/* * random utiility code, for bcache but in theory not specific to bcache * * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "util.h" #define simple_strtoint(c, end, base) simple_strtol(c, end, base) #define simple_strtouint(c, end, base) simple_strtoul(c, end, base) #define STRTO_H(name, type) \ int bch2_ ## name ## _h(const char *cp, type *res) \ { \ int u = 0; \ char *e; \ type i = simple_ ## name(cp, &e, 10); \ \ switch (tolower(*e)) { \ default: \ return -EINVAL; \ case 'y': \ case 'z': \ u++; \ case 'e': \ u++; \ case 'p': \ u++; \ case 't': \ u++; \ case 'g': \ u++; \ case 'm': \ u++; \ case 'k': \ u++; \ if (e++ == cp) \ return -EINVAL; \ case '\n': \ case '\0': \ if (*e == '\n') \ e++; \ } \ \ if (*e) \ return -EINVAL; \ \ while (u--) { \ if ((type) ~0 > 0 && \ (type) ~0 / 1024 <= i) \ return -EINVAL; \ if ((i > 0 && ANYSINT_MAX(type) / 1024 < i) || \ (i < 0 && -ANYSINT_MAX(type) / 1024 > i)) \ return -EINVAL; \ i *= 1024; \ } \ \ *res = i; \ return 0; \ } \ STRTO_H(strtoint, int) STRTO_H(strtouint, unsigned int) STRTO_H(strtoll, long long) STRTO_H(strtoull, unsigned long long) ssize_t bch2_hprint(char *buf, s64 v) { static const char units[] = "?kMGTPEZY"; char dec[4] = ""; int u, t = 0; for (u = 0; v >= 1024 || v <= -1024; u++) { t = v & ~(~0U << 10); v >>= 10; } if (!u) return sprintf(buf, "%lli", v); /* * 103 is magic: t is in the range [-1023, 1023] and we want * to turn it into [-9, 9] */ if (v < 100 && v > -100) scnprintf(dec, sizeof(dec), ".%i", t / 103); return sprintf(buf, "%lli%s%c", v, dec, units[u]); } ssize_t bch2_scnprint_string_list(char *buf, size_t size, const char * const list[], size_t selected) { char *out = buf; size_t i; if (size) *out = '\0'; for (i = 0; list[i]; i++) out += scnprintf(out, buf + size - out, i == selected ? "[%s] " : "%s ", list[i]); if (out != buf) *--out = '\0'; return out - buf; } ssize_t bch2_read_string_list(const char *buf, const char * const list[]) { size_t i, len; buf = skip_spaces(buf); len = strlen(buf); while (len && isspace(buf[len - 1])) --len; for (i = 0; list[i]; i++) if (strlen(list[i]) == len && !memcmp(buf, list[i], len)) break; return list[i] ? i : -EINVAL; } ssize_t bch2_scnprint_flag_list(char *buf, size_t size, const char * const list[], u64 flags) { char *out = buf, *end = buf + size; unsigned bit, nr = 0; while (list[nr]) nr++; if (size) *out = '\0'; while (flags && (bit = __ffs(flags)) < nr) { out += scnprintf(out, end - out, "%s,", list[bit]); flags ^= 1 << bit; } if (out != buf) *--out = '\0'; return out - buf; } u64 bch2_read_flag_list(char *opt, const char * const list[]) { u64 ret = 0; char *p, *s, *d = kstrndup(opt, PAGE_SIZE - 1, GFP_KERNEL); if (!d) return -ENOMEM; s = strim(d); while ((p = strsep(&s, ","))) { int flag = bch2_read_string_list(p, list); if (flag < 0) { ret = -1; break; } ret |= 1 << flag; } kfree(d); return ret; } bool bch2_is_zero(const void *_p, size_t n) { const char *p = _p; size_t i; for (i = 0; i < n; i++) if (p[i]) return false; return true; } void bch2_time_stats_clear(struct time_stats *stats) { spin_lock(&stats->lock); stats->count = 0; stats->last_duration = 0; stats->max_duration = 0; stats->average_duration = 0; stats->average_frequency = 0; stats->last = 0; spin_unlock(&stats->lock); } void __bch2_time_stats_update(struct time_stats *stats, u64 start_time) { u64 now, duration, last; stats->count++; now = local_clock(); duration = time_after64(now, start_time) ? now - start_time : 0; last = time_after64(now, stats->last) ? now - stats->last : 0; stats->last_duration = duration; stats->max_duration = max(stats->max_duration, duration); if (stats->last) { stats->average_duration = ewma_add(stats->average_duration, duration << 8, 3); if (stats->average_frequency) stats->average_frequency = ewma_add(stats->average_frequency, last << 8, 3); else stats->average_frequency = last << 8; } else { stats->average_duration = duration << 8; } stats->last = now ?: 1; } void bch2_time_stats_update(struct time_stats *stats, u64 start_time) { spin_lock(&stats->lock); __bch2_time_stats_update(stats, start_time); spin_unlock(&stats->lock); } /** * bch2_ratelimit_delay() - return how long to delay until the next time to do * some work * * @d - the struct bch_ratelimit to update * * Returns the amount of time to delay by, in jiffies */ u64 bch2_ratelimit_delay(struct bch_ratelimit *d) { u64 now = local_clock(); return time_after64(d->next, now) ? nsecs_to_jiffies(d->next - now) : 0; } /** * bch2_ratelimit_increment() - increment @d by the amount of work done * * @d - the struct bch_ratelimit to update * @done - the amount of work done, in arbitrary units */ void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done) { u64 now = local_clock(); d->next += div_u64(done * NSEC_PER_SEC, d->rate); if (time_before64(now + NSEC_PER_SEC, d->next)) d->next = now + NSEC_PER_SEC; if (time_after64(now - NSEC_PER_SEC * 2, d->next)) d->next = now - NSEC_PER_SEC * 2; } int bch2_ratelimit_wait_freezable_stoppable(struct bch_ratelimit *d) { bool kthread = (current->flags & PF_KTHREAD) != 0; while (1) { u64 delay = bch2_ratelimit_delay(d); if (delay) set_current_state(TASK_INTERRUPTIBLE); if (kthread && kthread_should_stop()) return 1; if (!delay) return 0; schedule_timeout(delay); try_to_freeze(); } } /* * Updates pd_controller. Attempts to scale inputed values to units per second. * @target: desired value * @actual: current value * * @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing * it makes actual go down. */ void bch2_pd_controller_update(struct bch_pd_controller *pd, s64 target, s64 actual, int sign) { s64 proportional, derivative, change; unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ; if (seconds_since_update == 0) return; pd->last_update = jiffies; proportional = actual - target; proportional *= seconds_since_update; proportional = div_s64(proportional, pd->p_term_inverse); derivative = actual - pd->last_actual; derivative = div_s64(derivative, seconds_since_update); derivative = ewma_add(pd->smoothed_derivative, derivative, (pd->d_term / seconds_since_update) ?: 1); derivative = derivative * pd->d_term; derivative = div_s64(derivative, pd->p_term_inverse); change = proportional + derivative; /* Don't increase rate if not keeping up */ if (change > 0 && pd->backpressure && time_after64(local_clock(), pd->rate.next + NSEC_PER_MSEC)) change = 0; change *= (sign * -1); pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change, 1, UINT_MAX); pd->last_actual = actual; pd->last_derivative = derivative; pd->last_proportional = proportional; pd->last_change = change; pd->last_target = target; } void bch2_pd_controller_init(struct bch_pd_controller *pd) { pd->rate.rate = 1024; pd->last_update = jiffies; pd->p_term_inverse = 6000; pd->d_term = 30; pd->d_smooth = pd->d_term; pd->backpressure = 1; } size_t bch2_pd_controller_print_debug(struct bch_pd_controller *pd, char *buf) { /* 2^64 - 1 is 20 digits, plus null byte */ char rate[21]; char actual[21]; char target[21]; char proportional[21]; char derivative[21]; char change[21]; s64 next_io; bch2_hprint(rate, pd->rate.rate); bch2_hprint(actual, pd->last_actual); bch2_hprint(target, pd->last_target); bch2_hprint(proportional, pd->last_proportional); bch2_hprint(derivative, pd->last_derivative); bch2_hprint(change, pd->last_change); next_io = div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC); return sprintf(buf, "rate:\t\t%s/sec\n" "target:\t\t%s\n" "actual:\t\t%s\n" "proportional:\t%s\n" "derivative:\t%s\n" "change:\t\t%s/sec\n" "next io:\t%llims\n", rate, target, actual, proportional, derivative, change, next_io); } void bch2_bio_map(struct bio *bio, void *base) { size_t size = bio->bi_iter.bi_size; struct bio_vec *bv = bio->bi_io_vec; BUG_ON(!bio->bi_iter.bi_size); BUG_ON(bio->bi_vcnt); bv->bv_offset = base ? offset_in_page(base) : 0; goto start; for (; size; bio->bi_vcnt++, bv++) { bv->bv_offset = 0; start: bv->bv_len = min_t(size_t, PAGE_SIZE - bv->bv_offset, size); BUG_ON(bio->bi_vcnt >= bio->bi_max_vecs); if (base) { bv->bv_page = is_vmalloc_addr(base) ? vmalloc_to_page(base) : virt_to_page(base); base += bv->bv_len; } size -= bv->bv_len; } } size_t bch2_rand_range(size_t max) { size_t rand; if (!max) return 0; do { rand = get_random_long(); rand &= roundup_pow_of_two(max) - 1; } while (rand >= max); return rand; } void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, void *src) { struct bio_vec bv; struct bvec_iter iter; __bio_for_each_segment(bv, dst, iter, dst_iter) { void *dstp = kmap_atomic(bv.bv_page); memcpy(dstp + bv.bv_offset, src, bv.bv_len); kunmap_atomic(dstp); src += bv.bv_len; } } void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter) { struct bio_vec bv; struct bvec_iter iter; __bio_for_each_segment(bv, src, iter, src_iter) { void *srcp = kmap_atomic(bv.bv_page); memcpy(dst, srcp + bv.bv_offset, bv.bv_len); kunmap_atomic(srcp); dst += bv.bv_len; } } size_t bch_scnmemcpy(char *buf, size_t size, const char *src, size_t len) { size_t n; if (!size) return 0; n = min(size - 1, len); memcpy(buf, src, n); buf[n] = '\0'; return n; } #include "eytzinger.h" static int alignment_ok(const void *base, size_t align) { return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || ((unsigned long)base & (align - 1)) == 0; } static void u32_swap(void *a, void *b, size_t size) { u32 t = *(u32 *)a; *(u32 *)a = *(u32 *)b; *(u32 *)b = t; } static void u64_swap(void *a, void *b, size_t size) { u64 t = *(u64 *)a; *(u64 *)a = *(u64 *)b; *(u64 *)b = t; } static void generic_swap(void *a, void *b, size_t size) { char t; do { t = *(char *)a; *(char *)a++ = *(char *)b; *(char *)b++ = t; } while (--size > 0); } static inline int do_cmp(void *base, size_t n, size_t size, int (*cmp_func)(const void *, const void *, size_t), size_t l, size_t r) { return cmp_func(base + inorder_to_eytzinger0(l, n) * size, base + inorder_to_eytzinger0(r, n) * size, size); } static inline void do_swap(void *base, size_t n, size_t size, void (*swap_func)(void *, void *, size_t), size_t l, size_t r) { swap_func(base + inorder_to_eytzinger0(l, n) * size, base + inorder_to_eytzinger0(r, n) * size, size); } void eytzinger0_sort(void *base, size_t n, size_t size, int (*cmp_func)(const void *, const void *, size_t), void (*swap_func)(void *, void *, size_t)) { int i, c, r; if (!swap_func) { if (size == 4 && alignment_ok(base, 4)) swap_func = u32_swap; else if (size == 8 && alignment_ok(base, 8)) swap_func = u64_swap; else swap_func = generic_swap; } /* heapify */ for (i = n / 2 - 1; i >= 0; --i) { for (r = i; r * 2 + 1 < n; r = c) { c = r * 2 + 1; if (c + 1 < n && do_cmp(base, n, size, cmp_func, c, c + 1) < 0) c++; if (do_cmp(base, n, size, cmp_func, r, c) >= 0) break; do_swap(base, n, size, swap_func, r, c); } } /* sort */ for (i = n - 1; i > 0; --i) { do_swap(base, n, size, swap_func, 0, i); for (r = 0; r * 2 + 1 < i; r = c) { c = r * 2 + 1; if (c + 1 < i && do_cmp(base, n, size, cmp_func, c, c + 1) < 0) c++; if (do_cmp(base, n, size, cmp_func, r, c) >= 0) break; do_swap(base, n, size, swap_func, r, c); } } } void sort_cmp_size(void *base, size_t num, size_t size, int (*cmp_func)(const void *, const void *, size_t), void (*swap_func)(void *, void *, size_t size)) { /* pre-scale counters for performance */ int i = (num/2 - 1) * size, n = num * size, c, r; if (!swap_func) { if (size == 4 && alignment_ok(base, 4)) swap_func = u32_swap; else if (size == 8 && alignment_ok(base, 8)) swap_func = u64_swap; else swap_func = generic_swap; } /* heapify */ for ( ; i >= 0; i -= size) { for (r = i; r * 2 + size < n; r = c) { c = r * 2 + size; if (c < n - size && cmp_func(base + c, base + c + size, size) < 0) c += size; if (cmp_func(base + r, base + c, size) >= 0) break; swap_func(base + r, base + c, size); } } /* sort */ for (i = n - size; i > 0; i -= size) { swap_func(base, base + i, size); for (r = 0; r * 2 + size < i; r = c) { c = r * 2 + size; if (c < i - size && cmp_func(base + c, base + c + size, size) < 0) c += size; if (cmp_func(base + r, base + c, size) >= 0) break; swap_func(base + r, base + c, size); } } } void mempool_free_vp(void *element, void *pool_data) { size_t size = (size_t) pool_data; vpfree(element, size); } void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data) { size_t size = (size_t) pool_data; return vpmalloc(size, gfp_mask); } #if 0 void eytzinger1_test(void) { unsigned inorder, eytz, size; pr_info("1 based eytzinger test:"); for (size = 2; size < 65536; size++) { unsigned extra = eytzinger1_extra(size); if (!(size % 4096)) pr_info("tree size %u", size); BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size)); BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size)); BUG_ON(eytzinger1_prev(eytzinger1_first(size), size) != 0); BUG_ON(eytzinger1_next(eytzinger1_last(size), size) != 0); inorder = 1; eytzinger1_for_each(eytz, size) { BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz); BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder); BUG_ON(eytz != eytzinger1_last(size) && eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz); inorder++; } } } void eytzinger0_test(void) { unsigned inorder, eytz, size; pr_info("0 based eytzinger test:"); for (size = 1; size < 65536; size++) { unsigned extra = eytzinger0_extra(size); if (!(size % 4096)) pr_info("tree size %u", size); BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size)); BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size)); BUG_ON(eytzinger0_prev(eytzinger0_first(size), size) != -1); BUG_ON(eytzinger0_next(eytzinger0_last(size), size) != -1); inorder = 0; eytzinger0_for_each(eytz, size) { BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz); BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder); BUG_ON(eytz != eytzinger0_last(size) && eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz); inorder++; } } } static inline int cmp_u16(const void *_l, const void *_r, size_t size) { const u16 *l = _l, *r = _r; return (*l > *r) - (*r - *l); } static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search) { int i, c1 = -1, c2 = -1; ssize_t r; r = eytzinger0_find_le(test_array, nr, sizeof(test_array[0]), cmp_u16, &search); if (r >= 0) c1 = test_array[r]; for (i = 0; i < nr; i++) if (test_array[i] <= search && test_array[i] > c2) c2 = test_array[i]; if (c1 != c2) { eytzinger0_for_each(i, nr) pr_info("[%3u] = %12u", i, test_array[i]); pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i", i, r, c1, c2); } } void eytzinger0_find_test(void) { unsigned i, nr, allocated = 1 << 12; u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL); for (nr = 1; nr < allocated; nr++) { pr_info("testing %u elems", nr); get_random_bytes(test_array, nr * sizeof(test_array[0])); eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL); /* verify array is sorted correctly: */ eytzinger0_for_each(i, nr) BUG_ON(i != eytzinger0_last(nr) && test_array[i] > test_array[eytzinger0_next(i, nr)]); for (i = 0; i < U16_MAX; i += 1 << 12) eytzinger0_find_test_val(test_array, nr, i); for (i = 0; i < nr; i++) { eytzinger0_find_test_val(test_array, nr, test_array[i] - 1); eytzinger0_find_test_val(test_array, nr, test_array[i]); eytzinger0_find_test_val(test_array, nr, test_array[i] + 1); } } kfree(test_array); } #endif