/* * Primary bucket allocation code * * Copyright 2012 Google, Inc. * * Allocation in bcache is done in terms of buckets: * * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in * btree pointers - they must match for the pointer to be considered valid. * * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a * bucket simply by incrementing its gen. * * The gens (along with the priorities; it's really the gens are important but * the code is named as if it's the priorities) are written in an arbitrary list * of buckets on disk, with a pointer to them in the journal header. * * When we invalidate a bucket, we have to write its new gen to disk and wait * for that write to complete before we use it - otherwise after a crash we * could have pointers that appeared to be good but pointed to data that had * been overwritten. * * Since the gens and priorities are all stored contiguously on disk, we can * batch this up: We fill up the free_inc list with freshly invalidated buckets, * call prio_write(), and when prio_write() finishes we pull buckets off the * free_inc list and optionally discard them. * * free_inc isn't the only freelist - if it was, we'd often have to sleep while * priorities and gens were being written before we could allocate. c->free is a * smaller freelist, and buckets on that list are always ready to be used. * * If we've got discards enabled, that happens when a bucket moves from the * free_inc list to the free list. * * It's important to ensure that gens don't wrap around - with respect to * either the oldest gen in the btree or the gen on disk. This is quite * difficult to do in practice, but we explicitly guard against it anyways - if * a bucket is in danger of wrapping around we simply skip invalidating it that * time around, and we garbage collect or rewrite the priorities sooner than we * would have otherwise. * * bch2_bucket_alloc() allocates a single bucket from a specific device. * * bch2_bucket_alloc_set() allocates one or more buckets from different devices * in a given filesystem. * * invalidate_buckets() drives all the processes described above. It's called * from bch2_bucket_alloc() and a few other places that need to make sure free * buckets are ready. * * invalidate_buckets_(lru|fifo)() find buckets that are available to be * invalidated, and then invalidate them and stick them on the free_inc list - * in either lru or fifo order. */ #include "bcachefs.h" #include "alloc.h" #include "btree_cache.h" #include "btree_io.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "buckets.h" #include "checksum.h" #include "clock.h" #include "debug.h" #include "disk_groups.h" #include "error.h" #include "extents.h" #include "io.h" #include "journal.h" #include "journal_io.h" #include "super-io.h" #include #include #include #include #include #include #include #include #include static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int); /* Ratelimiting/PD controllers */ static void pd_controllers_update(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, pd_controllers_update); struct bch_dev *ca; unsigned i; for_each_member_device(ca, c, i) { struct bch_dev_usage stats = bch2_dev_usage_read(c, ca); u64 free = bucket_to_sector(ca, __dev_buckets_free(ca, stats)) << 9; /* * Bytes of internal fragmentation, which can be * reclaimed by copy GC */ s64 fragmented = (bucket_to_sector(ca, stats.buckets[BCH_DATA_USER] + stats.buckets[BCH_DATA_CACHED]) - (stats.sectors[BCH_DATA_USER] + stats.sectors[BCH_DATA_CACHED])) << 9; fragmented = max(0LL, fragmented); bch2_pd_controller_update(&ca->copygc_pd, free, fragmented, -1); } schedule_delayed_work(&c->pd_controllers_update, c->pd_controllers_update_seconds * HZ); } /* Persistent alloc info: */ static unsigned bch_alloc_val_u64s(const struct bch_alloc *a) { unsigned bytes = offsetof(struct bch_alloc, data); if (a->fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) bytes += 2; if (a->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) bytes += 2; return DIV_ROUND_UP(bytes, sizeof(u64)); } const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k) { if (k.k->p.inode >= c->sb.nr_devices || !c->devs[k.k->p.inode]) return "invalid device"; switch (k.k->type) { case BCH_ALLOC: { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); if (bch_alloc_val_u64s(a.v) != bkey_val_u64s(a.k)) return "incorrect value size"; break; } default: return "invalid type"; } return NULL; } void bch2_alloc_to_text(struct bch_fs *c, char *buf, size_t size, struct bkey_s_c k) { buf[0] = '\0'; switch (k.k->type) { case BCH_ALLOC: break; } } static inline unsigned get_alloc_field(const u8 **p, unsigned bytes) { unsigned v; switch (bytes) { case 1: v = **p; break; case 2: v = le16_to_cpup((void *) *p); break; case 4: v = le32_to_cpup((void *) *p); break; default: BUG(); } *p += bytes; return v; } static inline void put_alloc_field(u8 **p, unsigned bytes, unsigned v) { switch (bytes) { case 1: **p = v; break; case 2: *((__le16 *) *p) = cpu_to_le16(v); break; case 4: *((__le32 *) *p) = cpu_to_le32(v); break; default: BUG(); } *p += bytes; } static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k) { struct bch_dev *ca; struct bkey_s_c_alloc a; struct bucket_mark new; struct bucket *g; const u8 *d; if (k.k->type != BCH_ALLOC) return; a = bkey_s_c_to_alloc(k); ca = bch_dev_bkey_exists(c, a.k->p.inode); if (a.k->p.offset >= ca->mi.nbuckets) return; percpu_down_read_preempt_disable(&c->usage_lock); g = bucket(ca, a.k->p.offset); bucket_cmpxchg(g, new, ({ new.gen = a.v->gen; new.gen_valid = 1; })); d = a.v->data; if (a.v->fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) g->io_time[READ] = get_alloc_field(&d, 2); if (a.v->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) g->io_time[WRITE] = get_alloc_field(&d, 2); percpu_up_read_preempt_enable(&c->usage_lock); } int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list) { struct journal_replay *r; struct btree_iter iter; struct bkey_s_c k; struct bch_dev *ca; unsigned i; int ret; for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) { bch2_alloc_read_key(c, k); bch2_btree_iter_cond_resched(&iter); } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; list_for_each_entry(r, journal_replay_list, list) { struct bkey_i *k, *n; struct jset_entry *entry; for_each_jset_key(k, n, entry, &r->j) if (entry->btree_id == BTREE_ID_ALLOC) bch2_alloc_read_key(c, bkey_i_to_s_c(k)); } mutex_lock(&c->bucket_clock[READ].lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); bch2_recalc_oldest_io(c, ca, READ); up_read(&ca->bucket_lock); } mutex_unlock(&c->bucket_clock[READ].lock); mutex_lock(&c->bucket_clock[WRITE].lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); bch2_recalc_oldest_io(c, ca, WRITE); up_read(&ca->bucket_lock); } mutex_unlock(&c->bucket_clock[WRITE].lock); return 0; } static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca, size_t b, struct btree_iter *iter, u64 *journal_seq, bool nowait) { struct bucket_mark m; __BKEY_PADDED(k, DIV_ROUND_UP(sizeof(struct bch_alloc), 8)) alloc_key; struct bucket *g; struct bkey_i_alloc *a; u8 *d; int ret; unsigned flags = BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_USE_ALLOC_RESERVE; if (nowait) flags |= BTREE_INSERT_NOWAIT; bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b)); do { ret = btree_iter_err(bch2_btree_iter_peek_slot(iter)); if (ret) break; percpu_down_read_preempt_disable(&c->usage_lock); g = bucket(ca, b); /* read mark under btree node lock: */ m = READ_ONCE(g->mark); a = bkey_alloc_init(&alloc_key.k); a->k.p = iter->pos; a->v.fields = 0; a->v.gen = m.gen; set_bkey_val_u64s(&a->k, bch_alloc_val_u64s(&a->v)); d = a->v.data; if (a->v.fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) put_alloc_field(&d, 2, g->io_time[READ]); if (a->v.fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) put_alloc_field(&d, 2, g->io_time[WRITE]); percpu_up_read_preempt_enable(&c->usage_lock); ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, flags, BTREE_INSERT_ENTRY(iter, &a->k_i)); bch2_btree_iter_cond_resched(iter); } while (ret == -EINTR); return ret; } int bch2_alloc_replay_key(struct bch_fs *c, struct bpos pos) { struct bch_dev *ca; struct btree_iter iter; int ret; if (pos.inode >= c->sb.nr_devices || !c->devs[pos.inode]) return 0; ca = bch_dev_bkey_exists(c, pos.inode); if (pos.offset >= ca->mi.nbuckets) return 0; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ret = __bch2_alloc_write_key(c, ca, pos.offset, &iter, NULL, false); bch2_btree_iter_unlock(&iter); return ret; } int bch2_alloc_write(struct bch_fs *c) { struct bch_dev *ca; unsigned i; int ret = 0; for_each_rw_member(ca, c, i) { struct btree_iter iter; unsigned long bucket; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); down_read(&ca->bucket_lock); for_each_set_bit(bucket, ca->buckets_dirty, ca->mi.nbuckets) { ret = __bch2_alloc_write_key(c, ca, bucket, &iter, NULL, false); if (ret) break; clear_bit(bucket, ca->buckets_dirty); } up_read(&ca->bucket_lock); bch2_btree_iter_unlock(&iter); if (ret) { percpu_ref_put(&ca->io_ref); break; } } return ret; } /* Bucket IO clocks: */ static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; struct bucket_array *buckets = bucket_array(ca); struct bucket *g; u16 max_last_io = 0; unsigned i; lockdep_assert_held(&c->bucket_clock[rw].lock); /* Recalculate max_last_io for this device: */ for_each_bucket(g, buckets) max_last_io = max(max_last_io, bucket_last_io(c, g, rw)); ca->max_last_bucket_io[rw] = max_last_io; /* Recalculate global max_last_io: */ max_last_io = 0; for_each_member_device(ca, c, i) max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]); clock->max_last_io = max_last_io; } static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; struct bucket_array *buckets; struct bch_dev *ca; struct bucket *g; unsigned i; trace_rescale_prios(c); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) g->io_time[rw] = clock->hand - bucket_last_io(c, g, rw) / 2; bch2_recalc_oldest_io(c, ca, rw); up_read(&ca->bucket_lock); } } static void bch2_inc_clock_hand(struct io_timer *timer) { struct bucket_clock *clock = container_of(timer, struct bucket_clock, rescale); struct bch_fs *c = container_of(clock, struct bch_fs, bucket_clock[clock->rw]); struct bch_dev *ca; u64 capacity; unsigned i; mutex_lock(&clock->lock); /* if clock cannot be advanced more, rescale prio */ if (clock->max_last_io >= U16_MAX - 2) bch2_rescale_bucket_io_times(c, clock->rw); BUG_ON(clock->max_last_io >= U16_MAX - 2); for_each_member_device(ca, c, i) ca->max_last_bucket_io[clock->rw]++; clock->max_last_io++; clock->hand++; mutex_unlock(&clock->lock); capacity = READ_ONCE(c->capacity); if (!capacity) return; /* * we only increment when 0.1% of the filesystem capacity has been read * or written too, this determines if it's time * * XXX: we shouldn't really be going off of the capacity of devices in * RW mode (that will be 0 when we're RO, yet we can still service * reads) */ timer->expire += capacity >> 10; bch2_io_timer_add(&c->io_clock[clock->rw], timer); } static void bch2_bucket_clock_init(struct bch_fs *c, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; clock->hand = 1; clock->rw = rw; clock->rescale.fn = bch2_inc_clock_hand; clock->rescale.expire = c->capacity >> 10; mutex_init(&clock->lock); } /* Background allocator thread: */ /* * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens * (marking them as invalidated on disk), then optionally issues discard * commands to the newly free buckets, then puts them on the various freelists. */ static void verify_not_on_freelist(struct bch_fs *c, struct bch_dev *ca, size_t bucket) { if (expensive_debug_checks(c) && test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) { size_t iter; long i; unsigned j; for (j = 0; j < RESERVE_NR; j++) fifo_for_each_entry(i, &ca->free[j], iter) BUG_ON(i == bucket); fifo_for_each_entry(i, &ca->free_inc, iter) BUG_ON(i == bucket); } } #define BUCKET_GC_GEN_MAX 96U /** * wait_buckets_available - wait on reclaimable buckets * * If there aren't enough available buckets to fill up free_inc, wait until * there are. */ static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca) { unsigned long gc_count = c->gc_count; int ret = 0; while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { ret = 1; break; } if (gc_count != c->gc_count) ca->inc_gen_really_needs_gc = 0; if ((ssize_t) (dev_buckets_available(c, ca) - ca->inc_gen_really_needs_gc) >= (ssize_t) fifo_free(&ca->free_inc)) break; up_read(&c->gc_lock); schedule(); try_to_freeze(); down_read(&c->gc_lock); } __set_current_state(TASK_RUNNING); return ret; } static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t bucket, struct bucket_mark mark) { u8 gc_gen; if (!is_available_bucket(mark)) return false; gc_gen = bucket_gc_gen(ca, bucket); if (gc_gen >= BUCKET_GC_GEN_MAX / 2) ca->inc_gen_needs_gc++; if (gc_gen >= BUCKET_GC_GEN_MAX) ca->inc_gen_really_needs_gc++; return gc_gen < BUCKET_GC_GEN_MAX; } static void bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket) { struct bucket_mark m; percpu_down_read_preempt_disable(&c->usage_lock); spin_lock(&c->freelist_lock); if (!bch2_invalidate_bucket(c, ca, bucket, &m)) { spin_unlock(&c->freelist_lock); percpu_up_read_preempt_enable(&c->usage_lock); return; } verify_not_on_freelist(c, ca, bucket); BUG_ON(!fifo_push(&ca->free_inc, bucket)); spin_unlock(&c->freelist_lock); percpu_up_read_preempt_enable(&c->usage_lock); /* gc lock held: */ bucket_io_clock_reset(c, ca, bucket, READ); bucket_io_clock_reset(c, ca, bucket, WRITE); if (m.cached_sectors) { ca->allocator_invalidating_data = true; } else if (m.journal_seq_valid) { u64 journal_seq = atomic64_read(&c->journal.seq); u64 bucket_seq = journal_seq; bucket_seq &= ~((u64) U16_MAX); bucket_seq |= m.journal_seq; if (bucket_seq > journal_seq) bucket_seq -= 1 << 16; ca->allocator_journal_seq_flush = max(ca->allocator_journal_seq_flush, bucket_seq); } } /* * Determines what order we're going to reuse buckets, smallest bucket_key() * first. * * * - We take into account the read prio of the bucket, which gives us an * indication of how hot the data is -- we scale the prio so that the prio * farthest from the clock is worth 1/8th of the closest. * * - The number of sectors of cached data in the bucket, which gives us an * indication of the cost in cache misses this eviction will cause. * * - If hotness * sectors used compares equal, we pick the bucket with the * smallest bucket_gc_gen() - since incrementing the same bucket's generation * number repeatedly forces us to run mark and sweep gc to avoid generation * number wraparound. */ static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark m) { unsigned last_io = bucket_last_io(c, bucket(ca, b), READ); unsigned max_last_io = ca->max_last_bucket_io[READ]; /* * Time since last read, scaled to [0, 8) where larger value indicates * more recently read data: */ unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io; /* How much we want to keep the data in this bucket: */ unsigned long data_wantness = (hotness + 1) * bucket_sectors_used(m); unsigned long needs_journal_commit = bucket_needs_journal_commit(m, c->journal.last_seq_ondisk); return (data_wantness << 9) | (needs_journal_commit << 8) | bucket_gc_gen(ca, b); } static inline int bucket_alloc_cmp(alloc_heap *h, struct alloc_heap_entry l, struct alloc_heap_entry r) { return (l.key > r.key) - (l.key < r.key) ?: (l.nr < r.nr) - (l.nr > r.nr) ?: (l.bucket > r.bucket) - (l.bucket < r.bucket); } static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets; struct alloc_heap_entry e = { 0 }; size_t b; ca->alloc_heap.used = 0; mutex_lock(&c->bucket_clock[READ].lock); down_read(&ca->bucket_lock); buckets = bucket_array(ca); bch2_recalc_oldest_io(c, ca, READ); /* * Find buckets with lowest read priority, by building a maxheap sorted * by read priority and repeatedly replacing the maximum element until * all buckets have been visited. */ for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) { struct bucket_mark m = READ_ONCE(buckets->b[b].mark); unsigned long key = bucket_sort_key(c, ca, b, m); if (!bch2_can_invalidate_bucket(ca, b, m)) continue; if (e.nr && e.bucket + e.nr == b && e.key == key) { e.nr++; } else { if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp); e = (struct alloc_heap_entry) { .bucket = b, .nr = 1, .key = key, }; } cond_resched(); } if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp); up_read(&ca->bucket_lock); mutex_unlock(&c->bucket_clock[READ].lock); heap_resort(&ca->alloc_heap, bucket_alloc_cmp); while (heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp)) { for (b = e.bucket; b < e.bucket + e.nr; b++) { if (fifo_full(&ca->free_inc)) return; bch2_invalidate_one_bucket(c, ca, b); } } } static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t b, checked; for (checked = 0; checked < ca->mi.nbuckets && !fifo_full(&ca->free_inc); checked++) { if (ca->fifo_last_bucket < ca->mi.first_bucket || ca->fifo_last_bucket >= ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; b = ca->fifo_last_bucket++; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) bch2_invalidate_one_bucket(c, ca, b); cond_resched(); } } static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t checked; for (checked = 0; checked < ca->mi.nbuckets / 2 && !fifo_full(&ca->free_inc); checked++) { size_t b = bch2_rand_range(ca->mi.nbuckets - ca->mi.first_bucket) + ca->mi.first_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) bch2_invalidate_one_bucket(c, ca, b); cond_resched(); } } static void find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca) { ca->inc_gen_needs_gc = 0; ca->inc_gen_really_needs_gc = 0; switch (ca->mi.replacement) { case CACHE_REPLACEMENT_LRU: find_reclaimable_buckets_lru(c, ca); break; case CACHE_REPLACEMENT_FIFO: find_reclaimable_buckets_fifo(c, ca); break; case CACHE_REPLACEMENT_RANDOM: find_reclaimable_buckets_random(c, ca); break; } } static int size_t_cmp(const void *_l, const void *_r) { const size_t *l = _l, *r = _r; return (*l > *r) - (*l < *r); } static void sort_free_inc(struct bch_fs *c, struct bch_dev *ca) { BUG_ON(ca->free_inc.front); spin_lock(&c->freelist_lock); sort(ca->free_inc.data, ca->free_inc.back, sizeof(ca->free_inc.data[0]), size_t_cmp, NULL); spin_unlock(&c->freelist_lock); } static int bch2_invalidate_free_inc(struct bch_fs *c, struct bch_dev *ca, u64 *journal_seq, size_t nr, bool nowait) { struct btree_iter iter; int ret = 0; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); /* Only use nowait if we've already invalidated at least one bucket: */ while (ca->nr_invalidated < min(nr, fifo_used(&ca->free_inc))) { size_t b = fifo_idx_entry(&ca->free_inc, ca->nr_invalidated); ret = __bch2_alloc_write_key(c, ca, b, &iter, journal_seq, nowait && ca->nr_invalidated); if (ret) break; ca->nr_invalidated++; } bch2_btree_iter_unlock(&iter); /* If we used NOWAIT, don't return the error: */ return ca->nr_invalidated ? 0 : ret; } static bool __push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket) { unsigned i; /* * Don't remove from free_inc until after it's added to * freelist, so gc can find it: */ spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) if (fifo_push(&ca->free[i], bucket)) { fifo_pop(&ca->free_inc, bucket); --ca->nr_invalidated; closure_wake_up(&c->freelist_wait); spin_unlock(&c->freelist_lock); return true; } spin_unlock(&c->freelist_lock); return false; } static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket) { int ret = 0; while (1) { set_current_state(TASK_INTERRUPTIBLE); if (__push_invalidated_bucket(c, ca, bucket)) break; if ((current->flags & PF_KTHREAD) && kthread_should_stop()) { ret = 1; break; } schedule(); try_to_freeze(); } __set_current_state(TASK_RUNNING); return ret; } /* * Given an invalidated, ready to use bucket: issue a discard to it if enabled, * then add it to the freelist, waiting until there's room if necessary: */ static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca) { while (ca->nr_invalidated) { size_t bucket = fifo_peek(&ca->free_inc); BUG_ON(fifo_empty(&ca->free_inc) || !ca->nr_invalidated); if (ca->mi.discard && blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, bucket), ca->mi.bucket_size, GFP_NOIO, 0); if (push_invalidated_bucket(c, ca, bucket)) return 1; } return 0; } /** * bch_allocator_thread - move buckets from free_inc to reserves * * The free_inc FIFO is populated by find_reclaimable_buckets(), and * the reserves are depleted by bucket allocation. When we run out * of free_inc, try to invalidate some buckets and write out * prios and gens. */ static int bch2_allocator_thread(void *arg) { struct bch_dev *ca = arg; struct bch_fs *c = ca->fs; u64 journal_seq; int ret; set_freezable(); while (1) { while (1) { cond_resched(); pr_debug("discarding %zu invalidated buckets", ca->nr_invalidated); ret = discard_invalidated_buckets(c, ca); if (ret) goto stop; if (fifo_empty(&ca->free_inc)) break; pr_debug("invalidating %zu buckets", fifo_used(&ca->free_inc)); journal_seq = 0; ret = bch2_invalidate_free_inc(c, ca, &journal_seq, SIZE_MAX, true); if (ret) { bch_err(ca, "error invalidating buckets: %i", ret); goto stop; } if (!ca->nr_invalidated) { bch_err(ca, "allocator thread unable to make forward progress!"); goto stop; } if (ca->allocator_invalidating_data) ret = bch2_journal_flush_seq(&c->journal, journal_seq); else if (ca->allocator_journal_seq_flush) ret = bch2_journal_flush_seq(&c->journal, ca->allocator_journal_seq_flush); /* * journal error - buckets haven't actually been * invalidated, can't discard them: */ if (ret) { bch_err(ca, "journal error: %i", ret); goto stop; } } pr_debug("free_inc now empty"); /* Reset front/back so we can easily sort fifo entries later: */ ca->free_inc.front = ca->free_inc.back = 0; ca->allocator_journal_seq_flush = 0; ca->allocator_invalidating_data = false; down_read(&c->gc_lock); while (1) { size_t prev = fifo_used(&ca->free_inc); if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) { up_read(&c->gc_lock); bch_err(ca, "gc failure"); goto stop; } /* * Find some buckets that we can invalidate, either * they're completely unused, or only contain clean data * that's been written back to the backing device or * another cache tier */ pr_debug("scanning for reclaimable buckets"); find_reclaimable_buckets(c, ca); pr_debug("found %zu buckets (free_inc %zu/%zu)", fifo_used(&ca->free_inc) - prev, fifo_used(&ca->free_inc), ca->free_inc.size); trace_alloc_batch(ca, fifo_used(&ca->free_inc), ca->free_inc.size); if ((ca->inc_gen_needs_gc >= ca->free_inc.size || (!fifo_full(&ca->free_inc) && ca->inc_gen_really_needs_gc >= fifo_free(&ca->free_inc))) && c->gc_thread) { atomic_inc(&c->kick_gc); wake_up_process(c->gc_thread); } if (fifo_full(&ca->free_inc)) break; if (!fifo_empty(&ca->free_inc) && !fifo_full(&ca->free[RESERVE_MOVINGGC])) break; /* * copygc may be waiting until either its reserve fills * up, or we can't make forward progress: */ ca->allocator_blocked = true; closure_wake_up(&c->freelist_wait); ret = wait_buckets_available(c, ca); if (ret) { up_read(&c->gc_lock); goto stop; } } ca->allocator_blocked = false; up_read(&c->gc_lock); pr_debug("free_inc now %zu/%zu", fifo_used(&ca->free_inc), ca->free_inc.size); sort_free_inc(c, ca); /* * free_inc is now full of newly-invalidated buckets: next, * write out the new bucket gens: */ } stop: pr_debug("alloc thread stopping (ret %i)", ret); return 0; } /* Allocation */ /* * Open buckets represent a bucket that's currently being allocated from. They * serve two purposes: * * - They track buckets that have been partially allocated, allowing for * sub-bucket sized allocations - they're used by the sector allocator below * * - They provide a reference to the buckets they own that mark and sweep GC * can find, until the new allocation has a pointer to it inserted into the * btree * * When allocating some space with the sector allocator, the allocation comes * with a reference to an open bucket - the caller is required to put that * reference _after_ doing the index update that makes its allocation reachable. */ void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); percpu_down_read_preempt_disable(&c->usage_lock); spin_lock(&ob->lock); bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), false, gc_pos_alloc(c, ob), 0); ob->valid = false; spin_unlock(&ob->lock); percpu_up_read_preempt_enable(&c->usage_lock); spin_lock(&c->freelist_lock); ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; c->open_buckets_nr_free++; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); } static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c) { struct open_bucket *ob; BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free); ob = c->open_buckets + c->open_buckets_freelist; c->open_buckets_freelist = ob->freelist; atomic_set(&ob->pin, 1); c->open_buckets_nr_free--; return ob; } /* _only_ for allocating the journal on a new device: */ long bch2_bucket_alloc_new_fs(struct bch_dev *ca) { struct bucket_array *buckets; ssize_t b; rcu_read_lock(); buckets = bucket_array(ca); for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) if (is_available_bucket(buckets->b[b].mark)) goto success; b = -1; success: rcu_read_unlock(); return b; } static inline unsigned open_buckets_reserved(enum alloc_reserve reserve) { switch (reserve) { case RESERVE_ALLOC: return 0; case RESERVE_BTREE: return BTREE_NODE_RESERVE / 2; default: return BTREE_NODE_RESERVE; } } /** * bch_bucket_alloc - allocate a single bucket from a specific device * * Returns index of bucket on success, 0 on failure * */ int bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, enum alloc_reserve reserve, bool may_alloc_partial, struct closure *cl) { struct bucket_array *buckets; struct open_bucket *ob; long bucket; spin_lock(&c->freelist_lock); if (may_alloc_partial && ca->open_buckets_partial_nr) { int ret = ca->open_buckets_partial[--ca->open_buckets_partial_nr]; c->open_buckets[ret].on_partial_list = false; spin_unlock(&c->freelist_lock); return ret; } if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) { if (cl) closure_wait(&c->open_buckets_wait, cl); spin_unlock(&c->freelist_lock); trace_open_bucket_alloc_fail(ca, reserve); return OPEN_BUCKETS_EMPTY; } if (likely(fifo_pop(&ca->free[RESERVE_NONE], bucket))) goto out; switch (reserve) { case RESERVE_ALLOC: if (fifo_pop(&ca->free[RESERVE_BTREE], bucket)) goto out; break; case RESERVE_BTREE: if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >= ca->free[RESERVE_BTREE].size && fifo_pop(&ca->free[RESERVE_BTREE], bucket)) goto out; break; case RESERVE_MOVINGGC: if (fifo_pop(&ca->free[RESERVE_MOVINGGC], bucket)) goto out; break; default: break; } if (cl) closure_wait(&c->freelist_wait, cl); spin_unlock(&c->freelist_lock); trace_bucket_alloc_fail(ca, reserve); return FREELIST_EMPTY; out: verify_not_on_freelist(c, ca, bucket); ob = bch2_open_bucket_alloc(c); spin_lock(&ob->lock); buckets = bucket_array(ca); ob->valid = true; ob->sectors_free = ca->mi.bucket_size; ob->ptr = (struct bch_extent_ptr) { .gen = buckets->b[bucket].mark.gen, .offset = bucket_to_sector(ca, bucket), .dev = ca->dev_idx, }; bucket_io_clock_reset(c, ca, bucket, READ); bucket_io_clock_reset(c, ca, bucket, WRITE); spin_unlock(&ob->lock); spin_unlock(&c->freelist_lock); bch2_wake_allocator(ca); trace_bucket_alloc(ca, reserve); return ob - c->open_buckets; } static int __dev_alloc_cmp(struct write_point *wp, unsigned l, unsigned r) { return ((wp->next_alloc[l] > wp->next_alloc[r]) - (wp->next_alloc[l] < wp->next_alloc[r])); } #define dev_alloc_cmp(l, r) __dev_alloc_cmp(wp, l, r) struct dev_alloc_list bch2_wp_alloc_list(struct bch_fs *c, struct write_point *wp, struct bch_devs_mask *devs) { struct dev_alloc_list ret = { .nr = 0 }; struct bch_dev *ca; unsigned i; for_each_member_device_rcu(ca, c, i, devs) ret.devs[ret.nr++] = i; bubble_sort(ret.devs, ret.nr, dev_alloc_cmp); return ret; } void bch2_wp_rescale(struct bch_fs *c, struct bch_dev *ca, struct write_point *wp) { u64 *v = wp->next_alloc + ca->dev_idx; u64 free_space = dev_buckets_free(c, ca); u64 free_space_inv = free_space ? div64_u64(1ULL << 48, free_space) : 1ULL << 48; u64 scale = *v / 4; if (*v + free_space_inv >= *v) *v += free_space_inv; else *v = U64_MAX; for (v = wp->next_alloc; v < wp->next_alloc + ARRAY_SIZE(wp->next_alloc); v++) *v = *v < scale ? 0 : *v - scale; } static enum bucket_alloc_ret bch2_bucket_alloc_set(struct bch_fs *c, struct write_point *wp, unsigned nr_replicas, enum alloc_reserve reserve, struct bch_devs_mask *devs, struct closure *cl) { enum bucket_alloc_ret ret = NO_DEVICES; struct dev_alloc_list devs_sorted; struct bch_dev *ca; unsigned i, nr_ptrs_effective = 0; bool have_cache_dev = false; BUG_ON(nr_replicas > ARRAY_SIZE(wp->ptrs)); for (i = wp->first_ptr; i < wp->nr_ptrs; i++) { ca = bch_dev_bkey_exists(c, wp->ptrs[i]->ptr.dev); nr_ptrs_effective += ca->mi.durability; have_cache_dev |= !ca->mi.durability; } if (nr_ptrs_effective >= nr_replicas) return ALLOC_SUCCESS; devs_sorted = bch2_wp_alloc_list(c, wp, devs); for (i = 0; i < devs_sorted.nr; i++) { int ob; ca = rcu_dereference(c->devs[devs_sorted.devs[i]]); if (!ca) continue; if (!ca->mi.durability && (have_cache_dev || wp->type != BCH_DATA_USER)) continue; ob = bch2_bucket_alloc(c, ca, reserve, wp->type == BCH_DATA_USER, cl); if (ob < 0) { ret = ob; if (ret == OPEN_BUCKETS_EMPTY) break; continue; } BUG_ON(ob <= 0 || ob > U8_MAX); BUG_ON(wp->nr_ptrs >= ARRAY_SIZE(wp->ptrs)); wp->ptrs[wp->nr_ptrs++] = c->open_buckets + ob; bch2_wp_rescale(c, ca, wp); nr_ptrs_effective += ca->mi.durability; have_cache_dev |= !ca->mi.durability; __clear_bit(ca->dev_idx, devs->d); if (nr_ptrs_effective >= nr_replicas) { ret = ALLOC_SUCCESS; break; } } EBUG_ON(reserve == RESERVE_MOVINGGC && ret != ALLOC_SUCCESS && ret != OPEN_BUCKETS_EMPTY); switch (ret) { case ALLOC_SUCCESS: return 0; case NO_DEVICES: return -EROFS; case FREELIST_EMPTY: case OPEN_BUCKETS_EMPTY: return cl ? -EAGAIN : -ENOSPC; default: BUG(); } } /* Sector allocator */ static void writepoint_drop_ptr(struct bch_fs *c, struct write_point *wp, unsigned i) { struct open_bucket *ob = wp->ptrs[i]; struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); BUG_ON(ca->open_buckets_partial_nr >= ARRAY_SIZE(ca->open_buckets_partial)); if (wp->type == BCH_DATA_USER) { spin_lock(&c->freelist_lock); ob->on_partial_list = true; ca->open_buckets_partial[ca->open_buckets_partial_nr++] = ob - c->open_buckets; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); closure_wake_up(&c->freelist_wait); } else { bch2_open_bucket_put(c, ob); } array_remove_item(wp->ptrs, wp->nr_ptrs, i); if (i < wp->first_ptr) wp->first_ptr--; } static void writepoint_drop_ptrs(struct bch_fs *c, struct write_point *wp, u16 target, bool in_target) { int i; for (i = wp->first_ptr - 1; i >= 0; --i) if (bch2_dev_in_target(c, wp->ptrs[i]->ptr.dev, target) == in_target) writepoint_drop_ptr(c, wp, i); } static void verify_not_stale(struct bch_fs *c, const struct write_point *wp) { #ifdef CONFIG_BCACHEFS_DEBUG struct open_bucket *ob; unsigned i; writepoint_for_each_ptr_all(wp, ob, i) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); BUG_ON(ptr_stale(ca, &ob->ptr)); } #endif } static int open_bucket_add_buckets(struct bch_fs *c, u16 target, struct write_point *wp, struct bch_devs_list *devs_have, unsigned nr_replicas, enum alloc_reserve reserve, struct closure *cl) { struct bch_devs_mask devs = c->rw_devs[wp->type]; const struct bch_devs_mask *t; struct open_bucket *ob; unsigned i; int ret; percpu_down_read_preempt_disable(&c->usage_lock); rcu_read_lock(); /* Don't allocate from devices we already have pointers to: */ for (i = 0; i < devs_have->nr; i++) __clear_bit(devs_have->devs[i], devs.d); writepoint_for_each_ptr_all(wp, ob, i) __clear_bit(ob->ptr.dev, devs.d); t = bch2_target_to_mask(c, target); if (t) bitmap_and(devs.d, devs.d, t->d, BCH_SB_MEMBERS_MAX); ret = bch2_bucket_alloc_set(c, wp, nr_replicas, reserve, &devs, cl); rcu_read_unlock(); percpu_up_read_preempt_enable(&c->usage_lock); return ret; } static struct write_point *__writepoint_find(struct hlist_head *head, unsigned long write_point) { struct write_point *wp; hlist_for_each_entry_rcu(wp, head, node) if (wp->write_point == write_point) return wp; return NULL; } static struct hlist_head *writepoint_hash(struct bch_fs *c, unsigned long write_point) { unsigned hash = hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash))); return &c->write_points_hash[hash]; } static struct write_point *writepoint_find(struct bch_fs *c, unsigned long write_point) { struct write_point *wp, *oldest; struct hlist_head *head; if (!(write_point & 1UL)) { wp = (struct write_point *) write_point; mutex_lock(&wp->lock); return wp; } head = writepoint_hash(c, write_point); restart_find: wp = __writepoint_find(head, write_point); if (wp) { lock_wp: mutex_lock(&wp->lock); if (wp->write_point == write_point) goto out; mutex_unlock(&wp->lock); goto restart_find; } oldest = NULL; for (wp = c->write_points; wp < c->write_points + ARRAY_SIZE(c->write_points); wp++) if (!oldest || time_before64(wp->last_used, oldest->last_used)) oldest = wp; mutex_lock(&oldest->lock); mutex_lock(&c->write_points_hash_lock); wp = __writepoint_find(head, write_point); if (wp && wp != oldest) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto lock_wp; } wp = oldest; hlist_del_rcu(&wp->node); wp->write_point = write_point; hlist_add_head_rcu(&wp->node, head); mutex_unlock(&c->write_points_hash_lock); out: wp->last_used = sched_clock(); return wp; } /* * Get us an open_bucket we can allocate from, return with it locked: */ struct write_point *bch2_alloc_sectors_start(struct bch_fs *c, unsigned target, struct write_point_specifier write_point, struct bch_devs_list *devs_have, unsigned nr_replicas, unsigned nr_replicas_required, enum alloc_reserve reserve, unsigned flags, struct closure *cl) { struct write_point *wp; struct open_bucket *ob; struct bch_dev *ca; unsigned nr_ptrs_have, nr_ptrs_effective; int ret, i, cache_idx = -1; BUG_ON(!nr_replicas || !nr_replicas_required); wp = writepoint_find(c, write_point.v); wp->first_ptr = 0; /* does writepoint have ptrs we can't use? */ writepoint_for_each_ptr(wp, ob, i) if (bch2_dev_list_has_dev(*devs_have, ob->ptr.dev)) { swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]); wp->first_ptr++; } nr_ptrs_have = wp->first_ptr; /* does writepoint have ptrs we don't want to use? */ if (target) writepoint_for_each_ptr(wp, ob, i) if (!bch2_dev_in_target(c, ob->ptr.dev, target)) { swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]); wp->first_ptr++; } if (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS) { ret = open_bucket_add_buckets(c, target, wp, devs_have, nr_replicas, reserve, cl); } else { ret = open_bucket_add_buckets(c, target, wp, devs_have, nr_replicas, reserve, NULL); if (!ret) goto alloc_done; wp->first_ptr = nr_ptrs_have; ret = open_bucket_add_buckets(c, 0, wp, devs_have, nr_replicas, reserve, cl); } if (ret && ret != -EROFS) goto err; alloc_done: /* check for more than one cache: */ for (i = wp->nr_ptrs - 1; i >= wp->first_ptr; --i) { ca = bch_dev_bkey_exists(c, wp->ptrs[i]->ptr.dev); if (ca->mi.durability) continue; /* * if we ended up with more than one cache device, prefer the * one in the target we want: */ if (cache_idx >= 0) { if (!bch2_dev_in_target(c, wp->ptrs[i]->ptr.dev, target)) { writepoint_drop_ptr(c, wp, i); } else { writepoint_drop_ptr(c, wp, cache_idx); cache_idx = i; } } else { cache_idx = i; } } /* we might have more effective replicas than required: */ nr_ptrs_effective = 0; writepoint_for_each_ptr(wp, ob, i) { ca = bch_dev_bkey_exists(c, ob->ptr.dev); nr_ptrs_effective += ca->mi.durability; } if (ret == -EROFS && nr_ptrs_effective >= nr_replicas_required) ret = 0; if (ret) goto err; if (nr_ptrs_effective > nr_replicas) { writepoint_for_each_ptr(wp, ob, i) { ca = bch_dev_bkey_exists(c, ob->ptr.dev); if (ca->mi.durability && ca->mi.durability <= nr_ptrs_effective - nr_replicas && !bch2_dev_in_target(c, ob->ptr.dev, target)) { swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]); wp->first_ptr++; nr_ptrs_effective -= ca->mi.durability; } } } if (nr_ptrs_effective > nr_replicas) { writepoint_for_each_ptr(wp, ob, i) { ca = bch_dev_bkey_exists(c, ob->ptr.dev); if (ca->mi.durability && ca->mi.durability <= nr_ptrs_effective - nr_replicas) { swap(wp->ptrs[i], wp->ptrs[wp->first_ptr]); wp->first_ptr++; nr_ptrs_effective -= ca->mi.durability; } } } /* Remove pointers we don't want to use: */ if (target) writepoint_drop_ptrs(c, wp, target, false); BUG_ON(wp->first_ptr >= wp->nr_ptrs); BUG_ON(nr_ptrs_effective < nr_replicas_required); wp->sectors_free = UINT_MAX; writepoint_for_each_ptr(wp, ob, i) wp->sectors_free = min(wp->sectors_free, ob->sectors_free); BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX); verify_not_stale(c, wp); return wp; err: mutex_unlock(&wp->lock); return ERR_PTR(ret); } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp, struct bkey_i_extent *e, unsigned sectors) { struct open_bucket *ob; unsigned i; BUG_ON(sectors > wp->sectors_free); wp->sectors_free -= sectors; writepoint_for_each_ptr(wp, ob, i) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); struct bch_extent_ptr tmp = ob->ptr; EBUG_ON(bch2_extent_has_device(extent_i_to_s_c(e), ob->ptr.dev)); tmp.cached = bkey_extent_is_cached(&e->k) || (!ca->mi.durability && wp->type == BCH_DATA_USER); tmp.offset += ca->mi.bucket_size - ob->sectors_free; extent_ptr_append(e, tmp); BUG_ON(sectors > ob->sectors_free); ob->sectors_free -= sectors; } } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp) { int i; for (i = wp->nr_ptrs - 1; i >= 0; --i) { struct open_bucket *ob = wp->ptrs[i]; if (!ob->sectors_free) { array_remove_item(wp->ptrs, wp->nr_ptrs, i); bch2_open_bucket_put(c, ob); } } mutex_unlock(&wp->lock); } /* Startup/shutdown (ro/rw): */ void bch2_recalc_capacity(struct bch_fs *c) { struct bch_dev *ca; u64 total_capacity, capacity = 0, reserved_sectors = 0; unsigned long ra_pages = 0; unsigned i, j; lockdep_assert_held(&c->state_lock); for_each_online_member(ca, c, i) { struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi; ra_pages += bdi->ra_pages; } bch2_set_ra_pages(c, ra_pages); for_each_rw_member(ca, c, i) { size_t reserve = 0; /* * We need to reserve buckets (from the number * of currently available buckets) against * foreground writes so that mainly copygc can * make forward progress. * * We need enough to refill the various reserves * from scratch - copygc will use its entire * reserve all at once, then run against when * its reserve is refilled (from the formerly * available buckets). * * This reserve is just used when considering if * allocations for foreground writes must wait - * not -ENOSPC calculations. */ for (j = 0; j < RESERVE_NONE; j++) reserve += ca->free[j].size; reserve += ca->free_inc.size; reserve += ARRAY_SIZE(c->write_points); reserve += 1; /* btree write point */ reserved_sectors += bucket_to_sector(ca, reserve); capacity += bucket_to_sector(ca, ca->mi.nbuckets - ca->mi.first_bucket); } total_capacity = capacity; capacity *= (100 - c->opts.gc_reserve_percent); capacity = div64_u64(capacity, 100); BUG_ON(reserved_sectors > total_capacity); capacity = min(capacity, total_capacity - reserved_sectors); c->capacity = capacity; if (c->capacity) { bch2_io_timer_add(&c->io_clock[READ], &c->bucket_clock[READ].rescale); bch2_io_timer_add(&c->io_clock[WRITE], &c->bucket_clock[WRITE].rescale); } else { bch2_io_timer_del(&c->io_clock[READ], &c->bucket_clock[READ].rescale); bch2_io_timer_del(&c->io_clock[WRITE], &c->bucket_clock[WRITE].rescale); } /* Wake up case someone was waiting for buckets */ closure_wake_up(&c->freelist_wait); } static void bch2_stop_write_point(struct bch_fs *c, struct bch_dev *ca, struct write_point *wp) { struct bch_devs_mask not_self; bitmap_complement(not_self.d, ca->self.d, BCH_SB_MEMBERS_MAX); mutex_lock(&wp->lock); wp->first_ptr = wp->nr_ptrs; writepoint_drop_ptrs(c, wp, dev_to_target(ca->dev_idx), true); mutex_unlock(&wp->lock); } static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) { struct open_bucket *ob; bool ret = false; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list && ob->ptr.dev == ca->dev_idx) ret = true; spin_unlock(&ob->lock); } return ret; } /* device goes ro: */ void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) { unsigned i; BUG_ON(ca->alloc_thread); /* First, remove device from allocation groups: */ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) clear_bit(ca->dev_idx, c->rw_devs[i].d); /* * Capacity is calculated based off of devices in allocation groups: */ bch2_recalc_capacity(c); /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_stop_write_point(c, ca, &c->write_points[i]); bch2_stop_write_point(c, ca, &ca->copygc_write_point); bch2_stop_write_point(c, ca, &c->rebalance_write_point); bch2_stop_write_point(c, ca, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_bucket_put_refs(c, &a->ob.nr, a->ob.refs); } mutex_unlock(&c->btree_reserve_cache_lock); /* * Wake up threads that were blocked on allocation, so they can notice * the device can no longer be removed and the capacity has changed: */ closure_wake_up(&c->freelist_wait); /* * journal_res_get() can block waiting for free space in the journal - * it needs to notice there may not be devices to allocate from anymore: */ wake_up(&c->journal.wait); /* Now wait for any in flight writes: */ closure_wait_event(&c->open_buckets_wait, !bch2_dev_has_open_write_point(c, ca)); } /* device goes rw: */ void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) { unsigned i; for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) if (ca->mi.data_allowed & (1 << i)) set_bit(ca->dev_idx, c->rw_devs[i].d); } /* stop allocator thread: */ void bch2_dev_allocator_stop(struct bch_dev *ca) { struct task_struct *p; p = rcu_dereference_protected(ca->alloc_thread, 1); ca->alloc_thread = NULL; /* * We need an rcu barrier between setting ca->alloc_thread = NULL and * the thread shutting down to avoid bch2_wake_allocator() racing: * * XXX: it would be better to have the rcu barrier be asynchronous * instead of blocking us here */ synchronize_rcu(); if (p) { kthread_stop(p); put_task_struct(p); } } /* start allocator thread: */ int bch2_dev_allocator_start(struct bch_dev *ca) { struct task_struct *p; /* * allocator thread already started? */ if (ca->alloc_thread) return 0; p = kthread_create(bch2_allocator_thread, ca, "bch_alloc[%s]", ca->name); if (IS_ERR(p)) return PTR_ERR(p); get_task_struct(p); rcu_assign_pointer(ca->alloc_thread, p); wake_up_process(p); return 0; } static void allocator_start_issue_discards(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_iter; size_t i, bu; for_each_rw_member(ca, c, dev_iter) { unsigned done = 0; fifo_for_each_entry(bu, &ca->free_inc, i) { if (done == ca->nr_invalidated) break; blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, bu), ca->mi.bucket_size, GFP_NOIO, 0); done++; } } } static int __bch2_fs_allocator_start(struct bch_fs *c) { struct bch_dev *ca; size_t bu, i; unsigned dev_iter; u64 journal_seq = 0; bool invalidating_data = false; int ret = 0; if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) return -1; /* Scan for buckets that are already invalidated: */ for_each_rw_member(ca, c, dev_iter) { struct btree_iter iter; struct bucket_mark m; struct bkey_s_c k; for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), 0, k) { if (k.k->type != BCH_ALLOC) continue; bu = k.k->p.offset; m = READ_ONCE(bucket(ca, bu)->mark); if (!is_available_bucket(m) || m.cached_sectors) continue; percpu_down_read_preempt_disable(&c->usage_lock); bch2_mark_alloc_bucket(c, ca, bu, true, gc_pos_alloc(c, NULL), BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE| BCH_BUCKET_MARK_GC_LOCK_HELD); percpu_up_read_preempt_enable(&c->usage_lock); fifo_push(&ca->free_inc, bu); ca->nr_invalidated++; if (fifo_full(&ca->free_inc)) break; } bch2_btree_iter_unlock(&iter); } /* did we find enough buckets? */ for_each_rw_member(ca, c, dev_iter) if (fifo_used(&ca->free_inc) < ca->free[RESERVE_BTREE].size) { percpu_ref_put(&ca->io_ref); goto not_enough; } return 0; not_enough: pr_debug("did not find enough empty buckets; issuing discards"); /* clear out free_inc - find_reclaimable_buckets() assumes it's empty */ for_each_rw_member(ca, c, dev_iter) discard_invalidated_buckets(c, ca); pr_debug("scanning for reclaimable buckets"); for_each_rw_member(ca, c, dev_iter) { BUG_ON(!fifo_empty(&ca->free_inc)); ca->free_inc.front = ca->free_inc.back = 0; find_reclaimable_buckets(c, ca); sort_free_inc(c, ca); invalidating_data |= ca->allocator_invalidating_data; fifo_for_each_entry(bu, &ca->free_inc, i) if (!fifo_push(&ca->free[RESERVE_BTREE], bu)) break; } pr_debug("done scanning for reclaimable buckets"); /* * We're moving buckets to freelists _before_ they've been marked as * invalidated on disk - we have to so that we can allocate new btree * nodes to mark them as invalidated on disk. * * However, we can't _write_ to any of these buckets yet - they might * have cached data in them, which is live until they're marked as * invalidated on disk: */ if (invalidating_data) { pr_debug("invalidating existing data"); set_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags); } else { pr_debug("issuing discards"); allocator_start_issue_discards(c); } /* * XXX: it's possible for this to deadlock waiting on journal reclaim, * since we're holding btree writes. What then? */ for_each_rw_member(ca, c, dev_iter) { ret = bch2_invalidate_free_inc(c, ca, &journal_seq, ca->free[RESERVE_BTREE].size, false); if (ret) { percpu_ref_put(&ca->io_ref); return ret; } } if (invalidating_data) { pr_debug("flushing journal"); ret = bch2_journal_flush_seq(&c->journal, journal_seq); if (ret) return ret; pr_debug("issuing discards"); allocator_start_issue_discards(c); } for_each_rw_member(ca, c, dev_iter) while (ca->nr_invalidated) { BUG_ON(!fifo_pop(&ca->free_inc, bu)); ca->nr_invalidated--; } set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags); /* now flush dirty btree nodes: */ if (invalidating_data) { struct bucket_table *tbl; struct rhash_head *pos; struct btree *b; bool flush_updates; size_t nr_pending_updates; clear_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags); again: pr_debug("flushing dirty btree nodes"); cond_resched(); flush_updates = false; nr_pending_updates = bch2_btree_interior_updates_nr_pending(c); rcu_read_lock(); for_each_cached_btree(b, c, tbl, i, pos) if (btree_node_dirty(b) && (!b->written || b->level)) { if (btree_node_may_write(b)) { rcu_read_unlock(); btree_node_lock_type(c, b, SIX_LOCK_read); bch2_btree_node_write(c, b, SIX_LOCK_read); six_unlock_read(&b->lock); goto again; } else { flush_updates = true; } } rcu_read_unlock(); /* * This is ugly, but it's needed to flush btree node writes * without spinning... */ if (flush_updates) { closure_wait_event(&c->btree_interior_update_wait, bch2_btree_interior_updates_nr_pending(c) < nr_pending_updates); goto again; } } return 0; } int bch2_fs_allocator_start(struct bch_fs *c) { struct bch_dev *ca; unsigned i; int ret; down_read(&c->gc_lock); ret = __bch2_fs_allocator_start(c); up_read(&c->gc_lock); if (ret) return ret; for_each_rw_member(ca, c, i) { ret = bch2_dev_allocator_start(ca); if (ret) { percpu_ref_put(&ca->io_ref); return ret; } } return bch2_alloc_write(c); } void bch2_fs_allocator_init(struct bch_fs *c) { struct open_bucket *ob; struct write_point *wp; mutex_init(&c->write_points_hash_lock); spin_lock_init(&c->freelist_lock); bch2_bucket_clock_init(c, READ); bch2_bucket_clock_init(c, WRITE); /* open bucket 0 is a sentinal NULL: */ spin_lock_init(&c->open_buckets[0].lock); for (ob = c->open_buckets + 1; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock_init(&ob->lock); c->open_buckets_nr_free++; ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; } writepoint_init(&c->btree_write_point, BCH_DATA_BTREE); writepoint_init(&c->rebalance_write_point, BCH_DATA_USER); for (wp = c->write_points; wp < c->write_points + ARRAY_SIZE(c->write_points); wp++) { writepoint_init(wp, BCH_DATA_USER); wp->last_used = sched_clock(); wp->write_point = (unsigned long) wp; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); } c->pd_controllers_update_seconds = 5; INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update); }