#ifndef NO_BCACHEFS_FS #include "bcachefs.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "error.h" #include "fs.h" #include "fs-io.h" #include "fsck.h" #include "inode.h" #include "journal.h" #include "io.h" #include "keylist.h" #include #include #include #include #include #include #include #include #include #include #include struct i_sectors_hook { struct extent_insert_hook hook; struct bch_inode_info *inode; s64 sectors; u64 new_i_size; unsigned flags; unsigned appending:1; }; struct bchfs_write_op { struct bch_inode_info *inode; s64 sectors_added; bool is_dio; bool unalloc; u64 new_i_size; /* must be last: */ struct bch_write_op op; }; struct bch_writepage_io { struct closure cl; /* must be last: */ struct bchfs_write_op op; }; struct dio_write { struct closure cl; struct kiocb *req; struct bch_fs *c; loff_t offset; struct iovec *iovec; struct iovec inline_vecs[UIO_FASTIOV]; struct iov_iter iter; struct task_struct *task; /* must be last: */ struct bchfs_write_op iop; }; struct dio_read { struct closure cl; struct kiocb *req; long ret; struct bch_read_bio rbio; }; /* pagecache_block must be held */ static int write_invalidate_inode_pages_range(struct address_space *mapping, loff_t start, loff_t end) { int ret; /* * XXX: the way this is currently implemented, we can spin if a process * is continually redirtying a specific page */ do { if (!mapping->nrpages && !mapping->nrexceptional) return 0; ret = filemap_write_and_wait_range(mapping, start, end); if (ret) break; if (!mapping->nrpages) return 0; ret = invalidate_inode_pages2_range(mapping, start >> PAGE_SHIFT, end >> PAGE_SHIFT); } while (ret == -EBUSY); return ret; } /* i_size updates: */ static int inode_set_size(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { loff_t *new_i_size = p; lockdep_assert_held(&inode->ei_update_lock); bi->bi_size = *new_i_size; return 0; } static int __must_check bch2_write_inode_size(struct bch_fs *c, struct bch_inode_info *inode, loff_t new_size) { return __bch2_write_inode(c, inode, inode_set_size, &new_size); } static void __i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, int sectors) { inode->v.i_blocks += sectors; } static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, int sectors) { mutex_lock(&inode->ei_update_lock); __i_sectors_acct(c, inode, sectors); mutex_unlock(&inode->ei_update_lock); } /* i_sectors accounting: */ static enum btree_insert_ret i_sectors_hook_fn(struct extent_insert_hook *hook, struct bpos committed_pos, struct bpos next_pos, struct bkey_s_c k, const struct bkey_i *insert) { struct i_sectors_hook *h = container_of(hook, struct i_sectors_hook, hook); s64 sectors = next_pos.offset - committed_pos.offset; int sign = bkey_extent_is_allocation(&insert->k) - (k.k && bkey_extent_is_allocation(k.k)); EBUG_ON(!(h->inode->ei_inode.bi_flags & BCH_INODE_I_SECTORS_DIRTY)); h->sectors += sectors * sign; return BTREE_INSERT_OK; } static int i_sectors_dirty_finish_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct i_sectors_hook *h = p; if (h->new_i_size != U64_MAX && (!h->appending || h->new_i_size > bi->bi_size)) bi->bi_size = h->new_i_size; bi->bi_sectors += h->sectors; bi->bi_flags &= ~h->flags; return 0; } static int i_sectors_dirty_finish(struct bch_fs *c, struct i_sectors_hook *h) { int ret; mutex_lock(&h->inode->ei_update_lock); if (h->new_i_size != U64_MAX) i_size_write(&h->inode->v, h->new_i_size); __i_sectors_acct(c, h->inode, h->sectors); ret = __bch2_write_inode(c, h->inode, i_sectors_dirty_finish_fn, h); mutex_unlock(&h->inode->ei_update_lock); h->sectors = 0; return ret; } static int i_sectors_dirty_start_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct i_sectors_hook *h = p; if (h->flags & BCH_INODE_I_SIZE_DIRTY) bi->bi_size = h->new_i_size; bi->bi_flags |= h->flags; return 0; } static int i_sectors_dirty_start(struct bch_fs *c, struct i_sectors_hook *h) { int ret; mutex_lock(&h->inode->ei_update_lock); ret = __bch2_write_inode(c, h->inode, i_sectors_dirty_start_fn, h); mutex_unlock(&h->inode->ei_update_lock); return ret; } static inline struct i_sectors_hook i_sectors_hook_init(struct bch_inode_info *inode, unsigned flags) { return (struct i_sectors_hook) { .hook.fn = i_sectors_hook_fn, .inode = inode, .sectors = 0, .new_i_size = U64_MAX, .flags = flags|BCH_INODE_I_SECTORS_DIRTY, }; } /* normal i_size/i_sectors update machinery: */ struct bchfs_extent_trans_hook { struct bchfs_write_op *op; struct extent_insert_hook hook; struct bch_inode_unpacked inode_u; struct bkey_inode_buf inode_p; bool need_inode_update; }; static enum btree_insert_ret bchfs_extent_update_hook(struct extent_insert_hook *hook, struct bpos committed_pos, struct bpos next_pos, struct bkey_s_c k, const struct bkey_i *insert) { struct bchfs_extent_trans_hook *h = container_of(hook, struct bchfs_extent_trans_hook, hook); struct bch_inode_info *inode = h->op->inode; int sign = bkey_extent_is_allocation(&insert->k) - (k.k && bkey_extent_is_allocation(k.k)); s64 sectors = (s64) (next_pos.offset - committed_pos.offset) * sign; u64 offset = min(next_pos.offset << 9, h->op->new_i_size); bool do_pack = false; if (h->op->unalloc && !bch2_extent_is_fully_allocated(k)) return BTREE_INSERT_ENOSPC; BUG_ON((next_pos.offset << 9) > round_up(offset, PAGE_SIZE)); /* XXX: inode->i_size locking */ if (offset > inode->ei_inode.bi_size) { if (!h->need_inode_update) { h->need_inode_update = true; return BTREE_INSERT_NEED_TRAVERSE; } BUG_ON(h->inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY); h->inode_u.bi_size = offset; do_pack = true; inode->ei_inode.bi_size = offset; if (h->op->is_dio) i_size_write(&inode->v, offset); } if (sectors) { if (!h->need_inode_update) { h->need_inode_update = true; return BTREE_INSERT_NEED_TRAVERSE; } h->inode_u.bi_sectors += sectors; do_pack = true; h->op->sectors_added += sectors; } if (do_pack) bch2_inode_pack(&h->inode_p, &h->inode_u); return BTREE_INSERT_OK; } static int bchfs_write_index_update(struct bch_write_op *wop) { struct bchfs_write_op *op = container_of(wop, struct bchfs_write_op, op); struct keylist *keys = &op->op.insert_keys; struct btree_iter extent_iter, inode_iter; struct bchfs_extent_trans_hook hook; struct bkey_i *k = bch2_keylist_front(keys); s64 orig_sectors_added = op->sectors_added; int ret; BUG_ON(k->k.p.inode != op->inode->v.i_ino); bch2_btree_iter_init(&extent_iter, wop->c, BTREE_ID_EXTENTS, bkey_start_pos(&bch2_keylist_front(keys)->k), BTREE_ITER_INTENT); bch2_btree_iter_init(&inode_iter, wop->c, BTREE_ID_INODES, POS(extent_iter.pos.inode, 0), BTREE_ITER_INTENT); hook.op = op; hook.hook.fn = bchfs_extent_update_hook; hook.need_inode_update = false; do { ret = bch2_btree_iter_traverse(&extent_iter); if (ret) goto err; /* XXX: inode->i_size locking */ k = bch2_keylist_front(keys); if (min(k->k.p.offset << 9, op->new_i_size) > op->inode->ei_inode.bi_size) hook.need_inode_update = true; if (hook.need_inode_update) { struct bkey_s_c inode; if (!btree_iter_linked(&inode_iter)) bch2_btree_iter_link(&extent_iter, &inode_iter); inode = bch2_btree_iter_peek_with_holes(&inode_iter); if ((ret = btree_iter_err(inode))) goto err; if (WARN_ONCE(inode.k->type != BCH_INODE_FS, "inode %llu not found when updating", extent_iter.pos.inode)) { ret = -ENOENT; break; } if (WARN_ONCE(bkey_bytes(inode.k) > sizeof(hook.inode_p), "inode %llu too big (%zu bytes, buf %zu)", extent_iter.pos.inode, bkey_bytes(inode.k), sizeof(hook.inode_p))) { ret = -ENOENT; break; } bkey_reassemble(&hook.inode_p.inode.k_i, inode); ret = bch2_inode_unpack(bkey_s_c_to_inode(inode), &hook.inode_u); if (WARN_ONCE(ret, "error %i unpacking inode %llu", ret, extent_iter.pos.inode)) { ret = -ENOENT; break; } ret = bch2_btree_insert_at(wop->c, &wop->res, &hook.hook, op_journal_seq(wop), BTREE_INSERT_NOFAIL|BTREE_INSERT_ATOMIC, BTREE_INSERT_ENTRY(&extent_iter, k), BTREE_INSERT_ENTRY_EXTRA_RES(&inode_iter, &hook.inode_p.inode.k_i, 2)); } else { ret = bch2_btree_insert_at(wop->c, &wop->res, &hook.hook, op_journal_seq(wop), BTREE_INSERT_NOFAIL|BTREE_INSERT_ATOMIC, BTREE_INSERT_ENTRY(&extent_iter, k)); } BUG_ON(bkey_cmp(extent_iter.pos, bkey_start_pos(&k->k))); BUG_ON(!ret != !k->k.size); err: if (ret == -EINTR) continue; if (ret) break; BUG_ON(bkey_cmp(extent_iter.pos, k->k.p) < 0); bch2_keylist_pop_front(keys); } while (!bch2_keylist_empty(keys)); bch2_btree_iter_unlock(&extent_iter); bch2_btree_iter_unlock(&inode_iter); if (op->is_dio) i_sectors_acct(wop->c, op->inode, op->sectors_added - orig_sectors_added); return ret; } static inline void bch2_fswrite_op_init(struct bchfs_write_op *op, struct bch_fs *c, struct bch_inode_info *inode, struct bch_io_opts opts, bool is_dio) { op->inode = inode; op->sectors_added = 0; op->is_dio = is_dio; op->unalloc = false; op->new_i_size = U64_MAX; bch2_write_op_init(&op->op, c); op->op.csum_type = bch2_data_checksum_type(c, opts.data_checksum); op->op.compression_type = bch2_compression_opt_to_type(opts.compression); op->op.devs = c->fastest_devs; op->op.index_update_fn = bchfs_write_index_update; op_journal_seq_set(&op->op, &inode->ei_journal_seq); } static inline struct bch_io_opts io_opts(struct bch_fs *c, struct bch_inode_info *inode) { struct bch_io_opts opts = bch2_opts_to_inode_opts(c->opts); bch2_io_opts_apply(&opts, bch2_inode_opts_get(&inode->ei_inode)); return opts; } /* page state: */ /* stored in page->private: */ /* * bch_page_state has to (unfortunately) be manipulated with cmpxchg - we could * almost protected it with the page lock, except that bch2_writepage_io_done has * to update the sector counts (and from interrupt/bottom half context). */ struct bch_page_state { union { struct { /* * page is _fully_ written on disk, and not compressed - which means to * write this page we don't have to reserve space (the new write will * never take up more space on disk than what it's overwriting) */ unsigned allocated:1; /* Owns PAGE_SECTORS sized reservation: */ unsigned reserved:1; unsigned nr_replicas:4; /* * Number of sectors on disk - for i_blocks * Uncompressed size, not compressed size: */ u8 sectors; u8 dirty_sectors; }; /* for cmpxchg: */ unsigned long v; }; }; #define page_state_cmpxchg(_ptr, _new, _expr) \ ({ \ unsigned long _v = READ_ONCE((_ptr)->v); \ struct bch_page_state _old; \ \ do { \ _old.v = _new.v = _v; \ _expr; \ \ EBUG_ON(_new.sectors + _new.dirty_sectors > PAGE_SECTORS);\ } while (_old.v != _new.v && \ (_v = cmpxchg(&(_ptr)->v, _old.v, _new.v)) != _old.v); \ \ _old; \ }) static inline struct bch_page_state *page_state(struct page *page) { struct bch_page_state *s = (void *) &page->private; BUILD_BUG_ON(sizeof(*s) > sizeof(page->private)); if (!PagePrivate(page)) SetPagePrivate(page); return s; } static void bch2_put_page_reservation(struct bch_fs *c, struct page *page) { struct disk_reservation res = { .sectors = PAGE_SECTORS }; struct bch_page_state s; s = page_state_cmpxchg(page_state(page), s, { if (!s.reserved) return; s.reserved = 0; }); bch2_disk_reservation_put(c, &res); } static int bch2_get_page_reservation(struct bch_fs *c, struct page *page, bool check_enospc) { struct bch_page_state *s = page_state(page), new; struct disk_reservation res; int ret = 0; BUG_ON(s->allocated && s->sectors != PAGE_SECTORS); if (s->allocated || s->reserved) return 0; ret = bch2_disk_reservation_get(c, &res, PAGE_SECTORS, !check_enospc ? BCH_DISK_RESERVATION_NOFAIL : 0); if (ret) return ret; page_state_cmpxchg(s, new, { if (new.reserved) { bch2_disk_reservation_put(c, &res); return 0; } new.reserved = 1; new.nr_replicas = res.nr_replicas; }); return 0; } static void bch2_clear_page_bits(struct page *page) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct disk_reservation res = { .sectors = PAGE_SECTORS }; struct bch_page_state s; if (!PagePrivate(page)) return; s = xchg(page_state(page), (struct bch_page_state) { .v = 0 }); ClearPagePrivate(page); if (s.dirty_sectors) i_sectors_acct(c, inode, -s.dirty_sectors); if (s.reserved) bch2_disk_reservation_put(c, &res); } int bch2_set_page_dirty(struct page *page) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_page_state old, new; old = page_state_cmpxchg(page_state(page), new, new.dirty_sectors = PAGE_SECTORS - new.sectors; ); if (old.dirty_sectors != new.dirty_sectors) i_sectors_acct(c, inode, new.dirty_sectors - old.dirty_sectors); return __set_page_dirty_nobuffers(page); } /* readpages/writepages: */ static bool bio_can_add_page_contig(struct bio *bio, struct page *page) { sector_t offset = (sector_t) page->index << PAGE_SECTOR_SHIFT; return bio->bi_vcnt < bio->bi_max_vecs && bio_end_sector(bio) == offset; } static void __bio_add_page(struct bio *bio, struct page *page) { bio->bi_io_vec[bio->bi_vcnt++] = (struct bio_vec) { .bv_page = page, .bv_len = PAGE_SIZE, .bv_offset = 0, }; bio->bi_iter.bi_size += PAGE_SIZE; } static int bio_add_page_contig(struct bio *bio, struct page *page) { sector_t offset = (sector_t) page->index << PAGE_SECTOR_SHIFT; BUG_ON(!bio->bi_max_vecs); if (!bio->bi_vcnt) bio->bi_iter.bi_sector = offset; else if (!bio_can_add_page_contig(bio, page)) return -1; __bio_add_page(bio, page); return 0; } static void bch2_readpages_end_io(struct bio *bio) { struct bio_vec *bv; int i; bio_for_each_segment_all(bv, bio, i) { struct page *page = bv->bv_page; if (!bio->bi_status) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } struct readpages_iter { struct address_space *mapping; struct list_head pages; unsigned nr_pages; }; static int readpage_add_page(struct readpages_iter *iter, struct page *page) { struct bch_page_state *s = page_state(page); int ret; BUG_ON(s->reserved); s->allocated = 1; s->sectors = 0; prefetchw(&page->flags); ret = add_to_page_cache_lru(page, iter->mapping, page->index, GFP_NOFS); put_page(page); return ret; } static inline struct page *readpage_iter_next(struct readpages_iter *iter) { while (iter->nr_pages) { struct page *page = list_last_entry(&iter->pages, struct page, lru); prefetchw(&page->flags); list_del(&page->lru); iter->nr_pages--; if (!readpage_add_page(iter, page)) return page; } return NULL; } #define for_each_readpage_page(_iter, _page) \ for (; \ ((_page) = __readpage_next_page(&(_iter)));) \ static void bch2_mark_pages_unalloc(struct bio *bio) { struct bvec_iter iter; struct bio_vec bv; bio_for_each_segment(bv, bio, iter) page_state(bv.bv_page)->allocated = 0; } static void bch2_add_page_sectors(struct bio *bio, struct bkey_s_c k) { struct bvec_iter iter; struct bio_vec bv; bio_for_each_segment(bv, bio, iter) { struct bch_page_state *s = page_state(bv.bv_page); /* sectors in @k from the start of this page: */ unsigned k_sectors = k.k->size - (iter.bi_sector - k.k->p.offset); unsigned page_sectors = min(bv.bv_len >> 9, k_sectors); if (!s->sectors) s->nr_replicas = bch2_extent_nr_dirty_ptrs(k); else s->nr_replicas = min_t(unsigned, s->nr_replicas, bch2_extent_nr_dirty_ptrs(k)); BUG_ON(s->sectors + page_sectors > PAGE_SECTORS); s->sectors += page_sectors; } } static void readpage_bio_extend(struct readpages_iter *iter, struct bio *bio, u64 offset, bool get_more) { struct page *page; pgoff_t page_offset; int ret; while (bio_end_sector(bio) < offset && bio->bi_vcnt < bio->bi_max_vecs) { page_offset = bio_end_sector(bio) >> PAGE_SECTOR_SHIFT; if (iter->nr_pages) { page = list_last_entry(&iter->pages, struct page, lru); if (page->index != page_offset) break; list_del(&page->lru); iter->nr_pages--; } else if (get_more) { rcu_read_lock(); page = radix_tree_lookup(&iter->mapping->page_tree, page_offset); rcu_read_unlock(); if (page && !radix_tree_exceptional_entry(page)) break; page = __page_cache_alloc(readahead_gfp_mask(iter->mapping)); if (!page) break; page->index = page_offset; ClearPageReadahead(bio->bi_io_vec[bio->bi_vcnt - 1].bv_page); } else { break; } ret = readpage_add_page(iter, page); if (ret) break; __bio_add_page(bio, page); } if (!iter->nr_pages) SetPageReadahead(bio->bi_io_vec[bio->bi_vcnt - 1].bv_page); } static void bchfs_read(struct bch_fs *c, struct btree_iter *iter, struct bch_read_bio *rbio, u64 inum, struct readpages_iter *readpages_iter) { struct bio *bio = &rbio->bio; int flags = BCH_READ_RETRY_IF_STALE| BCH_READ_MAY_PROMOTE; while (1) { struct extent_pick_ptr pick; BKEY_PADDED(k) tmp; struct bkey_s_c k; unsigned bytes; bool is_last; bch2_btree_iter_set_pos(iter, POS(inum, bio->bi_iter.bi_sector)); k = bch2_btree_iter_peek_with_holes(iter); BUG_ON(!k.k); if (IS_ERR(k.k)) { int ret = bch2_btree_iter_unlock(iter); BUG_ON(!ret); bcache_io_error(c, bio, "btree IO error %i", ret); bio_endio(bio); return; } bkey_reassemble(&tmp.k, k); bch2_btree_iter_unlock(iter); k = bkey_i_to_s_c(&tmp.k); bch2_extent_pick_ptr(c, k, NULL, &pick); if (IS_ERR(pick.ca)) { bcache_io_error(c, bio, "no device to read from"); bio_endio(bio); return; } if (readpages_iter) readpage_bio_extend(readpages_iter, bio, k.k->p.offset, pick.ca && (pick.crc.csum_type || pick.crc.compression_type)); bytes = (min_t(u64, k.k->p.offset, bio_end_sector(bio)) - bio->bi_iter.bi_sector) << 9; is_last = bytes == bio->bi_iter.bi_size; swap(bio->bi_iter.bi_size, bytes); if (bkey_extent_is_allocation(k.k)) bch2_add_page_sectors(bio, k); if (!bch2_extent_is_fully_allocated(k)) bch2_mark_pages_unalloc(bio); if (pick.ca) { if (!is_last) { bio_inc_remaining(&rbio->bio); flags |= BCH_READ_MUST_CLONE; trace_read_split(&rbio->bio); } bch2_read_extent(c, rbio, bkey_s_c_to_extent(k), &pick, flags); } else { zero_fill_bio(bio); if (is_last) bio_endio(bio); } if (is_last) return; swap(bio->bi_iter.bi_size, bytes); bio_advance(bio, bytes); } } int bch2_readpages(struct file *file, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, inode); struct btree_iter iter; struct page *page; struct readpages_iter readpages_iter = { .mapping = mapping, .nr_pages = nr_pages }; bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN, 0); INIT_LIST_HEAD(&readpages_iter.pages); list_add(&readpages_iter.pages, pages); list_del_init(pages); if (current->pagecache_lock != &mapping->add_lock) pagecache_add_get(&mapping->add_lock); while ((page = readpage_iter_next(&readpages_iter))) { unsigned n = max_t(unsigned, min_t(unsigned, readpages_iter.nr_pages + 1, BIO_MAX_PAGES), c->sb.encoded_extent_max >> PAGE_SECTOR_SHIFT); struct bch_read_bio *rbio = rbio_init(bio_alloc_bioset(GFP_NOFS, n, &c->bio_read), opts); rbio->bio.bi_end_io = bch2_readpages_end_io; bio_add_page_contig(&rbio->bio, page); bchfs_read(c, &iter, rbio, inode->v.i_ino, &readpages_iter); } if (current->pagecache_lock != &mapping->add_lock) pagecache_add_put(&mapping->add_lock); return 0; } static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio, u64 inum, struct page *page) { struct btree_iter iter; /* * Initialize page state: * If a page is partly allocated and partly a hole, we want it to be * marked BCH_PAGE_UNALLOCATED - so we initially mark all pages * allocated and then mark them unallocated as we find holes: * * Note that the bio hasn't been split yet - it's the only bio that * points to these pages. As we walk extents and split @bio, that * necessarily be true, the splits won't necessarily be on page * boundaries: */ struct bch_page_state *s = page_state(page); EBUG_ON(s->reserved); s->allocated = 1; s->sectors = 0; bio_set_op_attrs(&rbio->bio, REQ_OP_READ, REQ_SYNC); bio_add_page_contig(&rbio->bio, page); bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN, 0); bchfs_read(c, &iter, rbio, inum, NULL); } int bch2_readpage(struct file *file, struct page *page) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, inode); struct bch_read_bio *rbio; rbio = rbio_init(bio_alloc_bioset(GFP_NOFS, 1, &c->bio_read), opts); rbio->bio.bi_end_io = bch2_readpages_end_io; __bchfs_readpage(c, rbio, inode->v.i_ino, page); return 0; } struct bch_writepage_state { struct bch_writepage_io *io; struct bch_io_opts opts; }; static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, struct bch_inode_info *inode) { return (struct bch_writepage_state) { .opts = io_opts(c, inode) }; } static void bch2_writepage_io_free(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); bio_put(&io->op.op.wbio.bio); } static void bch2_writepage_io_done(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); struct bch_fs *c = io->op.op.c; struct bio *bio = &io->op.op.wbio.bio; struct bio_vec *bvec; unsigned i; atomic_sub(bio->bi_vcnt, &c->writeback_pages); wake_up(&c->writeback_wait); bio_for_each_segment_all(bvec, bio, i) { struct page *page = bvec->bv_page; if (io->op.op.error) { SetPageError(page); if (page->mapping) set_bit(AS_EIO, &page->mapping->flags); } if (io->op.op.written >= PAGE_SECTORS) { struct bch_page_state old, new; old = page_state_cmpxchg(page_state(page), new, { new.sectors = PAGE_SECTORS; new.dirty_sectors = 0; }); io->op.sectors_added -= old.dirty_sectors; io->op.op.written -= PAGE_SECTORS; } } /* * racing with fallocate can cause us to add fewer sectors than * expected - but we shouldn't add more sectors than expected: * * (error (due to going RO) halfway through a page can screw that up * slightly) */ BUG_ON(io->op.sectors_added >= (s64) PAGE_SECTORS); /* * PageWriteback is effectively our ref on the inode - fixup i_blocks * before calling end_page_writeback: */ if (io->op.sectors_added) i_sectors_acct(c, io->op.inode, io->op.sectors_added); bio_for_each_segment_all(bvec, bio, i) end_page_writeback(bvec->bv_page); closure_return_with_destructor(&io->cl, bch2_writepage_io_free); } static void bch2_writepage_do_io(struct bch_writepage_state *w) { struct bch_writepage_io *io = w->io; struct bio *bio = &io->op.op.wbio.bio; w->io = NULL; atomic_add(bio->bi_vcnt, &io->op.op.c->writeback_pages); closure_call(&io->op.op.cl, bch2_write, NULL, &io->cl); continue_at(&io->cl, bch2_writepage_io_done, NULL); } /* * Get a bch_writepage_io and add @page to it - appending to an existing one if * possible, else allocating a new one: */ static void bch2_writepage_io_alloc(struct bch_fs *c, struct bch_writepage_state *w, struct bch_inode_info *inode, struct page *page, struct bch_page_state s) { struct bch_write_op *op; u64 offset = (u64) page->index << PAGE_SECTOR_SHIFT; w->io = container_of(bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &c->writepage_bioset), struct bch_writepage_io, op.op.wbio.bio); op = &w->io->op.op; closure_init(&w->io->cl, NULL); bch2_fswrite_op_init(&w->io->op, c, inode, w->opts, false); op->nr_replicas = s.nr_replicas; op->res.nr_replicas = s.nr_replicas; op->write_point = writepoint_hashed(inode->ei_last_dirtied); op->pos = POS(inode->v.i_ino, offset); op->wbio.bio.bi_iter.bi_sector = offset; } static int __bch2_writepage(struct bch_fs *c, struct page *page, struct writeback_control *wbc, struct bch_writepage_state *w) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_page_state new, old; unsigned offset; loff_t i_size = i_size_read(&inode->v); pgoff_t end_index = i_size >> PAGE_SHIFT; EBUG_ON(!PageUptodate(page)); /* Is the page fully inside i_size? */ if (page->index < end_index) goto do_io; /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE - 1); if (page->index > end_index || !offset) { unlock_page(page); return 0; } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); do_io: /* Before unlocking the page, transfer reservation to w->io: */ old = page_state_cmpxchg(page_state(page), new, { EBUG_ON(!new.reserved && (new.sectors != PAGE_SECTORS || !new.allocated)); if (new.allocated && w->opts.compression) new.allocated = 0; else if (!new.reserved) break; new.reserved = 0; }); if (w->io && (w->io->op.op.res.nr_replicas != old.nr_replicas || !bio_can_add_page_contig(&w->io->op.op.wbio.bio, page))) bch2_writepage_do_io(w); if (!w->io) bch2_writepage_io_alloc(c, w, inode, page, old); BUG_ON(inode != w->io->op.inode); BUG_ON(bio_add_page_contig(&w->io->op.op.wbio.bio, page)); if (old.reserved) w->io->op.op.res.sectors += old.nr_replicas * PAGE_SECTORS; /* while page is locked: */ w->io->op.new_i_size = i_size; if (wbc->sync_mode == WB_SYNC_ALL) w->io->op.op.wbio.bio.bi_opf |= REQ_SYNC; BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); return 0; } int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct bch_fs *c = mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(mapping->host)); struct pagecache_iter iter; struct page *page; int ret = 0; int done = 0; pgoff_t uninitialized_var(writeback_index); pgoff_t index; pgoff_t end; /* Inclusive */ pgoff_t done_index; int cycled; int range_whole = 0; int tag; if (wbc->range_cyclic) { writeback_index = mapping->writeback_index; /* prev offset */ index = writeback_index; if (index == 0) cycled = 1; else cycled = 0; end = -1; } else { index = wbc->range_start >> PAGE_SHIFT; end = wbc->range_end >> PAGE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; cycled = 1; /* ignore range_cyclic tests */ } if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag = PAGECACHE_TAG_TOWRITE; else tag = PAGECACHE_TAG_DIRTY; retry: if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag_pages_for_writeback(mapping, index, end); done_index = index; get_pages: for_each_pagecache_tag(&iter, mapping, tag, index, end, page) { done_index = page->index; if (w.io && !bio_can_add_page_contig(&w.io->op.op.wbio.bio, page)) bch2_writepage_do_io(&w); if (!w.io && atomic_read(&c->writeback_pages) >= c->writeback_pages_max) { /* don't sleep with pages pinned: */ pagecache_iter_release(&iter); __wait_event(c->writeback_wait, atomic_read(&c->writeback_pages) < c->writeback_pages_max); goto get_pages; } lock_page(page); /* * Page truncated or invalidated. We can freely skip it * then, even for data integrity operations: the page * has disappeared concurrently, so there could be no * real expectation of this data interity operation * even if there is now a new, dirty page at the same * pagecache address. */ if (unlikely(page->mapping != mapping)) { continue_unlock: unlock_page(page); continue; } if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (PageWriteback(page)) { if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(page); else goto continue_unlock; } BUG_ON(PageWriteback(page)); if (!clear_page_dirty_for_io(page)) goto continue_unlock; trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); ret = __bch2_writepage(c, page, wbc, &w); if (unlikely(ret)) { if (ret == AOP_WRITEPAGE_ACTIVATE) { unlock_page(page); ret = 0; } else { /* * done_index is set past this page, * so media errors will not choke * background writeout for the entire * file. This has consequences for * range_cyclic semantics (ie. it may * not be suitable for data integrity * writeout). */ done_index = page->index + 1; done = 1; break; } } /* * We stop writing back only if we are not doing * integrity sync. In case of integrity sync we have to * keep going until we have written all the pages * we tagged for writeback prior to entering this loop. */ if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { done = 1; break; } } pagecache_iter_release(&iter); if (w.io) bch2_writepage_do_io(&w); if (!cycled && !done) { /* * range_cyclic: * We hit the last page and there is more work to be done: wrap * back to the start of the file */ cycled = 1; index = 0; end = writeback_index - 1; goto retry; } if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = done_index; return ret; } int bch2_writepage(struct page *page, struct writeback_control *wbc) { struct bch_fs *c = page->mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(page->mapping->host)); int ret; ret = __bch2_writepage(c, page, wbc, &w); if (w.io) bch2_writepage_do_io(&w); return ret; } static void bch2_read_single_page_end_io(struct bio *bio) { complete(bio->bi_private); } static int bch2_read_single_page(struct page *page, struct address_space *mapping) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_read_bio *rbio; int ret; DECLARE_COMPLETION_ONSTACK(done); rbio = to_rbio(bio_alloc_bioset(GFP_NOFS, 1, &c->bio_read)); rbio->bio.bi_private = &done; rbio->bio.bi_end_io = bch2_read_single_page_end_io; __bchfs_readpage(c, rbio, inode->v.i_ino, page); wait_for_completion(&done); ret = blk_status_to_errno(rbio->bio.bi_status); bio_put(&rbio->bio); if (ret < 0) return ret; SetPageUptodate(page); return 0; } int bch2_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; pgoff_t index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); struct page *page; int ret = -ENOMEM; BUG_ON(inode_unhashed(&inode->v)); /* Not strictly necessary - same reason as mkwrite(): */ pagecache_add_get(&mapping->add_lock); page = grab_cache_page_write_begin(mapping, index, flags); if (!page) goto err_unlock; if (PageUptodate(page)) goto out; /* If we're writing entire page, don't need to read it in first: */ if (len == PAGE_SIZE) goto out; if (!offset && pos + len >= inode->v.i_size) { zero_user_segment(page, len, PAGE_SIZE); flush_dcache_page(page); goto out; } if (index > inode->v.i_size >> PAGE_SHIFT) { zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE); flush_dcache_page(page); goto out; } readpage: ret = bch2_read_single_page(page, mapping); if (ret) goto err; out: ret = bch2_get_page_reservation(c, page, true); if (ret) { if (!PageUptodate(page)) { /* * If the page hasn't been read in, we won't know if we * actually need a reservation - we don't actually need * to read here, we just need to check if the page is * fully backed by uncompressed data: */ goto readpage; } goto err; } *pagep = page; return 0; err: unlock_page(page); put_page(page); *pagep = NULL; err_unlock: pagecache_add_put(&mapping->add_lock); return ret; } int bch2_write_end(struct file *filp, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; lockdep_assert_held(&inode->v.i_rwsem); if (unlikely(copied < len && !PageUptodate(page))) { /* * The page needs to be read in, but that would destroy * our partial write - simplest thing is to just force * userspace to redo the write: */ zero_user(page, 0, PAGE_SIZE); flush_dcache_page(page); copied = 0; } if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); if (copied) { if (!PageUptodate(page)) SetPageUptodate(page); if (!PageDirty(page)) set_page_dirty(page); inode->ei_last_dirtied = (unsigned long) current; } else { bch2_put_page_reservation(c, page); } unlock_page(page); put_page(page); pagecache_add_put(&mapping->add_lock); return copied; } /* O_DIRECT */ static void bch2_dio_read_complete(struct closure *cl) { struct dio_read *dio = container_of(cl, struct dio_read, cl); dio->req->ki_complete(dio->req, dio->ret, 0); bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ } static void bch2_direct_IO_read_endio(struct bio *bio) { struct dio_read *dio = bio->bi_private; if (bio->bi_status) dio->ret = blk_status_to_errno(bio->bi_status); closure_put(&dio->cl); } static void bch2_direct_IO_read_split_endio(struct bio *bio) { bch2_direct_IO_read_endio(bio); bio_check_pages_dirty(bio); /* transfers ownership */ } static int bch2_direct_IO_read(struct bch_fs *c, struct kiocb *req, struct file *file, struct bch_inode_info *inode, struct iov_iter *iter, loff_t offset) { struct bch_io_opts opts = io_opts(c, inode); struct dio_read *dio; struct bio *bio; bool sync = is_sync_kiocb(req); ssize_t ret; if ((offset|iter->count) & (block_bytes(c) - 1)) return -EINVAL; ret = min_t(loff_t, iter->count, max_t(loff_t, 0, i_size_read(&inode->v) - offset)); iov_iter_truncate(iter, round_up(ret, block_bytes(c))); if (!ret) return ret; bio = bio_alloc_bioset(GFP_KERNEL, iov_iter_npages(iter, BIO_MAX_PAGES), &c->dio_read_bioset); bio->bi_end_io = bch2_direct_IO_read_endio; dio = container_of(bio, struct dio_read, rbio.bio); closure_init(&dio->cl, NULL); /* * this is a _really_ horrible hack just to avoid an atomic sub at the * end: */ if (!sync) { set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER - CLOSURE_RUNNING + CLOSURE_DESTRUCTOR); } else { atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER + 1); } dio->req = req; dio->ret = ret; goto start; while (iter->count) { bio = bio_alloc_bioset(GFP_KERNEL, iov_iter_npages(iter, BIO_MAX_PAGES), &c->bio_read); bio->bi_end_io = bch2_direct_IO_read_split_endio; start: bio_set_op_attrs(bio, REQ_OP_READ, REQ_SYNC); bio->bi_iter.bi_sector = offset >> 9; bio->bi_private = dio; ret = bio_iov_iter_get_pages(bio, iter); if (ret < 0) { /* XXX: fault inject this path */ bio->bi_status = BLK_STS_RESOURCE; bio_endio(bio); break; } offset += bio->bi_iter.bi_size; bio_set_pages_dirty(bio); if (iter->count) closure_get(&dio->cl); bch2_read(c, rbio_init(bio, opts), inode->v.i_ino); } if (sync) { closure_sync(&dio->cl); closure_debug_destroy(&dio->cl); ret = dio->ret; bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ return ret; } else { return -EIOCBQUEUED; } } static long __bch2_dio_write_complete(struct dio_write *dio) { struct file *file = dio->req->ki_filp; struct address_space *mapping = file->f_mapping; struct bch_inode_info *inode = file_bch_inode(file); long ret = dio->iop.op.error ?: ((long) dio->iop.op.written << 9); bch2_disk_reservation_put(dio->c, &dio->iop.op.res); __pagecache_block_put(&mapping->add_lock); inode_dio_end(&inode->v); if (dio->iovec && dio->iovec != dio->inline_vecs) kfree(dio->iovec); bio_put(&dio->iop.op.wbio.bio); return ret; } static void bch2_dio_write_complete(struct closure *cl) { struct dio_write *dio = container_of(cl, struct dio_write, cl); struct kiocb *req = dio->req; req->ki_complete(req, __bch2_dio_write_complete(dio), 0); } static void bch2_dio_write_done(struct dio_write *dio) { struct bio_vec *bv; int i; bio_for_each_segment_all(bv, &dio->iop.op.wbio.bio, i) put_page(bv->bv_page); if (dio->iter.count) bio_reset(&dio->iop.op.wbio.bio); } static void bch2_do_direct_IO_write(struct dio_write *dio) { struct file *file = dio->req->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bio *bio = &dio->iop.op.wbio.bio; int ret; ret = bio_iov_iter_get_pages(bio, &dio->iter); if (ret < 0) { dio->iop.op.error = ret; return; } dio->iop.op.pos = POS(inode->v.i_ino, (dio->offset >> 9) + dio->iop.op.written); task_io_account_write(bio->bi_iter.bi_size); closure_call(&dio->iop.op.cl, bch2_write, NULL, &dio->cl); } static void bch2_dio_write_loop_async(struct closure *cl) { struct dio_write *dio = container_of(cl, struct dio_write, cl); struct address_space *mapping = dio->req->ki_filp->f_mapping; bch2_dio_write_done(dio); if (dio->iter.count && !dio->iop.op.error) { use_mm(dio->task->mm); pagecache_block_get(&mapping->add_lock); bch2_do_direct_IO_write(dio); pagecache_block_put(&mapping->add_lock); unuse_mm(dio->task->mm); continue_at(&dio->cl, bch2_dio_write_loop_async, NULL); } else { #if 0 closure_return_with_destructor(cl, bch2_dio_write_complete); #else closure_debug_destroy(cl); bch2_dio_write_complete(cl); #endif } } static int bch2_direct_IO_write(struct bch_fs *c, struct kiocb *req, struct file *file, struct bch_inode_info *inode, struct iov_iter *iter, loff_t offset) { struct address_space *mapping = file->f_mapping; struct dio_write *dio; struct bio *bio; ssize_t ret; bool sync = is_sync_kiocb(req); lockdep_assert_held(&inode->v.i_rwsem); if (unlikely(!iter->count)) return 0; if (unlikely((offset|iter->count) & (block_bytes(c) - 1))) return -EINVAL; bio = bio_alloc_bioset(GFP_KERNEL, iov_iter_npages(iter, BIO_MAX_PAGES), &c->dio_write_bioset); dio = container_of(bio, struct dio_write, iop.op.wbio.bio); closure_init(&dio->cl, NULL); dio->req = req; dio->c = c; dio->offset = offset; dio->iovec = NULL; dio->iter = *iter; dio->task = current; bch2_fswrite_op_init(&dio->iop, c, inode, io_opts(c, inode), true); dio->iop.op.write_point = writepoint_hashed((unsigned long) dio->task); dio->iop.op.flags |= BCH_WRITE_NOPUT_RESERVATION; if ((dio->req->ki_flags & IOCB_DSYNC) && !c->opts.journal_flush_disabled) dio->iop.op.flags |= BCH_WRITE_FLUSH; if (offset + iter->count > inode->v.i_size) sync = true; /* * XXX: we shouldn't return -ENOSPC if we're overwriting existing data - * if getting a reservation fails we should check if we are doing an * overwrite. * * Have to then guard against racing with truncate (deleting data that * we would have been overwriting) */ ret = bch2_disk_reservation_get(c, &dio->iop.op.res, iter->count >> 9, 0); if (unlikely(ret)) { if (bch2_check_range_allocated(c, POS(inode->v.i_ino, offset >> 9), iter->count >> 9)) { closure_debug_destroy(&dio->cl); bio_put(bio); return ret; } dio->iop.unalloc = true; } dio->iop.op.nr_replicas = dio->iop.op.res.nr_replicas; inode_dio_begin(&inode->v); __pagecache_block_get(&mapping->add_lock); if (sync) { do { bch2_do_direct_IO_write(dio); closure_sync(&dio->cl); bch2_dio_write_done(dio); } while (dio->iter.count && !dio->iop.op.error); closure_debug_destroy(&dio->cl); return __bch2_dio_write_complete(dio); } else { bch2_do_direct_IO_write(dio); if (dio->iter.count && !dio->iop.op.error) { if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { dio->iovec = kmalloc(dio->iter.nr_segs * sizeof(struct iovec), GFP_KERNEL); if (!dio->iovec) dio->iop.op.error = -ENOMEM; } else { dio->iovec = dio->inline_vecs; } memcpy(dio->iovec, dio->iter.iov, dio->iter.nr_segs * sizeof(struct iovec)); dio->iter.iov = dio->iovec; } continue_at_noreturn(&dio->cl, bch2_dio_write_loop_async, NULL); return -EIOCBQUEUED; } } ssize_t bch2_direct_IO(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct blk_plug plug; ssize_t ret; blk_start_plug(&plug); ret = ((iov_iter_rw(iter) == WRITE) ? bch2_direct_IO_write : bch2_direct_IO_read)(c, req, file, inode, iter, req->ki_pos); blk_finish_plug(&plug); return ret; } static ssize_t bch2_direct_write(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = file->f_mapping; loff_t pos = iocb->ki_pos; ssize_t ret; pagecache_block_get(&mapping->add_lock); /* Write and invalidate pagecache range that we're writing to: */ ret = write_invalidate_inode_pages_range(file->f_mapping, pos, pos + iov_iter_count(iter) - 1); if (unlikely(ret)) goto err; ret = bch2_direct_IO_write(c, iocb, file, inode, iter, pos); err: pagecache_block_put(&mapping->add_lock); return ret; } static ssize_t __bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); ssize_t ret; /* We can write back this queue in page reclaim */ current->backing_dev_info = inode_to_bdi(&inode->v); ret = file_remove_privs(file); if (ret) goto out; ret = file_update_time(file); if (ret) goto out; ret = iocb->ki_flags & IOCB_DIRECT ? bch2_direct_write(iocb, from) : generic_perform_write(file, from, iocb->ki_pos); if (likely(ret > 0)) iocb->ki_pos += ret; out: current->backing_dev_info = NULL; return ret; } ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct bch_inode_info *inode = file_bch_inode(iocb->ki_filp); bool direct = iocb->ki_flags & IOCB_DIRECT; ssize_t ret; inode_lock(&inode->v); ret = generic_write_checks(iocb, from); if (ret > 0) ret = __bch2_write_iter(iocb, from); inode_unlock(&inode->v); if (ret > 0 && !direct) ret = generic_write_sync(iocb, ret); return ret; } int bch2_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct file *file = vmf->vma->vm_file; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = inode->v.i_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; int ret = VM_FAULT_LOCKED; sb_start_pagefault(inode->v.i_sb); file_update_time(file); /* * Not strictly necessary, but helps avoid dio writes livelocking in * write_invalidate_inode_pages_range() - can drop this if/when we get * a write_invalidate_inode_pages_range() that works without dropping * page lock before invalidating page */ if (current->pagecache_lock != &mapping->add_lock) pagecache_add_get(&mapping->add_lock); lock_page(page); if (page->mapping != mapping || page_offset(page) > i_size_read(&inode->v)) { unlock_page(page); ret = VM_FAULT_NOPAGE; goto out; } if (bch2_get_page_reservation(c, page, true)) { unlock_page(page); ret = VM_FAULT_SIGBUS; goto out; } if (!PageDirty(page)) set_page_dirty(page); wait_for_stable_page(page); out: if (current->pagecache_lock != &mapping->add_lock) pagecache_add_put(&mapping->add_lock); sb_end_pagefault(inode->v.i_sb); return ret; } void bch2_invalidatepage(struct page *page, unsigned int offset, unsigned int length) { EBUG_ON(!PageLocked(page)); EBUG_ON(PageWriteback(page)); if (offset || length < PAGE_SIZE) return; bch2_clear_page_bits(page); } int bch2_releasepage(struct page *page, gfp_t gfp_mask) { EBUG_ON(!PageLocked(page)); EBUG_ON(PageWriteback(page)); if (PageDirty(page)) return 0; bch2_clear_page_bits(page); return 1; } #ifdef CONFIG_MIGRATION int bch2_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode) { int ret; ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); if (ret != MIGRATEPAGE_SUCCESS) return ret; if (PagePrivate(page)) { *page_state(newpage) = *page_state(page); ClearPagePrivate(page); } migrate_page_copy(newpage, page); return MIGRATEPAGE_SUCCESS; } #endif int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; int ret; ret = filemap_write_and_wait_range(inode->v.i_mapping, start, end); if (ret) return ret; if (c->opts.journal_flush_disabled) return 0; return bch2_journal_flush_seq(&c->journal, inode->ei_journal_seq); } static int __bch2_truncate_page(struct bch_inode_info *inode, pgoff_t index, loff_t start, loff_t end) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; unsigned start_offset = start & (PAGE_SIZE - 1); unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1; struct page *page; int ret = 0; /* Page boundary? Nothing to do */ if (!((index == start >> PAGE_SHIFT && start_offset) || (index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE))) return 0; /* Above i_size? */ if (index << PAGE_SHIFT >= inode->v.i_size) return 0; page = find_lock_page(mapping, index); if (!page) { struct btree_iter iter; struct bkey_s_c k = bkey_s_c_null; /* * XXX: we're doing two index lookups when we end up reading the * page */ for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->v.i_ino, index << PAGE_SECTOR_SHIFT), 0, k) { if (bkey_cmp(bkey_start_pos(k.k), POS(inode->v.i_ino, (index + 1) << PAGE_SECTOR_SHIFT)) >= 0) break; if (k.k->type != KEY_TYPE_DISCARD && k.k->type != BCH_RESERVATION) { bch2_btree_iter_unlock(&iter); goto create; } } bch2_btree_iter_unlock(&iter); return 0; create: page = find_or_create_page(mapping, index, GFP_KERNEL); if (unlikely(!page)) { ret = -ENOMEM; goto out; } } if (!PageUptodate(page)) { ret = bch2_read_single_page(page, mapping); if (ret) goto unlock; } /* * Bit of a hack - we don't want truncate to fail due to -ENOSPC. * * XXX: because we aren't currently tracking whether the page has actual * data in it (vs. just 0s, or only partially written) this wrong. ick. */ ret = bch2_get_page_reservation(c, page, false); BUG_ON(ret); if (index == start >> PAGE_SHIFT && index == end >> PAGE_SHIFT) zero_user_segment(page, start_offset, end_offset); else if (index == start >> PAGE_SHIFT) zero_user_segment(page, start_offset, PAGE_SIZE); else if (index == end >> PAGE_SHIFT) zero_user_segment(page, 0, end_offset); if (!PageDirty(page)) set_page_dirty(page); unlock: unlock_page(page); put_page(page); out: return ret; } static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from) { return __bch2_truncate_page(inode, from >> PAGE_SHIFT, from, from + PAGE_SIZE); } int bch2_truncate(struct bch_inode_info *inode, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; bool shrink = iattr->ia_size <= inode->v.i_size; struct i_sectors_hook i_sectors_hook = i_sectors_hook_init(inode, BCH_INODE_I_SIZE_DIRTY); int ret = 0; inode_dio_wait(&inode->v); pagecache_block_get(&mapping->add_lock); truncate_setsize(&inode->v, iattr->ia_size); /* sync appends.. */ /* XXX what protects inode->i_size? */ if (iattr->ia_size > inode->ei_inode.bi_size) ret = filemap_write_and_wait_range(mapping, inode->ei_inode.bi_size, S64_MAX); if (ret) goto err_put_pagecache; i_sectors_hook.new_i_size = iattr->ia_size; ret = i_sectors_dirty_start(c, &i_sectors_hook); if (unlikely(ret)) goto err; /* * There might be persistent reservations (from fallocate()) * above i_size, which bch2_inode_truncate() will discard - we're * only supposed to discard them if we're doing a real truncate * here (new i_size < current i_size): */ if (shrink) { ret = bch2_truncate_page(inode, iattr->ia_size); if (unlikely(ret)) goto err; ret = bch2_inode_truncate(c, inode->v.i_ino, round_up(iattr->ia_size, PAGE_SIZE) >> 9, &i_sectors_hook.hook, &inode->ei_journal_seq); if (unlikely(ret)) goto err; } setattr_copy(&inode->v, iattr); inode->v.i_mtime = inode->v.i_ctime = current_time(&inode->v); err: /* * On error - in particular, bch2_truncate_page() error - don't clear * I_SIZE_DIRTY, as we've left data above i_size!: */ if (ret) i_sectors_hook.flags &= ~BCH_INODE_I_SIZE_DIRTY; ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; err_put_pagecache: pagecache_block_put(&mapping->add_lock); return ret; } static long bch2_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; u64 ino = inode->v.i_ino; u64 discard_start = round_up(offset, PAGE_SIZE) >> 9; u64 discard_end = round_down(offset + len, PAGE_SIZE) >> 9; int ret = 0; inode_lock(&inode->v); inode_dio_wait(&inode->v); pagecache_block_get(&mapping->add_lock); ret = __bch2_truncate_page(inode, offset >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; if (offset >> PAGE_SHIFT != (offset + len) >> PAGE_SHIFT) { ret = __bch2_truncate_page(inode, (offset + len) >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; } truncate_pagecache_range(&inode->v, offset, offset + len - 1); if (discard_start < discard_end) { struct disk_reservation disk_res; struct i_sectors_hook i_sectors_hook = i_sectors_hook_init(inode, 0); int ret; ret = i_sectors_dirty_start(c, &i_sectors_hook); if (unlikely(ret)) goto err; /* * We need to pass in a disk reservation here because we might * be splitting a compressed extent into two. This isn't a * problem with truncate because truncate will never split an * extent, only truncate it... */ ret = bch2_disk_reservation_get(c, &disk_res, 0, 0); BUG_ON(ret); ret = bch2_btree_delete_range(c, BTREE_ID_EXTENTS, POS(ino, discard_start), POS(ino, discard_end), ZERO_VERSION, &disk_res, &i_sectors_hook.hook, &inode->ei_journal_seq); bch2_disk_reservation_put(c, &disk_res); ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; } err: pagecache_block_put(&mapping->add_lock); inode_unlock(&inode->v); return ret; } static long bch2_fcollapse(struct bch_inode_info *inode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct btree_iter src; struct btree_iter dst; BKEY_PADDED(k) copy; struct bkey_s_c k; struct i_sectors_hook i_sectors_hook = i_sectors_hook_init(inode, 0); loff_t new_size; int ret; if ((offset | len) & (PAGE_SIZE - 1)) return -EINVAL; bch2_btree_iter_init(&dst, c, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), BTREE_ITER_INTENT); /* position will be set from dst iter's position: */ bch2_btree_iter_init(&src, c, BTREE_ID_EXTENTS, POS_MIN, 0); bch2_btree_iter_link(&src, &dst); /* * We need i_mutex to keep the page cache consistent with the extents * btree, and the btree consistent with i_size - we don't need outside * locking for the extents btree itself, because we're using linked * iterators */ inode_lock(&inode->v); inode_dio_wait(&inode->v); pagecache_block_get(&mapping->add_lock); ret = -EINVAL; if (offset + len >= inode->v.i_size) goto err; if (inode->v.i_size < len) goto err; new_size = inode->v.i_size - len; ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX); if (ret) goto err; ret = i_sectors_dirty_start(c, &i_sectors_hook); if (ret) goto err; while (bkey_cmp(dst.pos, POS(inode->v.i_ino, round_up(new_size, PAGE_SIZE) >> 9)) < 0) { struct disk_reservation disk_res; bch2_btree_iter_set_pos(&src, POS(dst.pos.inode, dst.pos.offset + (len >> 9))); ret = bch2_btree_iter_traverse(&dst); if (ret) goto btree_iter_err; k = bch2_btree_iter_peek_with_holes(&src); if ((ret = btree_iter_err(k))) goto btree_iter_err; bkey_reassemble(©.k, k); if (bkey_deleted(©.k.k)) copy.k.k.type = KEY_TYPE_DISCARD; bch2_cut_front(src.pos, ©.k); copy.k.k.p.offset -= len >> 9; BUG_ON(bkey_cmp(dst.pos, bkey_start_pos(©.k.k))); ret = bch2_disk_reservation_get(c, &disk_res, copy.k.k.size, BCH_DISK_RESERVATION_NOFAIL); BUG_ON(ret); ret = bch2_btree_insert_at(c, &disk_res, &i_sectors_hook.hook, &inode->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&dst, ©.k)); bch2_disk_reservation_put(c, &disk_res); btree_iter_err: if (ret == -EINTR) ret = 0; if (ret) goto err_put_sectors_dirty; /* * XXX: if we error here we've left data with multiple * pointers... which isn't a _super_ serious problem... */ bch2_btree_iter_cond_resched(&src); } bch2_btree_iter_unlock(&src); bch2_btree_iter_unlock(&dst); ret = bch2_inode_truncate(c, inode->v.i_ino, round_up(new_size, PAGE_SIZE) >> 9, &i_sectors_hook.hook, &inode->ei_journal_seq); if (ret) goto err_put_sectors_dirty; i_size_write(&inode->v, new_size); i_sectors_hook.new_i_size = new_size; err_put_sectors_dirty: ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; err: pagecache_block_put(&mapping->add_lock); inode_unlock(&inode->v); bch2_btree_iter_unlock(&src); bch2_btree_iter_unlock(&dst); return ret; } static long bch2_fallocate(struct bch_inode_info *inode, int mode, loff_t offset, loff_t len) { struct address_space *mapping = inode->v.i_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; struct i_sectors_hook i_sectors_hook = i_sectors_hook_init(inode, 0); struct btree_iter iter; struct bpos end_pos; loff_t block_start, block_end; loff_t end = offset + len; unsigned sectors; unsigned replicas = READ_ONCE(c->opts.data_replicas); int ret; bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_INTENT); inode_lock(&inode->v); inode_dio_wait(&inode->v); pagecache_block_get(&mapping->add_lock); if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { ret = inode_newsize_ok(&inode->v, end); if (ret) goto err; } if (mode & FALLOC_FL_ZERO_RANGE) { ret = __bch2_truncate_page(inode, offset >> PAGE_SHIFT, offset, end); if (!ret && offset >> PAGE_SHIFT != end >> PAGE_SHIFT) ret = __bch2_truncate_page(inode, end >> PAGE_SHIFT, offset, end); if (unlikely(ret)) goto err; truncate_pagecache_range(&inode->v, offset, end - 1); block_start = round_up(offset, PAGE_SIZE); block_end = round_down(end, PAGE_SIZE); } else { block_start = round_down(offset, PAGE_SIZE); block_end = round_up(end, PAGE_SIZE); } bch2_btree_iter_set_pos(&iter, POS(inode->v.i_ino, block_start >> 9)); end_pos = POS(inode->v.i_ino, block_end >> 9); ret = i_sectors_dirty_start(c, &i_sectors_hook); if (unlikely(ret)) goto err; while (bkey_cmp(iter.pos, end_pos) < 0) { struct disk_reservation disk_res = { 0 }; struct bkey_i_reservation reservation; struct bkey_s_c k; k = bch2_btree_iter_peek_with_holes(&iter); if ((ret = btree_iter_err(k))) goto btree_iter_err; /* already reserved */ if (k.k->type == BCH_RESERVATION && bkey_s_c_to_reservation(k).v->nr_replicas >= replicas) { bch2_btree_iter_advance_pos(&iter); continue; } if (bkey_extent_is_data(k.k)) { if (!(mode & FALLOC_FL_ZERO_RANGE)) { bch2_btree_iter_advance_pos(&iter); continue; } } bkey_reservation_init(&reservation.k_i); reservation.k.type = BCH_RESERVATION; reservation.k.p = k.k->p; reservation.k.size = k.k->size; bch2_cut_front(iter.pos, &reservation.k_i); bch2_cut_back(end_pos, &reservation.k); sectors = reservation.k.size; reservation.v.nr_replicas = bch2_extent_nr_dirty_ptrs(k); if (reservation.v.nr_replicas < replicas || bch2_extent_is_compressed(k)) { ret = bch2_disk_reservation_get(c, &disk_res, sectors, 0); if (ret) goto err_put_sectors_dirty; reservation.v.nr_replicas = disk_res.nr_replicas; } ret = bch2_btree_insert_at(c, &disk_res, &i_sectors_hook.hook, &inode->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &reservation.k_i)); bch2_disk_reservation_put(c, &disk_res); btree_iter_err: if (ret < 0 && ret != -EINTR) goto err_put_sectors_dirty; } bch2_btree_iter_unlock(&iter); ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { i_size_write(&inode->v, end); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, inode->v.i_size); mutex_unlock(&inode->ei_update_lock); } /* blech */ if ((mode & FALLOC_FL_KEEP_SIZE) && (mode & FALLOC_FL_ZERO_RANGE) && inode->ei_inode.bi_size != inode->v.i_size) { /* sync appends.. */ ret = filemap_write_and_wait_range(mapping, inode->ei_inode.bi_size, S64_MAX); if (ret) goto err; if (inode->ei_inode.bi_size != inode->v.i_size) { mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, inode->v.i_size); mutex_unlock(&inode->ei_update_lock); } } pagecache_block_put(&mapping->add_lock); inode_unlock(&inode->v); return 0; err_put_sectors_dirty: ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; err: bch2_btree_iter_unlock(&iter); pagecache_block_put(&mapping->add_lock); inode_unlock(&inode->v); return ret; } long bch2_fallocate_dispatch(struct file *file, int mode, loff_t offset, loff_t len) { struct bch_inode_info *inode = file_bch_inode(file); if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) return bch2_fallocate(inode, mode, offset, len); if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) return bch2_fpunch(inode, offset, len); if (mode == FALLOC_FL_COLLAPSE_RANGE) return bch2_fcollapse(inode, offset, len); return -EOPNOTSUPP; } static bool page_is_data(struct page *page) { /* XXX: should only have to check PageDirty */ return PagePrivate(page) && (page_state(page)->sectors || page_state(page)->dirty_sectors); } static loff_t bch2_next_pagecache_data(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = vinode->i_mapping; struct page *page; pgoff_t index; for (index = start_offset >> PAGE_SHIFT; index < end_offset >> PAGE_SHIFT; index++) { if (find_get_pages(mapping, index, 1, &page)) { lock_page(page); index = page->index; if (page_is_data(page)) end_offset = min(end_offset, max(start_offset, ((loff_t) index) << PAGE_SHIFT)); unlock_page(page); put_page(page); } else { break; } } return end_offset; } static loff_t bch2_seek_data(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; u64 isize, next_data = MAX_LFS_FILESIZE; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), 0, k) { if (k.k->p.inode != inode->v.i_ino) { break; } else if (bkey_extent_is_data(k.k)) { next_data = max(offset, bkey_start_offset(k.k) << 9); break; } else if (k.k->p.offset >> 9 > isize) break; } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; if (next_data > offset) next_data = bch2_next_pagecache_data(&inode->v, offset, next_data); if (next_data > isize) return -ENXIO; return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); } static bool page_slot_is_data(struct address_space *mapping, pgoff_t index) { struct page *page; bool ret; page = find_lock_entry(mapping, index); if (!page || radix_tree_exception(page)) return false; ret = page_is_data(page); unlock_page(page); return ret; } static loff_t bch2_next_pagecache_hole(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = vinode->i_mapping; pgoff_t index; for (index = start_offset >> PAGE_SHIFT; index < end_offset >> PAGE_SHIFT; index++) if (!page_slot_is_data(mapping, index)) end_offset = max(start_offset, ((loff_t) index) << PAGE_SHIFT); return end_offset; } static loff_t bch2_seek_hole(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; u64 isize, next_hole = MAX_LFS_FILESIZE; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), BTREE_ITER_WITH_HOLES, k) { if (k.k->p.inode != inode->v.i_ino) { next_hole = bch2_next_pagecache_hole(&inode->v, offset, MAX_LFS_FILESIZE); break; } else if (!bkey_extent_is_data(k.k)) { next_hole = bch2_next_pagecache_hole(&inode->v, max(offset, bkey_start_offset(k.k) << 9), k.k->p.offset << 9); if (next_hole < k.k->p.offset << 9) break; } else { offset = max(offset, bkey_start_offset(k.k) << 9); } } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; if (next_hole > isize) next_hole = isize; return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); } loff_t bch2_llseek(struct file *file, loff_t offset, int whence) { switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek(file, offset, whence); case SEEK_DATA: return bch2_seek_data(file, offset); case SEEK_HOLE: return bch2_seek_hole(file, offset); } return -EINVAL; } void bch2_fs_fsio_exit(struct bch_fs *c) { bioset_exit(&c->dio_write_bioset); bioset_exit(&c->dio_read_bioset); bioset_exit(&c->writepage_bioset); } int bch2_fs_fsio_init(struct bch_fs *c) { if (bioset_init(&c->writepage_bioset, 4, offsetof(struct bch_writepage_io, op.op.wbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_read_bioset, 4, offsetof(struct dio_read, rbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_write_bioset, 4, offsetof(struct dio_write, iop.op.wbio.bio), BIOSET_NEED_BVECS)) return -ENOMEM; return 0; } #endif /* NO_BCACHEFS_FS */