#include "bcachefs.h" #include "journal.h" #include "journal_io.h" #include "journal_reclaim.h" #include "replicas.h" #include "super.h" /* Free space calculations: */ unsigned bch2_journal_dev_buckets_available(struct journal *j, struct journal_device *ja) { struct bch_fs *c = container_of(j, struct bch_fs, journal); unsigned next = (ja->cur_idx + 1) % ja->nr; unsigned available = (ja->last_idx + ja->nr - next) % ja->nr; /* * Allocator startup needs some journal space before we can do journal * replay: */ if (available && test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) available--; /* * Don't use the last bucket unless writing the new last_seq * will make another bucket available: */ if (available && journal_last_seq(j) <= ja->bucket_seq[ja->last_idx]) --available; return available; } void bch2_journal_space_available(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bch_dev *ca; unsigned sectors_next_entry = UINT_MAX; unsigned sectors_total = UINT_MAX; unsigned max_entry_size = min(j->buf[0].buf_size >> 9, j->buf[1].buf_size >> 9); unsigned i, nr_online = 0, nr_devs = 0; unsigned unwritten_sectors = j->reservations.prev_buf_unwritten ? journal_prev_buf(j)->sectors : 0; int ret = 0; lockdep_assert_held(&j->lock); rcu_read_lock(); for_each_member_device_rcu(ca, c, i, &c->rw_devs[BCH_DATA_JOURNAL]) { struct journal_device *ja = &ca->journal; unsigned buckets_this_device, sectors_this_device; if (!ja->nr) continue; nr_online++; buckets_this_device = bch2_journal_dev_buckets_available(j, ja); sectors_this_device = ja->sectors_free; /* * We that we don't allocate the space for a journal entry * until we write it out - thus, account for it here: */ if (unwritten_sectors >= sectors_this_device) { if (!buckets_this_device) continue; buckets_this_device--; sectors_this_device = ca->mi.bucket_size; } sectors_this_device -= unwritten_sectors; if (sectors_this_device < ca->mi.bucket_size && buckets_this_device) { buckets_this_device--; sectors_this_device = ca->mi.bucket_size; } if (!sectors_this_device) continue; sectors_next_entry = min(sectors_next_entry, sectors_this_device); sectors_total = min(sectors_total, buckets_this_device * ca->mi.bucket_size + sectors_this_device); max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); nr_devs++; } rcu_read_unlock(); if (nr_online < c->opts.metadata_replicas_required) { ret = -EROFS; sectors_next_entry = 0; } else if (!sectors_next_entry || nr_devs < min_t(unsigned, nr_online, c->opts.metadata_replicas)) { ret = -ENOSPC; sectors_next_entry = 0; } else if (!fifo_free(&j->pin)) { ret = -ENOSPC; sectors_next_entry = 0; } j->cur_entry_sectors = sectors_next_entry; j->cur_entry_error = ret; if (!ret) journal_wake(j); } /* Discards - last part of journal reclaim: */ static bool should_discard_bucket(struct journal *j, struct journal_device *ja) { bool ret; spin_lock(&j->lock); ret = ja->nr && ja->last_idx != ja->cur_idx && ja->bucket_seq[ja->last_idx] < j->last_seq_ondisk; spin_unlock(&j->lock); return ret; } /* * Advance ja->last_idx as long as it points to buckets that are no longer * dirty, issuing discards if necessary: */ static void journal_do_discards(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bch_dev *ca; unsigned iter; mutex_lock(&j->reclaim_lock); for_each_rw_member(ca, c, iter) { struct journal_device *ja = &ca->journal; while (should_discard_bucket(j, ja)) { if (ca->mi.discard && blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, ja->buckets[ja->last_idx]), ca->mi.bucket_size, GFP_NOIO, 0); spin_lock(&j->lock); ja->last_idx = (ja->last_idx + 1) % ja->nr; bch2_journal_space_available(j); spin_unlock(&j->lock); } } mutex_unlock(&j->reclaim_lock); } /* * Journal entry pinning - machinery for holding a reference on a given journal * entry, holding it open to ensure it gets replayed during recovery: */ static void bch2_journal_reclaim_fast(struct journal *j) { struct journal_entry_pin_list temp; bool popped = false; lockdep_assert_held(&j->lock); /* * Unpin journal entries whose reference counts reached zero, meaning * all btree nodes got written out */ while (!fifo_empty(&j->pin) && !atomic_read(&fifo_peek_front(&j->pin).count)) { BUG_ON(!list_empty(&fifo_peek_front(&j->pin).list)); BUG_ON(!fifo_pop(&j->pin, temp)); popped = true; } if (popped) bch2_journal_space_available(j); } void bch2_journal_pin_put(struct journal *j, u64 seq) { struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); if (atomic_dec_and_test(&pin_list->count)) { spin_lock(&j->lock); bch2_journal_reclaim_fast(j); spin_unlock(&j->lock); } } static inline void __journal_pin_add(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); BUG_ON(journal_pin_active(pin)); BUG_ON(!atomic_read(&pin_list->count)); atomic_inc(&pin_list->count); pin->seq = seq; pin->flush = flush_fn; list_add(&pin->list, flush_fn ? &pin_list->list : &pin_list->flushed); /* * If the journal is currently full, we might want to call flush_fn * immediately: */ journal_wake(j); } void bch2_journal_pin_add(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); __journal_pin_add(j, seq, pin, flush_fn); spin_unlock(&j->lock); } static inline void __journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { struct journal_entry_pin_list *pin_list; if (!journal_pin_active(pin)) return; pin_list = journal_seq_pin(j, pin->seq); pin->seq = 0; list_del_init(&pin->list); /* * Unpinning a journal entry make make journal_next_bucket() succeed, if * writing a new last_seq will now make another bucket available: */ if (atomic_dec_and_test(&pin_list->count) && pin_list == &fifo_peek_front(&j->pin)) bch2_journal_reclaim_fast(j); else if (fifo_used(&j->pin) == 1 && atomic_read(&pin_list->count) == 1) journal_wake(j); } void bch2_journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { spin_lock(&j->lock); __journal_pin_drop(j, pin); spin_unlock(&j->lock); } void bch2_journal_pin_update(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); if (pin->seq != seq) { __journal_pin_drop(j, pin); __journal_pin_add(j, seq, pin, flush_fn); } else { struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); list_move(&pin->list, &pin_list->list); } spin_unlock(&j->lock); } void bch2_journal_pin_add_if_older(struct journal *j, struct journal_entry_pin *src_pin, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); if (journal_pin_active(src_pin) && (!journal_pin_active(pin) || src_pin->seq < pin->seq)) { __journal_pin_drop(j, pin); __journal_pin_add(j, src_pin->seq, pin, flush_fn); } spin_unlock(&j->lock); } void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) { BUG_ON(journal_pin_active(pin)); wait_event(j->pin_flush_wait, j->flush_in_progress != pin); } /* * Journal reclaim: flush references to open journal entries to reclaim space in * the journal * * May be done by the journal code in the background as needed to free up space * for more journal entries, or as part of doing a clean shutdown, or to migrate * data off of a specific device: */ static struct journal_entry_pin * journal_get_next_pin(struct journal *j, u64 max_seq, u64 *seq) { struct journal_entry_pin_list *pin_list; struct journal_entry_pin *ret = NULL; spin_lock(&j->lock); fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) if (*seq > max_seq || (ret = list_first_entry_or_null(&pin_list->list, struct journal_entry_pin, list))) break; if (ret) { list_move(&ret->list, &pin_list->flushed); BUG_ON(j->flush_in_progress); j->flush_in_progress = ret; j->last_flushed = jiffies; } spin_unlock(&j->lock); return ret; } static void journal_flush_pins(struct journal *j, u64 seq_to_flush, unsigned min_nr) { struct journal_entry_pin *pin; u64 seq; lockdep_assert_held(&j->reclaim_lock); while ((pin = journal_get_next_pin(j, min_nr ? U64_MAX : seq_to_flush, &seq))) { if (min_nr) min_nr--; pin->flush(j, pin, seq); BUG_ON(j->flush_in_progress != pin); j->flush_in_progress = NULL; wake_up(&j->pin_flush_wait); } } /** * bch2_journal_reclaim_work - free up journal buckets * * Background journal reclaim writes out btree nodes. It should be run * early enough so that we never completely run out of journal buckets. * * High watermarks for triggering background reclaim: * - FIFO has fewer than 512 entries left * - fewer than 25% journal buckets free * * Background reclaim runs until low watermarks are reached: * - FIFO has more than 1024 entries left * - more than 50% journal buckets free * * As long as a reclaim can complete in the time it takes to fill up * 512 journal entries or 25% of all journal buckets, then * journal_next_bucket() should not stall. */ void bch2_journal_reclaim_work(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, journal.reclaim_work); struct journal *j = &c->journal; struct bch_dev *ca; unsigned iter, bucket_to_flush, min_nr = 0; u64 seq_to_flush = 0; journal_do_discards(j); mutex_lock(&j->reclaim_lock); spin_lock(&j->lock); for_each_rw_member(ca, c, iter) { struct journal_device *ja = &ca->journal; if (!ja->nr) continue; /* Try to keep the journal at most half full: */ bucket_to_flush = (ja->cur_idx + (ja->nr >> 1)) % ja->nr; seq_to_flush = max_t(u64, seq_to_flush, ja->bucket_seq[bucket_to_flush]); } /* Also flush if the pin fifo is more than half full */ seq_to_flush = max_t(s64, seq_to_flush, (s64) journal_cur_seq(j) - (j->pin.size >> 1)); spin_unlock(&j->lock); /* * If it's been longer than j->reclaim_delay_ms since we last flushed, * make sure to flush at least one journal pin: */ if (time_after(jiffies, j->last_flushed + msecs_to_jiffies(j->reclaim_delay_ms))) min_nr = 1; journal_flush_pins(j, seq_to_flush, min_nr); mutex_unlock(&j->reclaim_lock); if (!test_bit(BCH_FS_RO, &c->flags)) queue_delayed_work(c->journal_reclaim_wq, &j->reclaim_work, msecs_to_jiffies(j->reclaim_delay_ms)); } static int journal_flush_done(struct journal *j, u64 seq_to_flush) { int ret; ret = bch2_journal_error(j); if (ret) return ret; mutex_lock(&j->reclaim_lock); journal_flush_pins(j, seq_to_flush, 0); spin_lock(&j->lock); /* * If journal replay hasn't completed, the unreplayed journal entries * hold refs on their corresponding sequence numbers */ ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) || journal_last_seq(j) > seq_to_flush || (fifo_used(&j->pin) == 1 && atomic_read(&fifo_peek_front(&j->pin).count) == 1); spin_unlock(&j->lock); mutex_unlock(&j->reclaim_lock); return ret; } void bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) { if (!test_bit(JOURNAL_STARTED, &j->flags)) return; closure_wait_event(&j->async_wait, journal_flush_done(j, seq_to_flush)); } int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_entry_pin_list *p; u64 iter, seq = 0; int ret = 0; spin_lock(&j->lock); fifo_for_each_entry_ptr(p, &j->pin, iter) if (dev_idx >= 0 ? bch2_dev_list_has_dev(p->devs, dev_idx) : p->devs.nr < c->opts.metadata_replicas) seq = iter; spin_unlock(&j->lock); bch2_journal_flush_pins(j, seq); ret = bch2_journal_error(j); if (ret) return ret; mutex_lock(&c->replicas_gc_lock); bch2_replicas_gc_start(c, 1 << BCH_DATA_JOURNAL); seq = 0; spin_lock(&j->lock); while (!ret && seq < j->pin.back) { struct bch_replicas_padded replicas; seq = max(seq, journal_last_seq(j)); bch2_devlist_to_replicas(&replicas.e, BCH_DATA_JOURNAL, journal_seq_pin(j, seq)->devs); seq++; spin_unlock(&j->lock); ret = bch2_mark_replicas(c, &replicas.e); spin_lock(&j->lock); } spin_unlock(&j->lock); ret = bch2_replicas_gc_end(c, ret); mutex_unlock(&c->replicas_gc_lock); return ret; }