#ifndef _BCACHEFS_BTREE_ITER_H #define _BCACHEFS_BTREE_ITER_H #include "btree_types.h" #define BTREE_ITER_UPTODATE (1 << 0) #define BTREE_ITER_WITH_HOLES (1 << 1) #define BTREE_ITER_INTENT (1 << 2) #define BTREE_ITER_PREFETCH (1 << 3) /* * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for * @pos or the first key strictly greater than @pos */ #define BTREE_ITER_IS_EXTENTS (1 << 4) /* * indicates we need to call bch2_btree_iter_traverse() to revalidate iterator: */ #define BTREE_ITER_AT_END_OF_LEAF (1 << 5) #define BTREE_ITER_ERROR (1 << 6) /* * @pos - iterator's current position * @level - current btree depth * @locks_want - btree level below which we start taking intent locks * @nodes_locked - bitmask indicating which nodes in @nodes are locked * @nodes_intent_locked - bitmask indicating which locks are intent locks */ struct btree_iter { struct bch_fs *c; struct bpos pos; u8 flags; enum btree_id btree_id:8; unsigned level:4, locks_want:4, nodes_locked:4, nodes_intent_locked:4; u32 lock_seq[BTREE_MAX_DEPTH]; /* * NOTE: Never set iter->nodes to NULL except in btree_iter_lock_root(). * * This is because iter->nodes[iter->level] == NULL is how * btree_iter_next_node() knows that it's finished with a depth first * traversal. Just unlocking a node (with btree_node_unlock()) is fine, * and if you really don't want that node used again (e.g. btree_split() * freed it) decrementing lock_seq will cause bch2_btree_node_relock() to * always fail (but since freeing a btree node takes a write lock on the * node, which increments the node's lock seq, that's not actually * necessary in that example). * * One extra slot for a sentinel NULL: */ struct btree *nodes[BTREE_MAX_DEPTH + 1]; struct btree_node_iter node_iters[BTREE_MAX_DEPTH]; /* * Current unpacked key - so that bch2_btree_iter_next()/ * bch2_btree_iter_next_with_holes() can correctly advance pos. */ struct bkey k; /* * Circular linked list of linked iterators: linked iterators share * locks (e.g. two linked iterators may have the same node intent * locked, or read and write locked, at the same time), and insertions * through one iterator won't invalidate the other linked iterators. */ /* Must come last: */ struct btree_iter *next; }; static inline bool btree_iter_linked(const struct btree_iter *iter) { return iter->next != iter; } /** * for_each_linked_btree_iter - iterate over all iterators linked with @_iter */ #define for_each_linked_btree_iter(_iter, _linked) \ for ((_linked) = (_iter)->next; \ (_linked) != (_iter); \ (_linked) = (_linked)->next) static inline struct btree_iter * __next_linked_btree_node(struct btree_iter *iter, struct btree *b, struct btree_iter *linked) { do { linked = linked->next; if (linked == iter) return NULL; /* * We don't compare the low bits of the lock sequence numbers * because @iter might have taken a write lock on @b, and we * don't want to skip the linked iterator if the sequence * numbers were equal before taking that write lock. The lock * sequence number is incremented by taking and releasing write * locks and is even when unlocked: */ } while (linked->nodes[b->level] != b || linked->lock_seq[b->level] >> 1 != b->lock.state.seq >> 1); return linked; } /** * for_each_linked_btree_node - iterate over all iterators linked with @_iter * that also point to @_b * * @_b is assumed to be locked by @_iter * * Filters out iterators that don't have a valid btree_node iterator for @_b - * i.e. iterators for which bch2_btree_node_relock() would not succeed. */ #define for_each_linked_btree_node(_iter, _b, _linked) \ for ((_linked) = (_iter); \ ((_linked) = __next_linked_btree_node(_iter, _b, _linked));) #ifdef CONFIG_BCACHEFS_DEBUG void bch2_btree_iter_verify(struct btree_iter *, struct btree *); #else static inline void bch2_btree_iter_verify(struct btree_iter *iter, struct btree *b) {} #endif void bch2_btree_node_iter_fix(struct btree_iter *, struct btree *, struct btree_node_iter *, struct bset_tree *, struct bkey_packed *, unsigned, unsigned); int bch2_btree_iter_unlock(struct btree_iter *); bool __bch2_btree_iter_set_locks_want(struct btree_iter *, unsigned); static inline bool bch2_btree_iter_set_locks_want(struct btree_iter *iter, unsigned new_locks_want) { new_locks_want = min(new_locks_want, BTREE_MAX_DEPTH); if (iter->locks_want == new_locks_want && iter->nodes_intent_locked == (1 << new_locks_want) - 1) return true; return __bch2_btree_iter_set_locks_want(iter, new_locks_want); } bool bch2_btree_iter_node_replace(struct btree_iter *, struct btree *); void bch2_btree_iter_node_drop_linked(struct btree_iter *, struct btree *); void bch2_btree_iter_node_drop(struct btree_iter *, struct btree *); void bch2_btree_iter_reinit_node(struct btree_iter *, struct btree *); int __must_check bch2_btree_iter_traverse(struct btree_iter *); struct btree *bch2_btree_iter_peek_node(struct btree_iter *); struct btree *bch2_btree_iter_next_node(struct btree_iter *, unsigned); struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *); struct bkey_s_c bch2_btree_iter_peek_with_holes(struct btree_iter *); void bch2_btree_iter_set_pos_same_leaf(struct btree_iter *, struct bpos); void bch2_btree_iter_set_pos(struct btree_iter *, struct bpos); void bch2_btree_iter_advance_pos(struct btree_iter *); void bch2_btree_iter_rewind(struct btree_iter *, struct bpos); void __bch2_btree_iter_init(struct btree_iter *, struct bch_fs *, enum btree_id, struct bpos, unsigned , unsigned, unsigned); static inline void bch2_btree_iter_init(struct btree_iter *iter, struct bch_fs *c, enum btree_id btree_id, struct bpos pos, unsigned flags) { __bch2_btree_iter_init(iter, c, btree_id, pos, flags & BTREE_ITER_INTENT ? 1 : 0, 0, btree_id == BTREE_ID_EXTENTS ? BTREE_ITER_IS_EXTENTS : 0); } void bch2_btree_iter_link(struct btree_iter *, struct btree_iter *); void bch2_btree_iter_unlink(struct btree_iter *); void bch2_btree_iter_copy(struct btree_iter *, struct btree_iter *); static inline struct bpos btree_type_successor(enum btree_id id, struct bpos pos) { if (id == BTREE_ID_INODES) { pos.inode++; pos.offset = 0; } else if (id != BTREE_ID_EXTENTS) { pos = bkey_successor(pos); } return pos; } static inline int __btree_iter_cmp(enum btree_id id, struct bpos pos, const struct btree_iter *r) { if (id != r->btree_id) return id < r->btree_id ? -1 : 1; return bkey_cmp(pos, r->pos); } static inline int btree_iter_cmp(const struct btree_iter *l, const struct btree_iter *r) { return __btree_iter_cmp(l->btree_id, l->pos, r); } #define __for_each_btree_node(_iter, _c, _btree_id, _start, \ _locks_want, _depth, _flags, _b) \ for (__bch2_btree_iter_init((_iter), (_c), (_btree_id), _start, \ _locks_want, _depth, _flags), \ _b = bch2_btree_iter_peek_node(_iter); \ (_b); \ (_b) = bch2_btree_iter_next_node(_iter, _depth)) #define for_each_btree_node(_iter, _c, _btree_id, _start, _flags, _b) \ __for_each_btree_node(_iter, _c, _btree_id, _start, 0, 0, _flags, _b) static inline struct bkey_s_c __bch2_btree_iter_peek(struct btree_iter *iter, unsigned flags) { return flags & BTREE_ITER_WITH_HOLES ? bch2_btree_iter_peek_with_holes(iter) : bch2_btree_iter_peek(iter); } #define for_each_btree_key(_iter, _c, _btree_id, _start, _flags, _k) \ for (bch2_btree_iter_init((_iter), (_c), (_btree_id), \ (_start), (_flags)); \ !IS_ERR_OR_NULL(((_k) = __bch2_btree_iter_peek(_iter, _flags)).k);\ bch2_btree_iter_advance_pos(_iter)) static inline int btree_iter_err(struct bkey_s_c k) { return PTR_ERR_OR_ZERO(k.k); } /* * Unlocks before scheduling * Note: does not revalidate iterator */ static inline void bch2_btree_iter_cond_resched(struct btree_iter *iter) { struct btree_iter *linked; if (need_resched()) { for_each_linked_btree_iter(iter, linked) bch2_btree_iter_unlock(linked); bch2_btree_iter_unlock(iter); schedule(); } else if (race_fault()) { for_each_linked_btree_iter(iter, linked) bch2_btree_iter_unlock(linked); bch2_btree_iter_unlock(iter); } } #endif /* _BCACHEFS_BTREE_ITER_H */