#ifndef __TOOLS_LINUX_KERNEL_H
#define __TOOLS_LINUX_KERNEL_H

#include <assert.h>
#include <errno.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <limits.h>

#include <linux/bug.h>
#include <linux/byteorder.h>
#include <linux/compiler.h>
#include <linux/math.h>

#define BIT(nr)			(1UL << (nr))
#define BIT_ULL(nr)		(1ULL << (nr))

#define __ARG_PLACEHOLDER_1 0,
#define __take_second_arg(__ignored, val, ...) val

#define __and(x, y)			___and(x, y)
#define ___and(x, y)			____and(__ARG_PLACEHOLDER_##x, y)
#define ____and(arg1_or_junk, y)	__take_second_arg(arg1_or_junk y, 0)

#define __or(x, y)			___or(x, y)
#define ___or(x, y)			____or(__ARG_PLACEHOLDER_##x, y)
#define ____or(arg1_or_junk, y)		__take_second_arg(arg1_or_junk 1, y)

#define __is_defined(x)			___is_defined(x)
#define ___is_defined(val)		____is_defined(__ARG_PLACEHOLDER_##val)
#define ____is_defined(arg1_or_junk)	__take_second_arg(arg1_or_junk 1, 0)

/*
 * IS_BUILTIN(CONFIG_FOO) evaluates to 1 if CONFIG_FOO is set to 'y', 0
 * otherwise. For boolean options, this is equivalent to
 * IS_ENABLED(CONFIG_FOO).
 */
#define IS_BUILTIN(option) __is_defined(option)

/*
 * IS_MODULE(CONFIG_FOO) evaluates to 1 if CONFIG_FOO is set to 'm', 0
 * otherwise.
 */
#define IS_MODULE(option) __is_defined(option##_MODULE)

/*
 * IS_REACHABLE(CONFIG_FOO) evaluates to 1 if the currently compiled
 * code can call a function defined in code compiled based on CONFIG_FOO.
 * This is similar to IS_ENABLED(), but returns false when invoked from
 * built-in code when CONFIG_FOO is set to 'm'.
 */
#define IS_REACHABLE(option) __or(IS_BUILTIN(option), \
				__and(IS_MODULE(option), __is_defined(MODULE)))

/*
 * IS_ENABLED(CONFIG_FOO) evaluates to 1 if CONFIG_FOO is set to 'y' or 'm',
 * 0 otherwise.
 */
#define IS_ENABLED(option) __or(IS_BUILTIN(option), IS_MODULE(option))
#define EXPORT_SYMBOL(sym)

#define U8_MAX		((u8)~0U)
#define S8_MAX		((s8)(U8_MAX>>1))
#define S8_MIN		((s8)(-S8_MAX - 1))
#define U16_MAX		((u16)~0U)
#define S16_MAX		((s16)(U16_MAX>>1))
#define S16_MIN		((s16)(-S16_MAX - 1))
#define U32_MAX		((u32)~0U)
#define S32_MAX		((s32)(U32_MAX>>1))
#define S32_MIN		((s32)(-S32_MAX - 1))
#define U64_MAX		((u64)~0ULL)
#define S64_MAX		((s64)(U64_MAX>>1))
#define S64_MIN		((s64)(-S64_MAX - 1))

#define ALIGN(x, a)	__ALIGN_MASK(x, (typeof(x))(a)-1)
#define __ALIGN_MASK(x, mask)	(((x)+(mask))&~(mask))

#define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
#define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)

#define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))

#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

#ifndef container_of
/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define container_of(ptr, type, member) ({			\
	const typeof(((type *)0)->member) * __mptr = (ptr);	\
	(type *)((char *)__mptr - offsetof(type, member)); })
#endif

#ifndef __struct_group
#define __struct_group(TAG, NAME, ATTRS, MEMBERS...) \
	union { \
		struct { MEMBERS } ATTRS; \
		struct TAG { MEMBERS } ATTRS NAME; \
	}
#endif

#define struct_group(NAME, MEMBERS...)	\
	__struct_group(/* no tag */, NAME, /* no attrs */, MEMBERS)

#define max(x, y) ({				\
	typeof(x) _max1 = (x);			\
	typeof(y) _max2 = (y);			\
	(void) (&_max1 == &_max2);		\
	_max1 > _max2 ? _max1 : _max2; })

#define min(x, y) ({				\
	typeof(x) _min1 = (x);			\
	typeof(y) _min2 = (y);			\
	(void) (&_min1 == &_min2);		\
	_min1 < _min2 ? _min1 : _min2; })

#define min_t(type, x, y) ({			\
	type __min1 = (x);			\
	type __min2 = (y);			\
	__min1 < __min2 ? __min1: __min2; })

#define max_t(type, x, y) ({			\
	type __max1 = (x);			\
	type __max2 = (y);			\
	__max1 > __max2 ? __max1: __max2; })

#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)

#define swap(a, b) \
	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)

/* This counts to 12. Any more, it will return 13th argument. */
#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

#define _RET_IP_		(unsigned long)__builtin_return_address(0)
#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })

#define might_sleep()

#define cpu_relax()		barrier()
#define cpu_relax_lowlatency()	barrier()

#define panic(fmt, ...)					\
do {							\
	printf(fmt, ##__VA_ARGS__);			\
	BUG();						\
} while (0)

int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
int __must_check _kstrtol(const char *s, unsigned int base, long *res);

int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
int __must_check kstrtoll(const char *s, unsigned int base, long long *res);

/**
 * kstrtoul - convert a string to an unsigned long
 * @s: The start of the string. The string must be null-terminated, and may also
 *  include a single newline before its terminating null. The first character
 *  may also be a plus sign, but not a minus sign.
 * @base: The number base to use. The maximum supported base is 16. If base is
 *  given as 0, then the base of the string is automatically detected with the
 *  conventional semantics - If it begins with 0x the number will be parsed as a
 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 * @res: Where to write the result of the conversion on success.
 *
 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 * Used as a replacement for the obsolete simple_strtoull. Return code must
 * be checked.
*/
static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
{
	/*
	 * We want to shortcut function call, but
	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
	 */
	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
	    __alignof__(unsigned long) == __alignof__(unsigned long long))
		return kstrtoull(s, base, (unsigned long long *)res);
	else
		return _kstrtoul(s, base, res);
}

/**
 * kstrtol - convert a string to a long
 * @s: The start of the string. The string must be null-terminated, and may also
 *  include a single newline before its terminating null. The first character
 *  may also be a plus sign or a minus sign.
 * @base: The number base to use. The maximum supported base is 16. If base is
 *  given as 0, then the base of the string is automatically detected with the
 *  conventional semantics - If it begins with 0x the number will be parsed as a
 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 * @res: Where to write the result of the conversion on success.
 *
 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 * Used as a replacement for the obsolete simple_strtoull. Return code must
 * be checked.
 */
static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
{
	/*
	 * We want to shortcut function call, but
	 * __builtin_types_compatible_p(long, long long) = 0.
	 */
	if (sizeof(long) == sizeof(long long) &&
	    __alignof__(long) == __alignof__(long long))
		return kstrtoll(s, base, (long long *)res);
	else
		return _kstrtol(s, base, res);
}

int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
int __must_check kstrtoint(const char *s, unsigned int base, int *res);

static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
{
	return kstrtoull(s, base, res);
}

static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
{
	return kstrtoll(s, base, res);
}

static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
{
	return kstrtouint(s, base, res);
}

static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
{
	return kstrtoint(s, base, res);
}

struct printbuf;
extern void prt_u64(struct printbuf *out, u64 num);

extern __printf(2, 0) void prt_vprintf(struct printbuf *out, const char *fmt, va_list args);
extern __printf(2, 3) void prt_printf(struct printbuf *out, const char *fmt, ...);

static const char hex_asc[] = "0123456789abcdef";
#define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
#define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
static const char hex_asc_upper[] = "0123456789ABCDEF";
#define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
#define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]

/* The hash is always the low bits of hash_len */
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 #define HASH_LEN_DECLARE u32 hash; u32 len
#else
 #define HASH_LEN_DECLARE u32 len; u32 hash
#endif

struct qstr {
	union {
		struct {
			HASH_LEN_DECLARE;
		};
		u64 hash_len;
	};
	const unsigned char *name;
};

#define QSTR_INIT(n,l) { { { .len = l } }, .name = n }

#define POISON_FREE 0x6b

static inline void dump_stack(void) {}

#define unsafe_memcpy(dst, src, bytes, justification)		\
	memcpy(dst, src, bytes)

#ifdef __DECLARE_FLEX_ARRAY
#define DECLARE_FLEX_ARRAY(TYPE, NAME) __DECLARE_FLEX_ARRAY(TYPE, NAME)
#else
#define DECLARE_FLEX_ARRAY(T, member)        T member[0]
#endif

#endif