/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_H #define _BCACHEFS_H /* * SOME HIGH LEVEL CODE DOCUMENTATION: * * Bcache mostly works with cache sets, cache devices, and backing devices. * * Support for multiple cache devices hasn't quite been finished off yet, but * it's about 95% plumbed through. A cache set and its cache devices is sort of * like a md raid array and its component devices. Most of the code doesn't care * about individual cache devices, the main abstraction is the cache set. * * Multiple cache devices is intended to give us the ability to mirror dirty * cached data and metadata, without mirroring clean cached data. * * Backing devices are different, in that they have a lifetime independent of a * cache set. When you register a newly formatted backing device it'll come up * in passthrough mode, and then you can attach and detach a backing device from * a cache set at runtime - while it's mounted and in use. Detaching implicitly * invalidates any cached data for that backing device. * * A cache set can have multiple (many) backing devices attached to it. * * There's also flash only volumes - this is the reason for the distinction * between struct cached_dev and struct bcache_device. A flash only volume * works much like a bcache device that has a backing device, except the * "cached" data is always dirty. The end result is that we get thin * provisioning with very little additional code. * * Flash only volumes work but they're not production ready because the moving * garbage collector needs more work. More on that later. * * BUCKETS/ALLOCATION: * * Bcache is primarily designed for caching, which means that in normal * operation all of our available space will be allocated. Thus, we need an * efficient way of deleting things from the cache so we can write new things to * it. * * To do this, we first divide the cache device up into buckets. A bucket is the * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ * works efficiently. * * Each bucket has a 16 bit priority, and an 8 bit generation associated with * it. The gens and priorities for all the buckets are stored contiguously and * packed on disk (in a linked list of buckets - aside from the superblock, all * of bcache's metadata is stored in buckets). * * The priority is used to implement an LRU. We reset a bucket's priority when * we allocate it or on cache it, and every so often we decrement the priority * of each bucket. It could be used to implement something more sophisticated, * if anyone ever gets around to it. * * The generation is used for invalidating buckets. Each pointer also has an 8 * bit generation embedded in it; for a pointer to be considered valid, its gen * must match the gen of the bucket it points into. Thus, to reuse a bucket all * we have to do is increment its gen (and write its new gen to disk; we batch * this up). * * Bcache is entirely COW - we never write twice to a bucket, even buckets that * contain metadata (including btree nodes). * * THE BTREE: * * Bcache is in large part design around the btree. * * At a high level, the btree is just an index of key -> ptr tuples. * * Keys represent extents, and thus have a size field. Keys also have a variable * number of pointers attached to them (potentially zero, which is handy for * invalidating the cache). * * The key itself is an inode:offset pair. The inode number corresponds to a * backing device or a flash only volume. The offset is the ending offset of the * extent within the inode - not the starting offset; this makes lookups * slightly more convenient. * * Pointers contain the cache device id, the offset on that device, and an 8 bit * generation number. More on the gen later. * * Index lookups are not fully abstracted - cache lookups in particular are * still somewhat mixed in with the btree code, but things are headed in that * direction. * * Updates are fairly well abstracted, though. There are two different ways of * updating the btree; insert and replace. * * BTREE_INSERT will just take a list of keys and insert them into the btree - * overwriting (possibly only partially) any extents they overlap with. This is * used to update the index after a write. * * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is * overwriting a key that matches another given key. This is used for inserting * data into the cache after a cache miss, and for background writeback, and for * the moving garbage collector. * * There is no "delete" operation; deleting things from the index is * accomplished by either by invalidating pointers (by incrementing a bucket's * gen) or by inserting a key with 0 pointers - which will overwrite anything * previously present at that location in the index. * * This means that there are always stale/invalid keys in the btree. They're * filtered out by the code that iterates through a btree node, and removed when * a btree node is rewritten. * * BTREE NODES: * * Our unit of allocation is a bucket, and we can't arbitrarily allocate and * free smaller than a bucket - so, that's how big our btree nodes are. * * (If buckets are really big we'll only use part of the bucket for a btree node * - no less than 1/4th - but a bucket still contains no more than a single * btree node. I'd actually like to change this, but for now we rely on the * bucket's gen for deleting btree nodes when we rewrite/split a node.) * * Anyways, btree nodes are big - big enough to be inefficient with a textbook * btree implementation. * * The way this is solved is that btree nodes are internally log structured; we * can append new keys to an existing btree node without rewriting it. This * means each set of keys we write is sorted, but the node is not. * * We maintain this log structure in memory - keeping 1Mb of keys sorted would * be expensive, and we have to distinguish between the keys we have written and * the keys we haven't. So to do a lookup in a btree node, we have to search * each sorted set. But we do merge written sets together lazily, so the cost of * these extra searches is quite low (normally most of the keys in a btree node * will be in one big set, and then there'll be one or two sets that are much * smaller). * * This log structure makes bcache's btree more of a hybrid between a * conventional btree and a compacting data structure, with some of the * advantages of both. * * GARBAGE COLLECTION: * * We can't just invalidate any bucket - it might contain dirty data or * metadata. If it once contained dirty data, other writes might overwrite it * later, leaving no valid pointers into that bucket in the index. * * Thus, the primary purpose of garbage collection is to find buckets to reuse. * It also counts how much valid data it each bucket currently contains, so that * allocation can reuse buckets sooner when they've been mostly overwritten. * * It also does some things that are really internal to the btree * implementation. If a btree node contains pointers that are stale by more than * some threshold, it rewrites the btree node to avoid the bucket's generation * wrapping around. It also merges adjacent btree nodes if they're empty enough. * * THE JOURNAL: * * Bcache's journal is not necessary for consistency; we always strictly * order metadata writes so that the btree and everything else is consistent on * disk in the event of an unclean shutdown, and in fact bcache had writeback * caching (with recovery from unclean shutdown) before journalling was * implemented. * * Rather, the journal is purely a performance optimization; we can't complete a * write until we've updated the index on disk, otherwise the cache would be * inconsistent in the event of an unclean shutdown. This means that without the * journal, on random write workloads we constantly have to update all the leaf * nodes in the btree, and those writes will be mostly empty (appending at most * a few keys each) - highly inefficient in terms of amount of metadata writes, * and it puts more strain on the various btree resorting/compacting code. * * The journal is just a log of keys we've inserted; on startup we just reinsert * all the keys in the open journal entries. That means that when we're updating * a node in the btree, we can wait until a 4k block of keys fills up before * writing them out. * * For simplicity, we only journal updates to leaf nodes; updates to parent * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth * the complexity to deal with journalling them (in particular, journal replay) * - updates to non leaf nodes just happen synchronously (see btree_split()). */ #undef pr_fmt #ifdef __KERNEL__ #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__ #else #define pr_fmt(fmt) "%s() " fmt "\n", __func__ #endif #ifdef CONFIG_BCACHEFS_DEBUG #define ENUMERATED_REF_DEBUG #endif #ifdef __KERNEL__ #define CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS #endif #ifndef dynamic_fault #define dynamic_fault(...) 0 #endif #define race_fault(...) dynamic_fault("bcachefs:race") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcachefs_format.h" #include "errcode.h" #include "opts.h" #include "closure.h" #include "util/clock_types.h" #include "util/enumerated_ref_types.h" #include "util/fast_list.h" #include "util/fifo.h" #include "util/seqmutex.h" #include "util/time_stats.h" #include "util/thread_with_file_types.h" #include "util/util.h" #include "alloc/accounting_types.h" #include "alloc/buckets_types.h" #include "alloc/buckets_waiting_for_journal_types.h" #include "alloc/disk_groups_types.h" #include "alloc/replicas_types.h" #include "alloc/types.h" #include "btree/check_types.h" #include "btree/journal_overlay_types.h" #include "btree/types.h" #include "data/compress_types.h" #include "data/copygc_types.h" #include "data/ec_types.h" #include "data/keylist_types.h" #include "data/nocow_locking_types.h" #include "data/reconcile_types.h" #include "debug/async_objs_types.h" #include "debug/trace.h" #include "fs/quota_types.h" #include "init/error_types.h" #include "init/passes_types.h" #include "init/dev_types.h" #include "journal/types.h" #include "sb/counters_types.h" #include "sb/io_types.h" #include "sb/members_types.h" #include "snapshots/snapshot_types.h" #include "snapshots/subvolume_types.h" #include "vfs/types.h" #define bch2_fs_init_fault(name) \ dynamic_fault("bcachefs:bch_fs_init:" name) #define bch2_meta_read_fault(name) \ dynamic_fault("bcachefs:meta:read:" name) #define bch2_meta_write_fault(name) \ dynamic_fault("bcachefs:meta:write:" name) #ifdef __KERNEL__ #define BCACHEFS_LOG_PREFIX #endif #ifdef BCACHEFS_LOG_PREFIX #define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, bch2_fs_name(_c) #define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", bch2_dev_name(_ca) #define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset) #define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum) #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset) #else #define bch2_log_msg(_c, fmt) fmt #define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name) #define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset) #define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum) #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ "inum %llu offset %llu: " fmt "\n", (_inum), (_offset) #endif #define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n") void bch2_print_str_loglevel(struct bch_fs *, int, const char *); void bch2_print_str(struct bch_fs *, const char *, const char *); __printf(2, 3) void bch2_print_opts(struct bch_opts *, const char *, ...); __printf(2, 3) void __bch2_print(struct bch_fs *c, const char *fmt, ...); #define maybe_dev_to_fs(_c) _Generic((_c), \ struct bch_dev *: ((struct bch_dev *) (_c))->fs, \ struct bch_fs *: (_c)) #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__) #define __bch2_ratelimit(_c, _rs) \ (!(_c)->opts.ratelimit_errors || !__ratelimit(_rs)) #define bch2_ratelimit(_c) \ ({ \ static DEFINE_RATELIMIT_STATE(rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ __bch2_ratelimit(_c, &rs); \ }) #define bch2_print_ratelimited(_c, ...) \ do { \ if (!bch2_ratelimit(_c)) \ bch2_print(_c, __VA_ARGS__); \ } while (0) #define bch_log(c, loglevel, fmt, ...) \ bch2_print(c, loglevel bch2_fmt(c, fmt), ##__VA_ARGS__) #define bch_log_ratelimited(c, loglevel, fmt, ...) \ bch2_print_ratelimited(c, loglevel bch2_fmt(c, fmt), ##__VA_ARGS__) #define bch_err(c, ...) bch_log(c, KERN_ERR, __VA_ARGS__) #define bch_err_ratelimited(c, ...) bch_log_ratelimited(c, KERN_ERR, __VA_ARGS__) #define bch_warn(c, ...) bch_log(c, KERN_WARNING, __VA_ARGS__) #define bch_warn_ratelimited(c, ...) bch_log_ratelimited(c, KERN_WARNING, __VA_ARGS__) #define bch_notice(c, ...) bch_log(c, KERN_NOTICE, __VA_ARGS__) #define bch_info(c, ...) bch_log(c, KERN_INFO, __VA_ARGS__) #define bch_info_ratelimited(c, ...) bch_log_ratelimited(c, KERN_INFO, __VA_ARGS__) #define bch_verbose(c, ...) bch_log(c, KERN_DEBUG, __VA_ARGS__) #define bch_verbose_ratelimited(c, ...) bch_log_ratelimited(c, KERN_DEBUG, __VA_ARGS__) #define bch_dev_log(ca, loglevel, fmt, ...) \ bch2_print(ca->fs, loglevel bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) #define bch_err_dev(ca, ...) bch_dev_log(ca, KERN_ERR, __VA_ARGS__) #define bch_notice_dev(ca, ...) bch_dev_log(ca, KERN_NOTICE, __VA_ARGS__) #define bch_info_dev(ca, ...) bch_dev_log(ca, KERN_INFO, __VA_ARGS__) #define bch_verbose_dev(ca, ...) bch_dev_log(ca, KERN_DEBUG, __VA_ARGS__) #define bch_err_dev_ratelimited(ca, ...) \ do { \ if (!bch2_ratelimit(ca->fs)) \ bch_err_dev(ca, __VA_ARGS__); \ } while (0) static inline bool should_print_err(int err) { return err && !bch2_err_matches(err, BCH_ERR_transaction_restart); } #define bch_err_fn(_c, _ret) \ do { \ if (should_print_err(_ret)) \ bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ } while (0) #define bch_err_fn_ratelimited(_c, _ret) \ do { \ if (should_print_err(_ret)) \ bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ } while (0) #define bch_err_msg(_c, _ret, _msg, ...) \ do { \ if (should_print_err(_ret)) \ bch_err(_c, "%s(): error " _msg " %s", __func__, \ ##__VA_ARGS__, bch2_err_str(_ret)); \ } while (0) #define bch_err_fn_dev(_ca, _ret) \ do { \ if (should_print_err(_ret)) \ bch_err_dev(_ca, "%s(): error %s", __func__, bch2_err_str(_ret));\ } while (0) #define bch_err_msg_dev(_ca, _ret, _msg, ...) \ do { \ if (should_print_err(_ret)) \ bch_err_dev(_ca, "%s(): error " _msg " %s", __func__, \ ##__VA_ARGS__, bch2_err_str(_ret)); \ } while (0) /* Parameters that are useful for debugging, but should always be compiled in: */ #define BCH_DEBUG_PARAMS_ALWAYS() \ BCH_DEBUG_PARAM(key_merging_disabled, \ "Disables merging of extents") \ BCH_DEBUG_PARAM(btree_node_merging_disabled, \ "Disables merging of btree nodes") \ BCH_DEBUG_PARAM(btree_gc_always_rewrite, \ "Causes mark and sweep to compact and rewrite every " \ "btree node it traverses") \ BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \ "Disables rewriting of btree nodes during mark and sweep")\ BCH_DEBUG_PARAM(btree_shrinker_disabled, \ "Disables the shrinker callback for the btree node cache")\ BCH_DEBUG_PARAM(verify_btree_ondisk, \ "Reread btree nodes at various points to verify the " \ "mergesort in the read path against modifications " \ "done in memory") \ BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \ "Don't use the write buffer for backpointers, enabling "\ "extra runtime checks") \ BCH_DEBUG_PARAM(debug_check_btree_locking, \ "Enable additional asserts for btree locking") \ BCH_DEBUG_PARAM(debug_check_iterators, \ "Enables extra verification for btree iterators") \ BCH_DEBUG_PARAM(debug_check_bset_lookups, \ "Enables extra verification for bset lookups") \ BCH_DEBUG_PARAM(debug_check_btree_accounting, \ "Verify btree accounting for keys within a node") \ BCH_DEBUG_PARAM(debug_check_bkey_unpack, \ "Enables extra verification for bkey unpack") /* Parameters that should only be compiled in debug mode: */ #define BCH_DEBUG_PARAMS_DEBUG() \ BCH_DEBUG_PARAM(journal_seq_verify, \ "Store the journal sequence number in the version " \ "number of every btree key, and verify that btree " \ "update ordering is preserved during recovery") \ BCH_DEBUG_PARAM(inject_invalid_keys, \ "Store the journal sequence number in the version " \ "number of every btree key, and verify that btree " \ "update ordering is preserved during recovery") \ BCH_DEBUG_PARAM(test_alloc_startup, \ "Force allocator startup to use the slowpath where it" \ "can't find enough free buckets without invalidating" \ "cached data") \ BCH_DEBUG_PARAM(force_reconstruct_read, \ "Force reads to use the reconstruct path, when reading" \ "from erasure coded extents") \ BCH_DEBUG_PARAM(test_restart_gc, \ "Test restarting mark and sweep gc when bucket gens change") #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG() #ifdef CONFIG_BCACHEFS_DEBUG #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL() #else #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS() #endif #define BCH_DEBUG_PARAM(name, description) extern struct static_key_false bch2_##name; BCH_DEBUG_PARAMS_ALL() #undef BCH_DEBUG_PARAM #define BCH_TIME_STATS() \ x(btree_node_mem_alloc) \ x(btree_node_split) \ x(btree_node_compact) \ x(btree_node_merge) \ x(btree_node_sort) \ x(btree_node_read) \ x(btree_node_read_done) \ x(btree_node_write) \ x(btree_interior_update_foreground) \ x(btree_interior_update_total) \ x(btree_write_buffer_flush) \ x(btree_gc) \ x(data_write) \ x(data_read) \ x(data_promote) \ x(journal_flush_write) \ x(journal_noflush_write) \ x(journal_flush_seq) \ x(blocked_journal_low_on_space) \ x(blocked_journal_low_on_pin) \ x(blocked_journal_max_in_flight) \ x(blocked_journal_max_open) \ x(blocked_key_cache_flush) \ x(blocked_allocate) \ x(blocked_allocate_open_bucket) \ x(blocked_write_buffer_full) \ x(blocked_writeback_throttle) \ x(nocow_lock_contended) enum bch_time_stats { #define x(name) BCH_TIME_##name, BCH_TIME_STATS() #undef x BCH_TIME_STAT_NR }; /* Number of nodes btree coalesce will try to coalesce at once */ #define GC_MERGE_NODES 4U #define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX) struct btree; struct io_count { u64 sectors[2][BCH_DATA_NR]; }; struct discard_in_flight { bool in_progress:1; u64 bucket:63; }; #define BCH_DEV_READ_REFS() \ x(bch2_online_devs) \ x(trans_mark_dev_sbs) \ x(read_fua_test) \ x(sb_field_resize) \ x(write_super) \ x(journal_read) \ x(fs_journal_alloc) \ x(fs_resize_on_mount) \ x(sb_journal_sort) \ x(btree_node_read) \ x(btree_node_read_all_replicas) \ x(btree_node_scrub) \ x(btree_node_write) \ x(btree_node_scan) \ x(btree_verify_replicas) \ x(btree_node_ondisk_to_text) \ x(io_read) \ x(check_extent_checksums) \ x(ec_block) enum bch_dev_read_ref { #define x(n) BCH_DEV_READ_REF_##n, BCH_DEV_READ_REFS() #undef x BCH_DEV_READ_REF_NR, }; #define BCH_DEV_WRITE_REFS() \ x(journal_write) \ x(journal_do_discards) \ x(dev_do_discards) \ x(discard_one_bucket_fast) \ x(do_invalidates) \ x(nocow_flush) \ x(io_write) \ x(ec_block) \ x(ec_bucket_zero) enum bch_dev_write_ref { #define x(n) BCH_DEV_WRITE_REF_##n, BCH_DEV_WRITE_REFS() #undef x BCH_DEV_WRITE_REF_NR, }; struct bucket_bitmap { unsigned long *buckets; u64 nr; struct mutex lock; }; struct bch_dev { struct kobject kobj; #ifdef CONFIG_BCACHEFS_DEBUG atomic_long_t ref; bool dying; unsigned long last_put; #else struct percpu_ref ref; #endif struct completion ref_completion; struct enumerated_ref io_ref[2]; struct bch_fs *fs; u8 dev_idx; /* * Cached version of this device's member info from superblock * Committed by bch2_write_super() -> bch_fs_mi_update() */ struct bch_member_cpu mi; u64 btree_allocated_bitmap_gc; atomic64_t errors[BCH_MEMBER_ERROR_NR]; unsigned long write_errors_start; __uuid_t uuid; char name[BDEVNAME_SIZE]; struct bch_sb_handle disk_sb; struct bch_sb *sb_read_scratch; int sb_write_error; dev_t dev; atomic_t flush_seq; struct bch_devs_mask self; /* * Buckets: * Per-bucket arrays are protected by either rcu_read_lock or * state_lock, for device resize. */ GENRADIX(struct bucket) buckets_gc; struct bucket_gens __rcu *bucket_gens; u8 *oldest_gen; unsigned long *buckets_nouse; struct bucket_bitmap bucket_backpointer_mismatch; struct bucket_bitmap bucket_backpointer_empty; struct bch_dev_usage_full __percpu *usage; /* Allocator: */ u64 alloc_cursor[3]; unsigned nr_open_buckets; unsigned nr_partial_buckets; unsigned nr_btree_reserve; struct work_struct invalidate_work; struct work_struct discard_work; struct mutex discard_buckets_in_flight_lock; DARRAY(struct discard_in_flight) discard_buckets_in_flight; struct work_struct discard_fast_work; atomic64_t rebalance_work; struct journal_device journal; u64 prev_journal_sector; struct work_struct io_error_work; /* The rest of this all shows up in sysfs */ atomic64_t cur_latency[2]; struct bch2_time_stats_quantiles io_latency[2]; #define CONGESTED_MAX 1024 atomic_t congested; u64 congested_last; struct io_count __percpu *io_done; }; /* * initial_gc_unfixed * error * topology error */ #define BCH_FS_FLAGS() \ x(new_fs) \ x(started) \ x(clean_recovery) \ x(btree_running) \ x(accounting_replay_done) \ x(may_go_rw) \ x(may_upgrade_downgrade) \ x(rw) \ x(rw_init_done) \ x(was_rw) \ x(stopping) \ x(emergency_ro) \ x(going_ro) \ x(write_disable_complete) \ x(clean_shutdown) \ x(in_recovery) \ x(in_fsck) \ x(initial_gc_unfixed) \ x(need_delete_dead_snapshots) \ x(error) \ x(topology_error) \ x(errors_fixed) \ x(errors_fixed_silent) \ x(errors_not_fixed) \ x(no_invalid_checks) \ x(discard_mount_opt_set) \ enum bch_fs_flags { #define x(n) BCH_FS_##n, BCH_FS_FLAGS() #undef x }; struct btree_debug { unsigned id; }; #define BCH_LINK_MAX U32_MAX struct journal_seq_blacklist_table { size_t nr; struct journal_seq_blacklist_table_entry { u64 start; u64 end; bool dirty; } entries[]; }; #define BCH_WRITE_REFS() \ x(journal) \ x(trans) \ x(write) \ x(promote) \ x(node_rewrite) \ x(stripe_create) \ x(stripe_delete) \ x(reflink) \ x(fallocate) \ x(fsync) \ x(dio_write) \ x(discard) \ x(discard_fast) \ x(check_discard_freespace_key) \ x(invalidate) \ x(delete_dead_snapshots) \ x(gc_gens) \ x(snapshot_delete_pagecache) \ x(sysfs) \ x(btree_write_buffer) \ x(btree_node_scrub) \ x(async_recovery_passes) \ x(ioctl_data) enum bch_write_ref { #define x(n) BCH_WRITE_REF_##n, BCH_WRITE_REFS() #undef x BCH_WRITE_REF_NR, }; #define BCH_FS_DEFAULT_UTF8_ENCODING UNICODE_AGE(12, 1, 0) struct bch_fs { struct closure cl; struct list_head list; struct kobject kobj; struct kobject counters_kobj; struct kobject internal; struct kobject opts_dir; struct kobject time_stats; unsigned long flags; int minor; struct device *chardev; struct super_block *vfs_sb; dev_t dev; char name[40]; struct stdio_redirect *stdio; struct task_struct *stdio_filter; unsigned loglevel; unsigned prev_loglevel; /* * Certain operations are only allowed in single threaded mode, during * recovery, and we want to assert that this is the case: */ struct task_struct *recovery_task; /* ro/rw, add/remove/resize devices: */ struct rw_semaphore state_lock; /* Counts outstanding writes, for clean transition to read-only */ struct enumerated_ref writes; /* * Analagous to c->writes, for asynchronous ops that don't necessarily * need fs to be read-write */ refcount_t ro_ref; wait_queue_head_t ro_ref_wait; struct work_struct read_only_work; struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX]; struct bch_devs_mask devs_online; struct bch_devs_mask devs_removed; struct bch_devs_mask devs_rotational; u8 extent_type_u64s[31]; u8 extent_types_known; struct bch_opts opts; atomic_t opt_change_cookie; struct bch_sb_cpu sb; struct bch_sb_handle disk_sb; struct closure sb_write; struct mutex sb_lock; unsigned long incompat_versions_requested[BITS_TO_LONGS(BCH_VERSION_MINOR(bcachefs_metadata_version_current))]; struct unicode_map *cf_encoding; unsigned short block_bits; /* ilog2(block_size) */ struct delayed_work maybe_schedule_btree_bitmap_gc; struct bch_fs_counters counters; struct bch2_time_stats times[BCH_TIME_STAT_NR]; struct bch_fs_errors errors; #ifdef CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS struct async_obj_list async_objs[BCH_ASYNC_OBJ_NR]; #endif struct journal journal; u64 journal_replay_seq_start; u64 journal_replay_seq_end; GENRADIX(struct journal_replay *) journal_entries; u64 journal_entries_base_seq; struct journal_keys journal_keys; struct list_head journal_iters; struct journal_seq_blacklist_table *journal_seq_blacklist_table; struct bch_fs_recovery recovery; struct bch_fs_btree btree; struct bch_fs_gc gc; struct bch_fs_gc_gens gc_gens; struct bch_accounting_mem accounting; struct bch_replicas_cpu replicas; struct bch_disk_groups_cpu __rcu *disk_groups; struct bch_fs_capacity capacity; struct bch_fs_allocator allocator; struct buckets_waiting_for_journal buckets_waiting_for_journal; struct bch_fs_snapshots snapshots; spinlock_t write_error_lock; /* * Use a dedicated wq for write ref holder tasks. Required to avoid * dependency problems with other wq tasks that can block on ref * draining, such as read-only transition. */ struct workqueue_struct *write_ref_wq; struct workqueue_struct *promote_wq; struct semaphore __percpu *promote_limit; struct io_clock io_clock[2]; struct journal_entry_res clock_journal_res; /* IO PATH */ struct workqueue_struct *btree_update_wq; struct bio_set bio_read; struct bio_set bio_read_split; struct bio_set bio_write; struct bio_set replica_set; struct mutex bio_bounce_pages_lock; mempool_t bio_bounce_bufs; struct bucket_nocow_lock_table nocow_locks; struct rhashtable promote_table; struct bch_key chacha20_key; bool chacha20_key_set; atomic64_t key_version; /* MOVE.C */ struct list_head moving_context_list; struct mutex moving_context_lock; struct bch_fs_compress compress; struct bch_fs_reconcile reconcile; struct bch_fs_copygc copygc; struct bch_fs_ec ec; /* REFLINK */ reflink_gc_table reflink_gc_table; size_t reflink_gc_nr; #ifndef NO_BCACHEFS_FS struct bch_fs_vfs vfs; #endif /* QUOTAS */ struct bch_memquota_type quotas[QTYP_NR]; /* DEBUG JUNK */ struct dentry *fs_debug_dir; struct dentry *btree_debug_dir; struct dentry *async_obj_dir; struct btree_debug btree_debug[BTREE_ID_NR]; struct btree *verify_data; struct btree_node *verify_ondisk; struct mutex verify_lock; }; static inline int __bch2_err_throw(struct bch_fs *c, int err) { this_cpu_inc(c->counters.now[BCH_COUNTER_error_throw]); trace_error_throw(c, bch2_err_str(err)); return err; } #define bch_err_throw(_c, _err) __bch2_err_throw(_c, -BCH_ERR_##_err) static inline bool bch2_ro_ref_tryget(struct bch_fs *c) { if (test_bit(BCH_FS_stopping, &c->flags)) return false; return refcount_inc_not_zero(&c->ro_ref); } static inline void bch2_ro_ref_put(struct bch_fs *c) { if (c && refcount_dec_and_test(&c->ro_ref)) wake_up(&c->ro_ref_wait); } static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages) { #ifndef NO_BCACHEFS_FS if (c->vfs_sb) c->vfs_sb->s_bdi->ra_pages = ra_pages; #endif } static inline unsigned bucket_bytes(const struct bch_dev *ca) { return ca->mi.bucket_size << 9; } static inline unsigned block_bytes(const struct bch_fs *c) { return c->opts.block_size; } static inline unsigned block_sectors(const struct bch_fs *c) { return c->opts.block_size >> 9; } static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time) { struct timespec64 t; s64 sec; s32 rem; time += c->sb.time_base_lo; sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem); set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit); return t; } static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts) { return (ts.tv_sec * c->sb.time_units_per_sec + (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo; } static inline s64 bch2_current_time(const struct bch_fs *c) { struct timespec64 now; ktime_get_coarse_real_ts64(&now); return timespec_to_bch2_time(c, now); } static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw) { return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX); } static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c) { struct stdio_redirect *stdio = c->stdio; if (c->stdio_filter && c->stdio_filter != current) stdio = NULL; return stdio; } static inline unsigned metadata_replicas_required(struct bch_fs *c) { return min(c->opts.metadata_replicas, c->opts.metadata_replicas_required); } static inline unsigned data_replicas_required(struct bch_fs *c) { return min(c->opts.data_replicas, c->opts.data_replicas_required); } #define BKEY_PADDED_ONSTACK(key, pad) \ struct { struct bkey_i key; __u64 key ## _pad[pad]; } /* * This is needed because discard is both a filesystem option and a device * option, and mount options are supposed to apply to that mount and not be * persisted, i.e. if it's set as a mount option we can't propagate it to the * device. */ static inline bool bch2_discard_opt_enabled(struct bch_fs *c, struct bch_dev *ca) { return test_bit(BCH_FS_discard_mount_opt_set, &c->flags) ? c->opts.discard : ca->mi.discard; } static inline int bch2_fs_casefold_enabled(struct bch_fs *c) { if (!IS_ENABLED(CONFIG_UNICODE)) return bch_err_throw(c, no_casefolding_without_utf8); if (c->opts.casefold_disabled) return bch_err_throw(c, casefolding_disabled); return 0; } static inline const char *strip_bch2(const char *msg) { if (!strncmp("bch2_", msg, 5)) return msg + 5; return msg; } static inline const char *bch2_fs_name(const struct bch_fs *c) { return c->name; } static inline const char *bch2_dev_name(const struct bch_dev *ca) { return ca->name; } static inline bool bch2_dev_rotational(struct bch_fs *c, unsigned dev) { return dev != BCH_SB_MEMBER_INVALID && test_bit(dev, c->devs_rotational.d); } void __bch2_log_msg_start(const char *, struct printbuf *); static inline void bch2_log_msg_start(struct bch_fs *c, struct printbuf *out) { __bch2_log_msg_start(c->name, out); } struct bch_log_msg { struct bch_fs *c; u8 loglevel; struct printbuf m; }; static inline void bch2_log_msg_exit(struct bch_log_msg *msg) { if (!msg->m.suppress) bch2_print_str_loglevel(msg->c, msg->loglevel, msg->m.buf); printbuf_exit(&msg->m); } static inline struct bch_log_msg bch2_log_msg_init(struct bch_fs *c, unsigned loglevel, bool suppress) { struct printbuf buf = PRINTBUF; bch2_log_msg_start(c, &buf); return (struct bch_log_msg) { .c = c, .loglevel = loglevel, .m = buf, }; } DEFINE_CLASS(bch_log_msg, struct bch_log_msg, bch2_log_msg_exit(&_T), bch2_log_msg_init(c, 3, false), /* 3 == KERN_ERR */ struct bch_fs *c) EXTEND_CLASS(bch_log_msg, _level, bch2_log_msg_init(c, loglevel, false), struct bch_fs *c, unsigned loglevel) /* * Open coded EXTEND_CLASS, because we need the constructor to be a macro for * ratelimiting to work correctly */ typedef class_bch_log_msg_t class_bch_log_msg_ratelimited_t; static inline void class_bch_log_msg_ratelimited_destructor(class_bch_log_msg_t *p) { bch2_log_msg_exit(p); } #define class_bch_log_msg_ratelimited_constructor(_c) bch2_log_msg_init(_c, 3, bch2_ratelimit(_c)) #endif /* _BCACHEFS_H */