas(const struct bch_fs *c, struct bkey_s_c k, struct bch_replicas_entry_v1 *r) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; r->nr_required = 1; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { if (p.ptr.cached) continue; if (!p.has_ec) replicas_entry_add_dev(r, p.ptr.dev); else r->nr_required = 0; } } static void stripe_to_replicas(struct bkey_s_c k, struct bch_replicas_entry_v1 *r) { struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); const struct bch_extent_ptr *ptr; r->nr_required = s.v->nr_blocks - s.v->nr_redundant; for (ptr = s.v->ptrs; ptr < s.v->ptrs + s.v->nr_blocks; ptr++) replicas_entry_add_dev(r, ptr->dev); } void bch2_bkey_to_replicas(const struct bch_fs *c, struct bch_replicas_entry_v1 *e, struct bkey_s_c k) { e->nr_devs = 0; switch (k.k->type) { case KEY_TYPE_btree_ptr: case KEY_TYPE_btree_ptr_v2: e->data_type = BCH_DATA_btree; extent_to_replicas(c, k, e); break; case KEY_TYPE_extent: case KEY_TYPE_reflink_v: e->data_type = BCH_DATA_user; extent_to_replicas(c, k, e); break; case KEY_TYPE_stripe: e->data_type = BCH_DATA_parity; stripe_to_replicas(k, e); break; } bch2_replicas_entry_sort(e); } void bch2_devlist_to_replicas(struct bch_replicas_entry_v1 *e, enum bch_data_type data_type, struct bch_devs_list devs) { BUG_ON(!data_type || data_type == BCH_DATA_sb || data_type >= BCH_DATA_NR); e->data_type = data_type; e->nr_devs = 0; e->nr_required = 1; darray_for_each(devs, i) replicas_entry_add_dev(e, *i); bch2_replicas_entry_sort(e); } /* @l is bch_replicas_entry_v1, @r is bch_replicas_entry_cpu */ static int replicas_entry_search_cmp(const void *_l, const void *_r, const void *priv) { const struct bch_replicas_entry_v1 *l = _l; const struct bch_replicas_entry_cpu *r = _r; size_t size = (size_t) priv; return memcmp(l, &r->e, size); } static inline struct bch_replicas_entry_cpu * replicas_entry_search(struct bch_replicas_cpu *r, struct bch_replicas_entry_v1 *search) { verify_replicas_entry(search); size_t entry_size = replicas_entry_bytes(search); int idx = likely(__cpu_replicas_entry_bytes(entry_size) <= r->entry_size) ? eytzinger0_find_r(r->entries, r->nr, r->entry_size, replicas_entry_search_cmp, (void *) entry_size, search) : -1; return idx >= 0 ? cpu_replicas_entry(r, idx) : NULL; } bool bch2_replicas_marked_locked(struct bch_fs *c, struct bch_replicas_entry_v1 *search) { return !search->nr_devs || replicas_entry_search(&c->replicas, search); } bool bch2_replicas_marked(struct bch_fs *c, struct bch_replicas_entry_v1 *search) { guard(percpu_read)(&c->capacity.mark_lock); return bch2_replicas_marked_locked(c, search); } static struct bch_replicas_cpu cpu_replicas_add_entry(struct bch_fs *c, struct bch_replicas_cpu *old, struct bch_replicas_entry_v1 *new_entry) { struct bch_replicas_cpu new = { .nr = old->nr + 1, .entry_size = max_t(unsigned, old->entry_size, __cpu_replicas_entry_bytes(replicas_entry_bytes(new_entry))), }; /* alignment */ new.entry_size = round_up(new.entry_size, sizeof(atomic_t)); new.entries = kcalloc(new.nr, new.entry_size, GFP_KERNEL); if (!new.entries) return new; for (unsigned i = 0; i < old->nr; i++) memcpy(cpu_replicas_entry(&new, i), cpu_replicas_entry(old, i), old->entry_size); unsafe_memcpy(&cpu_replicas_entry(&new, old->nr)->e, new_entry, replicas_entry_bytes(new_entry), "embedded variable length struct"); bch2_cpu_replicas_sort(&new); return new; } noinline static int bch2_mark_replicas_slowpath(struct bch_fs *c, struct bch_replicas_entry_v1 *new_entry, unsigned ref) { verify_replicas_entry(new_entry); guard(mutex)(&c->sb_lock); bool write_sb = false; scoped_guard(percpu_write, &c->capacity.mark_lock) { if (!replicas_entry_search(&c->replicas, new_entry)) { CLASS(bch_replicas_cpu, new_r)(); new_r = cpu_replicas_add_entry(c, &c->replicas, new_entry); if (!new_r.entries) return bch_err_throw(c, ENOMEM_cpu_replicas); try(bch2_cpu_replicas_to_sb_replicas(c, &new_r)); swap(c->replicas, new_r); write_sb = true; } atomic_add(ref, &replicas_entry_search(&c->replicas, new_entry)->ref); } /* After dropping mark_lock */ if (write_sb) bch2_write_super(c); return 0; } int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry_v1 *r) { return likely(bch2_replicas_marked(c, r)) ? 0 : bch2_mark_replicas_slowpath(c, r, 0); } static void __replicas_entry_kill(struct bch_fs *c, struct bch_replicas_entry_cpu *e) { struct bch_replicas_cpu *r = &c->replicas; memcpy(e, cpu_replicas_entry(r, --r->nr), r->entry_size); bch2_cpu_replicas_sort(r); int ret = bch2_cpu_replicas_to_sb_replicas(c, r); if (WARN(ret, "bch2_cpu_replicas_to_sb_replicas() error: %s", bch2_err_str(ret))) return; } void bch2_replicas_entry_kill(struct bch_fs *c, struct bch_replicas_entry_v1 *kill) { lockdep_assert_held(&c->capacity.mark_lock); lockdep_assert_held(&c->sb_lock); struct bch_replicas_entry_cpu *e = replicas_entry_search(&c->replicas, kill); if (WARN(!e, "replicas entry not found in sb")) return; __replicas_entry_kill(c, e); /* caller does write_super() after dropping mark_lock */ } static inline int __replicas_entry_put(struct bch_fs *c, struct bch_replicas_entry_v1 *r, unsigned nr) { struct bch_replicas_entry_cpu *e = replicas_entry_search(&c->replicas, r); if (!e) return -1; int v = atomic_sub_return(nr, &e->ref); if (v < 0) return -1; return !v; } void bch2_replicas_entry_put_many(struct bch_fs *c, struct bch_replicas_entry_v1 *r, unsigned nr) { if (!r->nr_devs) return; BUG_ON(r->data_type != BCH_DATA_journal); verify_replicas_entry(r); scoped_guard(percpu_read, &c->capacity.mark_lock) { int ret = __replicas_entry_put(c, r, nr); if (!ret) return; if (unlikely(ret < 0)) { CLASS(printbuf, buf)(); bch2_replicas_entry_to_text(&buf, r); WARN(1, "refcount error putting %s", buf.buf); return; } } guard(mutex)(&c->sb_lock); scoped_guard(percpu_write, &c->capacity.mark_lock) { struct bch_replicas_entry_cpu *e = replicas_entry_search(&c->replicas, r); if (e && !atomic_read(&e->ref)) __replicas_entry_kill(c, e); } bch2_write_super(c); } static inline bool bch2_replicas_entry_get_inmem(struct bch_fs *c, struct bch_replicas_entry_v1 *r) { guard(percpu_read)(&c->capacity.mark_lock); struct bch_replicas_entry_cpu *e = replicas_entry_search(&c->replicas, r); if (e) atomic_inc(&e->ref); return e != NULL; } int bch2_replicas_entry_get(struct bch_fs *c, struct bch_replicas_entry_v1 *r) { if (!r->nr_devs) return 0; BUG_ON(r->data_type != BCH_DATA_journal); verify_replicas_entry(r); return bch2_replicas_entry_get_inmem(c, r) ? 0 : bch2_mark_replicas_slowpath(c, r, 1); } int bch2_replicas_gc_reffed(struct bch_fs *c) { bool write_sb = false; guard(mutex)(&c->sb_lock); scoped_guard(percpu_write, &c->capacity.mark_lock) { unsigned dst = 0; for (unsigned i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry_cpu *e = cpu_replicas_entry(&c->replicas, i); if (e->e.data_type != BCH_DATA_journal || atomic_read(&e->ref)) memcpy(cpu_replicas_entry(&c->replicas, dst++), e, c->replicas.entry_size); } if (c->replicas.nr != dst) { c->replicas.nr = dst; bch2_cpu_replicas_sort(&c->replicas); try(bch2_cpu_replicas_to_sb_replicas(c, &c->replicas)); } } if (write_sb) bch2_write_super(c); return 0; } int bch2_replicas_gc_accounted(struct bch_fs *c) { int ret = 0; bch2_accounting_mem_gc(c); guard(mutex)(&c->sb_lock); scoped_guard(percpu_write, &c->capacity.mark_lock) { struct bch_replicas_cpu new = { .entry_size = c->replicas.entry_size, .entries = kcalloc(c->replicas.nr, c->replicas.entry_size, GFP_KERNEL), }; if (!new.entries) { bch_err(c, "error allocating c->replicas_gc"); return bch_err_throw(c, ENOMEM_replicas_gc); } for (unsigned i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry_cpu *e = cpu_replicas_entry(&c->replicas, i); struct disk_accounting_pos k = { .type = BCH_DISK_ACCOUNTING_replicas, }; unsafe_memcpy(&k.replicas, &e->e, replicas_entry_bytes(&e->e), "embedded variable length struct"); struct bpos p = disk_accounting_pos_to_bpos(&k); struct bch_accounting_mem *acc = &c->accounting; bool kill = eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, &p) >= acc->k.nr; if (e->e.data_type == BCH_DATA_journal || !kill) memcpy(cpu_replicas_entry(&new, new.nr++), e, new.entry_size); } bch2_cpu_replicas_sort(&new); ret = bch2_cpu_replicas_to_sb_replicas(c, &new); if (!ret) swap(c->replicas, new); kfree(new.entries); } if (!ret) bch2_write_super(c); return ret; } /* Replicas tracking - superblock: */ static int __bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r, struct bch_replicas_cpu *cpu_r) { unsigned nr = 0, entry_size = 0, idx = 0; for_each_replicas_entry(sb_r, e) { entry_size = max_t(unsigned, entry_size, replicas_entry_bytes(e)); nr++; } entry_size = __cpu_replicas_entry_bytes(entry_size); entry_size = round_up(entry_size, sizeof(atomic_t)); cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); if (!cpu_r->entries) return -BCH_ERR_ENOMEM_cpu_replicas; cpu_r->nr = nr; cpu_r->entry_size = entry_size; for_each_replicas_entry(sb_r, src) { struct bch_replicas_entry_cpu *dst = cpu_replicas_entry(cpu_r, idx++); unsafe_memcpy(&dst->e, src, replicas_entry_bytes(src), "embedded variable length struct"); bch2_replicas_entry_sort(&dst->e); } return 0; } static int __bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r, struct bch_replicas_cpu *cpu_r) { unsigned nr = 0, entry_size = 0, idx = 0; for_each_replicas_entry(sb_r, e) { entry_size = max_t(unsigned, entry_size, replicas_entry_bytes(e)); nr++; } entry_size = __cpu_replicas_entry_bytes(entry_size); entry_size += sizeof(struct bch_replicas_entry_v1) - sizeof(struct bch_replicas_entry_v0); entry_size = round_up(entry_size, sizeof(atomic_t)); cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); if (!cpu_r->entries) return -BCH_ERR_ENOMEM_cpu_replicas; cpu_r->nr = nr; cpu_r->entry_size = entry_size; for_each_replicas_entry(sb_r, src) { struct bch_replicas_entry_cpu *dst = cpu_replicas_entry(cpu_r, idx++); dst->e.data_type = src->data_type; dst->e.nr_devs = src->nr_devs; dst->e.nr_required = 1; memcpy(dst->e.devs, src->devs, src->nr_devs); bch2_replicas_entry_sort(&dst->e); } return 0; } int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) { /* * If called after fs is started (after journal read), we'll be blowing * away refcounts */ BUG_ON(test_bit(BCH_FS_started, &c->flags)); struct bch_sb_field_replicas *sb_v1; struct bch_sb_field_replicas_v0 *sb_v0; CLASS(bch_replicas_cpu, new_r)(); if ((sb_v1 = bch2_sb_field_get(c->disk_sb.sb, replicas))) try(__bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r)); else if ((sb_v0 = bch2_sb_field_get(c->disk_sb.sb, replicas_v0))) try(__bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r)); bch2_cpu_replicas_sort(&new_r); guard(percpu_write)(&c->capacity.mark_lock); swap(c->replicas, new_r); return 0; } static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas_v0 *sb_r; struct bch_replicas_entry_v0 *dst; size_t bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, src) bytes += replicas_entry_bytes(&src->e) - 1; sb_r = bch2_sb_field_resize(&c->disk_sb, replicas_v0, DIV_ROUND_UP(bytes, sizeof(u64))); if (!sb_r) return bch_err_throw(c, ENOSPC_sb_replicas); bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas); sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas_v0); memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); dst = sb_r->entries; for_each_cpu_replicas_entry(r, src) { dst->data_type = src->e.data_type; dst->nr_devs = src->e.nr_devs; memcpy(dst->devs, src->e.devs, src->e.nr_devs); dst = replicas_entry_next(dst); BUG_ON((void *) dst > vstruct_end(&sb_r->field)); } return 0; } static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas *sb_r; struct bch_replicas_entry_v1 *dst; bool need_v1 = false; size_t bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, src) { bytes += replicas_entry_bytes(&src->e); if (src->e.nr_required != 1) need_v1 = true; } if (!need_v1) return bch2_cpu_replicas_to_sb_replicas_v0(c, r); sb_r = bch2_sb_field_resize(&c->disk_sb, replicas, DIV_ROUND_UP(bytes, sizeof(u64))); if (!sb_r) return bch_err_throw(c, ENOSPC_sb_replicas); bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0); sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas); memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); dst = sb_r->entries; for_each_cpu_replicas_entry(r, src) { memcpy(dst, &src->e, replicas_entry_bytes(&src->e)); dst = replicas_entry_next(dst); BUG_ON((void *) dst > vstruct_end(&sb_r->field)); } return 0; } static int bch2_cpu_replicas_validate(struct bch_replicas_cpu *cpu_r, struct bch_sb *sb, struct printbuf *err) { unsigned i; sort_r(cpu_r->entries, cpu_r->nr, cpu_r->entry_size, cpu_replicas_entry_cmp_r, NULL, (void *)(size_t)cpu_r->entry_size); for (i = 0; i < cpu_r->nr; i++) { struct bch_replicas_entry_cpu *e = cpu_replicas_entry(cpu_r, i); try(bch2_replicas_entry_sb_validate(&e->e, sb, err)); if (i + 1 < cpu_r->nr) { struct bch_replicas_entry_cpu *n = cpu_replicas_entry(cpu_r, i + 1); int cmp = cpu_replicas_entry_cmp(e, n, cpu_r->entry_size); BUG_ON(cmp > 0); if (!cmp) { prt_printf(err, "duplicate replicas entry "); bch2_replicas_entry_to_text(err, &e->e); return -BCH_ERR_invalid_sb_replicas; } } } return 0; } static int bch2_sb_replicas_validate(struct bch_sb *sb, struct bch_sb_field *f, enum bch_validate_flags flags, struct printbuf *err) { struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); CLASS(bch_replicas_cpu, cpu_r)(); try(__bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r)); try(bch2_cpu_replicas_validate(&cpu_r, sb, err)); return 0; } static void bch2_sb_replicas_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas *r = field_to_type(f, replicas); bool first = true; for_each_replicas_entry(r, e) { if (!first) prt_printf(out, " "); first = false; bch2_replicas_entry_to_text(out, e); } prt_newline(out); } const struct bch_sb_field_ops bch_sb_field_ops_replicas = { .validate = bch2_sb_replicas_validate, .to_text = bch2_sb_replicas_to_text, }; static int bch2_sb_replicas_v0_validate(struct bch_sb *sb, struct bch_sb_field *f, enum bch_validate_flags flags, struct printbuf *err) { struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); CLASS(bch_replicas_cpu, cpu_r)(); try(__bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r)); try(bch2_cpu_replicas_validate(&cpu_r, sb, err)); return 0; } static void bch2_sb_replicas_v0_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); bool first = true; for_each_replicas_entry(sb_r, e) { if (!first) prt_printf(out, " "); first = false; bch2_replicas_entry_v0_to_text(out, e); } prt_newline(out); } const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = { .validate = bch2_sb_replicas_v0_validate, .to_text = bch2_sb_replicas_v0_to_text, }; /* Query replicas: */ bool bch2_can_read_fs_with_devs(struct bch_fs *c, struct bch_devs_mask devs, unsigned flags, struct printbuf *err) { guard(percpu_read)(&c->capacity.mark_lock); for_each_cpu_replicas_entry(&c->replicas, i) { struct bch_replicas_entry_v1 *e = &i->e; unsigned nr_online = 0, nr_invalid = 0, dflags = 0; bool metadata = e->data_type < BCH_DATA_user; if (e->data_type == BCH_DATA_cached) continue; for (unsigned i = 0; i < e->nr_devs; i++) { if (e->devs[i] == BCH_SB_MEMBER_INVALID) { nr_invalid++; continue; } nr_online += test_bit(e->devs[i], devs.d); } if (nr_online < e->nr_required) dflags |= metadata ? BCH_FORCE_IF_METADATA_LOST : BCH_FORCE_IF_DATA_LOST; if (nr_online + nr_invalid < e->nr_devs) dflags |= metadata ? BCH_FORCE_IF_METADATA_DEGRADED : BCH_FORCE_IF_DATA_DEGRADED; if (dflags & ~flags) { if (err) { prt_printf(err, "insufficient devices online (%u) for replicas entry ", nr_online); bch2_replicas_entry_to_text(err, e); prt_newline(err); } return false; } } return true; } bool bch2_can_write_fs_with_devs(struct bch_fs *c, struct bch_devs_mask devs, unsigned flags, struct printbuf *err) { unsigned nr_have[BCH_DATA_NR]; memset(nr_have, 0, sizeof(nr_have)); unsigned nr_online[BCH_DATA_NR]; memset(nr_online, 0, sizeof(nr_online)); scoped_guard(rcu) for_each_member_device_rcu(c, ca, &devs) { if (!ca->mi.durability) continue; bool online = test_bit(ca->dev_idx, devs.d); for (unsigned i = 0; i < BCH_DATA_NR; i++) { nr_have[i] += ca->mi.data_allowed & BIT(i) ? ca->mi.durability : 0; if (online) nr_online[i] += ca->mi.data_allowed & BIT(i) ? ca->mi.durability : 0; } } if (!nr_online[BCH_DATA_journal]) { prt_printf(err, "No rw journal devices online\n"); return false; } if (!nr_online[BCH_DATA_btree]) { prt_printf(err, "No rw btree devices online\n"); return false; } if (!nr_online[BCH_DATA_user]) { prt_printf(err, "No rw user data devices online\n"); return false; } if (!(flags & BCH_FORCE_IF_METADATA_DEGRADED)) { if (nr_online[BCH_DATA_journal] < nr_have[BCH_DATA_journal] && nr_online[BCH_DATA_journal] < c->opts.metadata_replicas) { prt_printf(err, "Insufficient rw journal devices (%u) online\n", nr_online[BCH_DATA_journal]); return false; } if (nr_online[BCH_DATA_btree] < nr_have[BCH_DATA_btree] && nr_online[BCH_DATA_btree] < c->opts.metadata_replicas) { prt_printf(err, "Insufficient rw btree devices (%u) online\n", nr_online[BCH_DATA_btree]); return false; } } if (!(flags & BCH_FORCE_IF_DATA_DEGRADED)) { if (nr_online[BCH_DATA_user] < nr_have[BCH_DATA_user] && nr_online[BCH_DATA_user] < c->opts.data_replicas) { prt_printf(err, "Insufficient rw user data devices (%u) online\n", nr_online[BCH_DATA_user]); return false; } } return true; } bool bch2_sb_has_journal(struct bch_sb *sb) { struct bch_sb_field_replicas *replicas = bch2_sb_field_get(sb, replicas); struct bch_sb_field_replicas_v0 *replicas_v0 = bch2_sb_field_get(sb, replicas_v0); if (replicas) { for_each_replicas_entry(replicas, r) if (r->data_type == BCH_DATA_journal) return true; } else if (replicas_v0) { for_each_replicas_entry(replicas_v0, r) if (r->data_type == BCH_DATA_journal) return true; } return false; } unsigned bch2_sb_dev_has_data(struct bch_sb *sb, unsigned dev) { struct bch_sb_field_replicas *replicas; struct bch_sb_field_replicas_v0 *replicas_v0; unsigned data_has = 0; replicas = bch2_sb_field_get(sb, replicas); replicas_v0 = bch2_sb_field_get(sb, replicas_v0); if (replicas) { for_each_replicas_entry(replicas, r) { if (r->data_type >= sizeof(data_has) * 8) continue; for (unsigned i = 0; i < r->nr_devs; i++) if (r->devs[i] == dev) data_has |= 1 << r->data_type; } } else if (replicas_v0) { for_each_replicas_entry(replicas_v0, r) { if (r->data_type >= sizeof(data_has) * 8) continue; for (unsigned i = 0; i < r->nr_devs; i++) if (r->devs[i] == dev) data_has |= 1 << r->data_type; } } return data_has; } unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) { guard(mutex)(&c->sb_lock); return bch2_sb_dev_has_data(c->disk_sb.sb, ca->dev_idx); } void bch2_verify_replicas_refs_clean(struct bch_fs *c) { for_each_cpu_replicas_entry(&c->replicas, i) if (atomic_read(&i->ref)) { CLASS(printbuf, buf)(); bch2_replicas_entry_cpu_to_text(&buf, i); WARN(1, "replicas entry ref leaked:\n%s", buf.buf); } } void bch2_fs_replicas_exit(struct bch_fs *c) { kfree(c->replicas.entries); }