/* * Primary bucket allocation code * * Copyright 2012 Google, Inc. * * Allocation in bcache is done in terms of buckets: * * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in * btree pointers - they must match for the pointer to be considered valid. * * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a * bucket simply by incrementing its gen. * * The gens (along with the priorities; it's really the gens are important but * the code is named as if it's the priorities) are written in an arbitrary list * of buckets on disk, with a pointer to them in the journal header. * * When we invalidate a bucket, we have to write its new gen to disk and wait * for that write to complete before we use it - otherwise after a crash we * could have pointers that appeared to be good but pointed to data that had * been overwritten. * * Since the gens and priorities are all stored contiguously on disk, we can * batch this up: We fill up the free_inc list with freshly invalidated buckets, * call prio_write(), and when prio_write() finishes we pull buckets off the * free_inc list and optionally discard them. * * free_inc isn't the only freelist - if it was, we'd often have to sleep while * priorities and gens were being written before we could allocate. c->free is a * smaller freelist, and buckets on that list are always ready to be used. * * If we've got discards enabled, that happens when a bucket moves from the * free_inc list to the free list. * * It's important to ensure that gens don't wrap around - with respect to * either the oldest gen in the btree or the gen on disk. This is quite * difficult to do in practice, but we explicitly guard against it anyways - if * a bucket is in danger of wrapping around we simply skip invalidating it that * time around, and we garbage collect or rewrite the priorities sooner than we * would have otherwise. * * bch2_bucket_alloc() allocates a single bucket from a specific device. * * bch2_bucket_alloc_set() allocates one or more buckets from different devices * in a given filesystem. * * invalidate_buckets() drives all the processes described above. It's called * from bch2_bucket_alloc() and a few other places that need to make sure free * buckets are ready. * * invalidate_buckets_(lru|fifo)() find buckets that are available to be * invalidated, and then invalidate them and stick them on the free_inc list - * in either lru or fifo order. */ #include "bcachefs.h" #include "alloc.h" #include "btree_update.h" #include "buckets.h" #include "checksum.h" #include "clock.h" #include "debug.h" #include "error.h" #include "extents.h" #include "io.h" #include "journal.h" #include "super-io.h" #include #include #include #include #include #include #include #include static void bch2_recalc_min_prio(struct bch_dev *, int); /* Allocation groups: */ void bch2_dev_group_remove(struct dev_group *grp, struct bch_dev *ca) { unsigned i; spin_lock(&grp->lock); for (i = 0; i < grp->nr; i++) if (grp->d[i].dev == ca) { grp->nr--; memmove(&grp->d[i], &grp->d[i + 1], (grp->nr- i) * sizeof(grp->d[0])); break; } spin_unlock(&grp->lock); } void bch2_dev_group_add(struct dev_group *grp, struct bch_dev *ca) { unsigned i; spin_lock(&grp->lock); for (i = 0; i < grp->nr; i++) if (grp->d[i].dev == ca) goto out; BUG_ON(grp->nr>= BCH_SB_MEMBERS_MAX); grp->d[grp->nr++].dev = ca; out: spin_unlock(&grp->lock); } /* Ratelimiting/PD controllers */ static void pd_controllers_update(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, pd_controllers_update); struct bch_dev *ca; unsigned i, iter; /* All units are in bytes */ u64 faster_tiers_size = 0; u64 faster_tiers_dirty = 0; u64 fastest_tier_size = 0; u64 fastest_tier_free = 0; u64 copygc_can_free = 0; rcu_read_lock(); for (i = 0; i < ARRAY_SIZE(c->tiers); i++) { bch2_pd_controller_update(&c->tiers[i].pd, div_u64(faster_tiers_size * c->tiering_percent, 100), faster_tiers_dirty, -1); spin_lock(&c->tiers[i].devs.lock); group_for_each_dev(ca, &c->tiers[i].devs, iter) { struct bch_dev_usage stats = bch2_dev_usage_read(ca); unsigned bucket_bits = ca->bucket_bits + 9; u64 size = (ca->mi.nbuckets - ca->mi.first_bucket) << bucket_bits; u64 dirty = stats.buckets_dirty << bucket_bits; u64 free = __dev_buckets_free(ca, stats) << bucket_bits; /* * Bytes of internal fragmentation, which can be * reclaimed by copy GC */ s64 fragmented = ((stats.buckets_dirty + stats.buckets_cached) << bucket_bits) - ((stats.sectors[S_DIRTY] + stats.sectors[S_CACHED] ) << 9); fragmented = max(0LL, fragmented); bch2_pd_controller_update(&ca->moving_gc_pd, free, fragmented, -1); faster_tiers_size += size; faster_tiers_dirty += dirty; if (!c->fastest_tier || c->fastest_tier == &c->tiers[i]) { fastest_tier_size += size; fastest_tier_free += free; } copygc_can_free += fragmented; } spin_unlock(&c->tiers[i].devs.lock); } rcu_read_unlock(); /* * Throttle foreground writes if tier 0 is running out of free buckets, * and either tiering or copygc can free up space. * * Target will be small if there isn't any work to do - we don't want to * throttle foreground writes if we currently have all the free space * we're ever going to have. * * Otherwise, if there's work to do, try to keep 20% of tier0 available * for foreground writes. */ if (c->fastest_tier) copygc_can_free = U64_MAX; bch2_pd_controller_update(&c->foreground_write_pd, min(copygc_can_free, div_u64(fastest_tier_size * c->foreground_target_percent, 100)), fastest_tier_free, -1); schedule_delayed_work(&c->pd_controllers_update, c->pd_controllers_update_seconds * HZ); } static unsigned bch_alloc_val_u64s(const struct bch_alloc *a) { unsigned bytes = offsetof(struct bch_alloc, data); if (a->fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) bytes += 2; if (a->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) bytes += 2; return DIV_ROUND_UP(bytes, sizeof(u64)); } static const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k) { if (k.k->p.inode >= c->sb.nr_devices || !c->devs[k.k->p.inode]) return "invalid device"; switch (k.k->type) { case BCH_ALLOC: { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); if (bch_alloc_val_u64s(a.v) != bkey_val_u64s(a.k)) return "incorrect value size"; break; } default: return "invalid type"; } return NULL; } static void bch2_alloc_to_text(struct bch_fs *c, char *buf, size_t size, struct bkey_s_c k) { buf[0] = '\0'; switch (k.k->type) { case BCH_ALLOC: break; } } const struct bkey_ops bch2_bkey_alloc_ops = { .key_invalid = bch2_alloc_invalid, .val_to_text = bch2_alloc_to_text, }; static inline unsigned get_alloc_field(const u8 **p, unsigned bytes) { unsigned v; switch (bytes) { case 1: v = **p; break; case 2: v = le16_to_cpup((void *) *p); break; case 4: v = le32_to_cpup((void *) *p); break; default: BUG(); } *p += bytes; return v; } static inline void put_alloc_field(u8 **p, unsigned bytes, unsigned v) { switch (bytes) { case 1: **p = v; break; case 2: *((__le16 *) *p) = cpu_to_le16(v); break; case 4: *((__le32 *) *p) = cpu_to_le32(v); break; default: BUG(); } *p += bytes; } static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k) { struct bch_dev *ca; struct bkey_s_c_alloc a; struct bucket_mark new; struct bucket *g; const u8 *d; if (k.k->type != BCH_ALLOC) return; a = bkey_s_c_to_alloc(k); ca = c->devs[a.k->p.inode]; if (a.k->p.offset >= ca->mi.nbuckets) return; g = ca->buckets + a.k->p.offset; bucket_cmpxchg(g, new, ({ new.gen = a.v->gen; new.gen_valid = 1; })); d = a.v->data; if (a.v->fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) g->prio[READ] = get_alloc_field(&d, 2); if (a.v->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) g->prio[WRITE] = get_alloc_field(&d, 2); } int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list) { struct journal_replay *r; struct btree_iter iter; struct bkey_s_c k; int ret; if (!c->btree_roots[BTREE_ID_ALLOC].b) return 0; for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) { bch2_alloc_read_key(c, k); bch2_btree_iter_cond_resched(&iter); } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; list_for_each_entry(r, journal_replay_list, list) { struct bkey_i *k, *n; struct jset_entry *entry; for_each_jset_key(k, n, entry, &r->j) if (entry->btree_id == BTREE_ID_ALLOC) bch2_alloc_read_key(c, bkey_i_to_s_c(k)); } return 0; } static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca, struct bucket *g, struct btree_iter *iter, u64 *journal_seq) { struct bucket_mark m = READ_ONCE(g->mark); __BKEY_PADDED(k, DIV_ROUND_UP(sizeof(struct bch_alloc), 8)) alloc_key; struct bkey_i_alloc *a; u8 *d; int ret; bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, g - ca->buckets)); do { ret = bch2_btree_iter_traverse(iter); if (ret) break; a = bkey_alloc_init(&alloc_key.k); a->k.p = iter->pos; a->v.fields = 0; a->v.gen = m.gen; set_bkey_val_u64s(&a->k, bch_alloc_val_u64s(&a->v)); d = a->v.data; if (a->v.fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) put_alloc_field(&d, 2, g->prio[READ]); if (a->v.fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) put_alloc_field(&d, 2, g->prio[WRITE]); bch2_btree_iter_set_pos(iter, a->k.p); ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_USE_ALLOC_RESERVE| BTREE_INSERT_NOWAIT, BTREE_INSERT_ENTRY(iter, &a->k_i)); bch2_btree_iter_cond_resched(iter); } while (ret == -EINTR); return ret; } int bch2_alloc_replay_key(struct bch_fs *c, struct bpos pos) { struct bch_dev *ca; struct bucket *g; struct btree_iter iter; int ret; lockdep_assert_held(&c->state_lock); if (pos.inode >= c->sb.nr_devices || !c->devs[pos.inode]) return 0; ca = c->devs[pos.inode]; if (pos.offset >= ca->mi.nbuckets) return 0; g = ca->buckets + pos.offset; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN, BTREE_ITER_INTENT); ret = __bch2_alloc_write_key(c, ca, g, &iter, NULL); bch2_btree_iter_unlock(&iter); return ret; } int bch2_alloc_write(struct bch_fs *c, struct bch_dev *ca, u64 *journal_seq) { struct btree_iter iter; struct bucket *g; int ret = 0; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN, BTREE_ITER_INTENT); for_each_bucket(g, ca) { ret = __bch2_alloc_write_key(c, ca, g, &iter, journal_seq); if (ret) break; } bch2_btree_iter_unlock(&iter); return ret; } #define BUCKET_GC_GEN_MAX 96U /** * wait_buckets_available - wait on reclaimable buckets * * If there aren't enough available buckets to fill up free_inc, wait until * there are. */ static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca) { unsigned long gc_count = c->gc_count; int ret = 0; while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { ret = -1; break; } if (gc_count != c->gc_count) ca->inc_gen_really_needs_gc = 0; if ((ssize_t) (dev_buckets_available(ca) - ca->inc_gen_really_needs_gc) >= (ssize_t) fifo_free(&ca->free_inc)) break; up_read(&c->gc_lock); schedule(); try_to_freeze(); down_read(&c->gc_lock); } __set_current_state(TASK_RUNNING); return ret; } static void verify_not_on_freelist(struct bch_dev *ca, size_t bucket) { if (expensive_debug_checks(ca->fs)) { size_t iter; long i; unsigned j; for (j = 0; j < RESERVE_NR; j++) fifo_for_each_entry(i, &ca->free[j], iter) BUG_ON(i == bucket); fifo_for_each_entry(i, &ca->free_inc, iter) BUG_ON(i == bucket); } } /* Bucket heap / gen */ void bch2_recalc_min_prio(struct bch_dev *ca, int rw) { struct bch_fs *c = ca->fs; struct prio_clock *clock = &c->prio_clock[rw]; struct bucket *g; u16 max_delta = 1; unsigned i; lockdep_assert_held(&c->bucket_lock); /* Determine min prio for this particular cache */ for_each_bucket(g, ca) max_delta = max(max_delta, (u16) (clock->hand - g->prio[rw])); ca->min_prio[rw] = clock->hand - max_delta; /* * This may possibly increase the min prio for the whole cache, check * that as well. */ max_delta = 1; for_each_member_device(ca, c, i) max_delta = max(max_delta, (u16) (clock->hand - ca->min_prio[rw])); clock->min_prio = clock->hand - max_delta; } static void bch2_rescale_prios(struct bch_fs *c, int rw) { struct prio_clock *clock = &c->prio_clock[rw]; struct bch_dev *ca; struct bucket *g; unsigned i; trace_rescale_prios(c); for_each_member_device(ca, c, i) { for_each_bucket(g, ca) g->prio[rw] = clock->hand - (clock->hand - g->prio[rw]) / 2; bch2_recalc_min_prio(ca, rw); } } static void bch2_inc_clock_hand(struct io_timer *timer) { struct prio_clock *clock = container_of(timer, struct prio_clock, rescale); struct bch_fs *c = container_of(clock, struct bch_fs, prio_clock[clock->rw]); u64 capacity; mutex_lock(&c->bucket_lock); clock->hand++; /* if clock cannot be advanced more, rescale prio */ if (clock->hand == (u16) (clock->min_prio - 1)) bch2_rescale_prios(c, clock->rw); mutex_unlock(&c->bucket_lock); capacity = READ_ONCE(c->capacity); if (!capacity) return; /* * we only increment when 0.1% of the filesystem capacity has been read * or written too, this determines if it's time * * XXX: we shouldn't really be going off of the capacity of devices in * RW mode (that will be 0 when we're RO, yet we can still service * reads) */ timer->expire += capacity >> 10; bch2_io_timer_add(&c->io_clock[clock->rw], timer); } static void bch2_prio_timer_init(struct bch_fs *c, int rw) { struct prio_clock *clock = &c->prio_clock[rw]; struct io_timer *timer = &clock->rescale; clock->rw = rw; timer->fn = bch2_inc_clock_hand; timer->expire = c->capacity >> 10; } /* * Background allocation thread: scans for buckets to be invalidated, * invalidates them, rewrites prios/gens (marking them as invalidated on disk), * then optionally issues discard commands to the newly free buckets, then puts * them on the various freelists. */ static inline bool can_inc_bucket_gen(struct bch_dev *ca, struct bucket *g) { return bucket_gc_gen(ca, g) < BUCKET_GC_GEN_MAX; } static bool bch2_can_invalidate_bucket(struct bch_dev *ca, struct bucket *g, struct bucket_mark mark) { if (!is_available_bucket(mark)) return false; if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX / 2) ca->inc_gen_needs_gc++; if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX) ca->inc_gen_really_needs_gc++; return can_inc_bucket_gen(ca, g); } static void bch2_invalidate_one_bucket(struct bch_dev *ca, struct bucket *g) { struct bch_fs *c = ca->fs; struct bucket_mark m; spin_lock(&ca->freelist_lock); if (!bch2_invalidate_bucket(ca, g, &m)) { spin_unlock(&ca->freelist_lock); return; } verify_not_on_freelist(ca, g - ca->buckets); BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets)); spin_unlock(&ca->freelist_lock); g->prio[READ] = c->prio_clock[READ].hand; g->prio[WRITE] = c->prio_clock[WRITE].hand; if (m.cached_sectors) { ca->allocator_invalidating_data = true; } else if (m.journal_seq_valid) { u64 journal_seq = atomic64_read(&c->journal.seq); u64 bucket_seq = journal_seq; bucket_seq &= ~((u64) U16_MAX); bucket_seq |= m.journal_seq; if (bucket_seq > journal_seq) bucket_seq -= 1 << 16; ca->allocator_journal_seq_flush = max(ca->allocator_journal_seq_flush, bucket_seq); } } /* * Determines what order we're going to reuse buckets, smallest bucket_key() * first. * * * - We take into account the read prio of the bucket, which gives us an * indication of how hot the data is -- we scale the prio so that the prio * farthest from the clock is worth 1/8th of the closest. * * - The number of sectors of cached data in the bucket, which gives us an * indication of the cost in cache misses this eviction will cause. * * - If hotness * sectors used compares equal, we pick the bucket with the * smallest bucket_gc_gen() - since incrementing the same bucket's generation * number repeatedly forces us to run mark and sweep gc to avoid generation * number wraparound. */ static unsigned long bucket_sort_key(struct bch_dev *ca, struct bucket *g, struct bucket_mark m) { /* * Time since last read, scaled to [0, 8) where larger value indicates * more recently read data: */ unsigned long hotness = (g->prio[READ] - ca->min_prio[READ]) * 7 / (ca->fs->prio_clock[READ].hand - ca->min_prio[READ]); /* How much we want to keep the data in this bucket: */ unsigned long data_wantness = (hotness + 1) * bucket_sectors_used(m); unsigned long needs_journal_commit = bucket_needs_journal_commit(m, ca->fs->journal.last_seq_ondisk); return (data_wantness << 9) | (needs_journal_commit << 8) | bucket_gc_gen(ca, g); } static inline int bucket_alloc_cmp(alloc_heap *h, struct alloc_heap_entry l, struct alloc_heap_entry r) { return (l.key > r.key) - (l.key < r.key); } static void invalidate_buckets_lru(struct bch_dev *ca) { struct alloc_heap_entry e; struct bucket *g; ca->alloc_heap.used = 0; mutex_lock(&ca->fs->bucket_lock); bch2_recalc_min_prio(ca, READ); bch2_recalc_min_prio(ca, WRITE); /* * Find buckets with lowest read priority, by building a maxheap sorted * by read priority and repeatedly replacing the maximum element until * all buckets have been visited. */ for_each_bucket(g, ca) { struct bucket_mark m = READ_ONCE(g->mark); if (!bch2_can_invalidate_bucket(ca, g, m)) continue; e = (struct alloc_heap_entry) { .bucket = g - ca->buckets, .key = bucket_sort_key(ca, g, m) }; heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp); } heap_resort(&ca->alloc_heap, bucket_alloc_cmp); /* * If we run out of buckets to invalidate, bch2_allocator_thread() will * kick stuff and retry us */ while (!fifo_full(&ca->free_inc) && heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp)) bch2_invalidate_one_bucket(ca, &ca->buckets[e.bucket]); mutex_unlock(&ca->fs->bucket_lock); } static void invalidate_buckets_fifo(struct bch_dev *ca) { struct bucket_mark m; struct bucket *g; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { if (ca->fifo_last_bucket < ca->mi.first_bucket || ca->fifo_last_bucket >= ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; g = ca->buckets + ca->fifo_last_bucket++; m = READ_ONCE(g->mark); if (bch2_can_invalidate_bucket(ca, g, m)) bch2_invalidate_one_bucket(ca, g); if (++checked >= ca->mi.nbuckets) return; } } static void invalidate_buckets_random(struct bch_dev *ca) { struct bucket_mark m; struct bucket *g; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { size_t n = bch2_rand_range(ca->mi.nbuckets - ca->mi.first_bucket) + ca->mi.first_bucket; g = ca->buckets + n; m = READ_ONCE(g->mark); if (bch2_can_invalidate_bucket(ca, g, m)) bch2_invalidate_one_bucket(ca, g); if (++checked >= ca->mi.nbuckets / 2) return; } } static void invalidate_buckets(struct bch_dev *ca) { ca->inc_gen_needs_gc = 0; ca->inc_gen_really_needs_gc = 0; switch (ca->mi.replacement) { case CACHE_REPLACEMENT_LRU: invalidate_buckets_lru(ca); break; case CACHE_REPLACEMENT_FIFO: invalidate_buckets_fifo(ca); break; case CACHE_REPLACEMENT_RANDOM: invalidate_buckets_random(ca); break; } } static int size_t_cmp(const void *_l, const void *_r) { const size_t *l = _l, *r = _r; return (*l > *r) - (*l < *r); } static int bch2_invalidate_free_inc(struct bch_fs *c, struct bch_dev *ca, u64 *journal_seq) { struct btree_iter iter; unsigned nr_invalidated = 0; size_t b, i; int ret = 0; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), BTREE_ITER_INTENT); fifo_for_each_entry(b, &ca->free_inc, i) { ret = __bch2_alloc_write_key(c, ca, ca->buckets + b, &iter, journal_seq); if (ret) break; nr_invalidated++; } bch2_btree_iter_unlock(&iter); return nr_invalidated ?: ret; } /* * Given an invalidated, ready to use bucket: issue a discard to it if enabled, * then add it to the freelist, waiting until there's room if necessary: */ static void discard_invalidated_bucket(struct bch_dev *ca, long bucket) { if (ca->mi.discard && blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, bucket), ca->mi.bucket_size, GFP_NOIO, 0); while (1) { bool pushed = false; unsigned i; set_current_state(TASK_INTERRUPTIBLE); /* * Don't remove from free_inc until after it's added to * freelist, so gc can find it: */ spin_lock(&ca->freelist_lock); for (i = 0; i < RESERVE_NR; i++) if (fifo_push(&ca->free[i], bucket)) { fifo_pop(&ca->free_inc, bucket); closure_wake_up(&ca->fs->freelist_wait); pushed = true; break; } spin_unlock(&ca->freelist_lock); if (pushed) break; if (kthread_should_stop()) break; schedule(); try_to_freeze(); } __set_current_state(TASK_RUNNING); } /** * bch_allocator_thread - move buckets from free_inc to reserves * * The free_inc FIFO is populated by invalidate_buckets(), and * the reserves are depleted by bucket allocation. When we run out * of free_inc, try to invalidate some buckets and write out * prios and gens. */ static int bch2_allocator_thread(void *arg) { struct bch_dev *ca = arg; struct bch_fs *c = ca->fs; u64 journal_seq; size_t bucket; int ret; set_freezable(); while (1) { while (1) { while (ca->nr_invalidated) { BUG_ON(fifo_empty(&ca->free_inc)); bucket = fifo_peek(&ca->free_inc); discard_invalidated_bucket(ca, bucket); if (kthread_should_stop()) goto out; --ca->nr_invalidated; } if (fifo_empty(&ca->free_inc)) break; journal_seq = 0; ret = bch2_invalidate_free_inc(c, ca, &journal_seq); if (ret < 0) goto out; ca->nr_invalidated = ret; if (ca->nr_invalidated == fifo_used(&ca->free_inc)) ca->alloc_thread_started = true; if (ca->allocator_invalidating_data) bch2_journal_flush_seq(&c->journal, journal_seq); else if (ca->allocator_journal_seq_flush) bch2_journal_flush_seq(&c->journal, ca->allocator_journal_seq_flush); } /* Reset front/back so we can easily sort fifo entries later: */ ca->free_inc.front = ca->free_inc.back = 0; ca->allocator_journal_seq_flush = 0; ca->allocator_invalidating_data = false; down_read(&c->gc_lock); if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) { up_read(&c->gc_lock); goto out; } while (1) { /* * Find some buckets that we can invalidate, either * they're completely unused, or only contain clean data * that's been written back to the backing device or * another cache tier */ invalidate_buckets(ca); trace_alloc_batch(ca, fifo_used(&ca->free_inc), ca->free_inc.size); if ((ca->inc_gen_needs_gc >= ca->free_inc.size || (!fifo_full(&ca->free_inc) && ca->inc_gen_really_needs_gc >= fifo_free(&ca->free_inc))) && c->gc_thread) { atomic_inc(&c->kick_gc); wake_up_process(c->gc_thread); } if (fifo_full(&ca->free_inc)) break; if (wait_buckets_available(c, ca)) { up_read(&c->gc_lock); goto out; } } up_read(&c->gc_lock); BUG_ON(ca->free_inc.front); spin_lock(&ca->freelist_lock); sort(ca->free_inc.data, ca->free_inc.back, sizeof(ca->free_inc.data[0]), size_t_cmp, NULL); spin_unlock(&ca->freelist_lock); /* * free_inc is now full of newly-invalidated buckets: next, * write out the new bucket gens: */ } out: /* * Avoid a race with bch2_usage_update() trying to wake us up after * we've exited: */ synchronize_rcu(); return 0; } /* Allocation */ static long bch2_bucket_alloc_startup(struct bch_fs *c, struct bch_dev *ca) { struct bucket *g; long r = -1; if (!down_read_trylock(&c->gc_lock)) return r; if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) goto out; for_each_bucket(g, ca) if (!g->mark.touched_this_mount && is_available_bucket(g->mark) && bch2_mark_alloc_bucket_startup(ca, g)) { r = g - ca->buckets; break; } out: up_read(&c->gc_lock); return r; } /** * bch_bucket_alloc - allocate a single bucket from a specific device * * Returns index of bucket on success, 0 on failure * */ long bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, enum alloc_reserve reserve) { size_t r; spin_lock(&ca->freelist_lock); if (likely(fifo_pop(&ca->free[RESERVE_NONE], r))) goto out; switch (reserve) { case RESERVE_ALLOC: if (fifo_pop(&ca->free[RESERVE_BTREE], r)) goto out; break; case RESERVE_BTREE: if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >= ca->free[RESERVE_BTREE].size && fifo_pop(&ca->free[RESERVE_BTREE], r)) goto out; break; case RESERVE_MOVINGGC: if (fifo_pop(&ca->free[RESERVE_MOVINGGC], r)) goto out; break; default: break; } spin_unlock(&ca->freelist_lock); if (unlikely(!ca->alloc_thread_started) && (r = bch2_bucket_alloc_startup(c, ca)) >= 0) { verify_not_on_freelist(ca, r); goto out2; } trace_bucket_alloc_fail(ca, reserve); return -1; out: verify_not_on_freelist(ca, r); spin_unlock(&ca->freelist_lock); bch2_wake_allocator(ca); out2: ca->buckets[r].prio[READ] = c->prio_clock[READ].hand; ca->buckets[r].prio[WRITE] = c->prio_clock[WRITE].hand; trace_bucket_alloc(ca, reserve); return r; } enum bucket_alloc_ret { ALLOC_SUCCESS, NO_DEVICES, /* -EROFS */ FREELIST_EMPTY, /* Allocator thread not keeping up */ }; static void recalc_alloc_group_weights(struct bch_fs *c, struct dev_group *devs) { struct bch_dev *ca; u64 available_buckets = 1; /* avoid a divide by zero... */ unsigned i; for (i = 0; i < devs->nr; i++) { ca = devs->d[i].dev; devs->d[i].weight = dev_buckets_free(ca); available_buckets += devs->d[i].weight; } for (i = 0; i < devs->nr; i++) { const unsigned min_weight = U32_MAX >> 4; const unsigned max_weight = U32_MAX; devs->d[i].weight = min_weight + div64_u64(devs->d[i].weight * devs->nr * (max_weight - min_weight), available_buckets); devs->d[i].weight = min_t(u64, devs->d[i].weight, max_weight); } } static enum bucket_alloc_ret bch2_bucket_alloc_group(struct bch_fs *c, struct open_bucket *ob, enum alloc_reserve reserve, unsigned nr_replicas, struct dev_group *devs, long *devs_used) { enum bucket_alloc_ret ret; unsigned fail_idx = -1, i; unsigned available = 0; BUG_ON(nr_replicas > ARRAY_SIZE(ob->ptrs)); if (ob->nr_ptrs >= nr_replicas) return ALLOC_SUCCESS; spin_lock(&devs->lock); for (i = 0; i < devs->nr; i++) available += !test_bit(devs->d[i].dev->dev_idx, devs_used); recalc_alloc_group_weights(c, devs); i = devs->cur_device; while (ob->nr_ptrs < nr_replicas) { struct bch_dev *ca; long bucket; if (!available) { ret = NO_DEVICES; goto err; } i++; i %= devs->nr; ret = FREELIST_EMPTY; if (i == fail_idx) goto err; ca = devs->d[i].dev; if (test_bit(ca->dev_idx, devs_used)) continue; if (fail_idx == -1 && get_random_int() > devs->d[i].weight) continue; bucket = bch2_bucket_alloc(c, ca, reserve); if (bucket < 0) { if (fail_idx == -1) fail_idx = i; continue; } /* * open_bucket_add_buckets expects new pointers at the head of * the list: */ memmove(&ob->ptrs[1], &ob->ptrs[0], ob->nr_ptrs * sizeof(ob->ptrs[0])); memmove(&ob->ptr_offset[1], &ob->ptr_offset[0], ob->nr_ptrs * sizeof(ob->ptr_offset[0])); ob->nr_ptrs++; ob->ptrs[0] = (struct bch_extent_ptr) { .gen = ca->buckets[bucket].mark.gen, .offset = bucket_to_sector(ca, bucket), .dev = ca->dev_idx, }; ob->ptr_offset[0] = 0; __set_bit(ca->dev_idx, devs_used); available--; devs->cur_device = i; } ret = ALLOC_SUCCESS; err: EBUG_ON(ret != ALLOC_SUCCESS && reserve == RESERVE_MOVINGGC); spin_unlock(&devs->lock); return ret; } static enum bucket_alloc_ret __bch2_bucket_alloc_set(struct bch_fs *c, struct write_point *wp, struct open_bucket *ob, unsigned nr_replicas, enum alloc_reserve reserve, long *devs_used) { struct bch_tier *tier; /* * this should implement policy - for a given type of allocation, decide * which devices to allocate from: * * XXX: switch off wp->type and do something more intelligent here */ if (wp->group) return bch2_bucket_alloc_group(c, ob, reserve, nr_replicas, wp->group, devs_used); /* foreground writes: prefer fastest tier: */ tier = READ_ONCE(c->fastest_tier); if (tier) bch2_bucket_alloc_group(c, ob, reserve, nr_replicas, &tier->devs, devs_used); return bch2_bucket_alloc_group(c, ob, reserve, nr_replicas, &c->all_devs, devs_used); } static int bch2_bucket_alloc_set(struct bch_fs *c, struct write_point *wp, struct open_bucket *ob, unsigned nr_replicas, enum alloc_reserve reserve, long *devs_used, struct closure *cl) { bool waiting = false; while (1) { switch (__bch2_bucket_alloc_set(c, wp, ob, nr_replicas, reserve, devs_used)) { case ALLOC_SUCCESS: if (waiting) closure_wake_up(&c->freelist_wait); return 0; case NO_DEVICES: if (waiting) closure_wake_up(&c->freelist_wait); return -EROFS; case FREELIST_EMPTY: if (!cl || waiting) trace_freelist_empty_fail(c, reserve, cl); if (!cl) return -ENOSPC; if (waiting) return -EAGAIN; /* Retry allocation after adding ourself to waitlist: */ closure_wait(&c->freelist_wait, cl); waiting = true; break; default: BUG(); } } } /* Open buckets: */ /* * Open buckets represent one or more buckets (on multiple devices) that are * currently being allocated from. They serve two purposes: * * - They track buckets that have been partially allocated, allowing for * sub-bucket sized allocations - they're used by the sector allocator below * * - They provide a reference to the buckets they own that mark and sweep GC * can find, until the new allocation has a pointer to it inserted into the * btree * * When allocating some space with the sector allocator, the allocation comes * with a reference to an open bucket - the caller is required to put that * reference _after_ doing the index update that makes its allocation reachable. */ static void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) { const struct bch_extent_ptr *ptr; lockdep_assert_held(&c->open_buckets_lock); open_bucket_for_each_ptr(ob, ptr) { struct bch_dev *ca = c->devs[ptr->dev]; bch2_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), false); } ob->nr_ptrs = 0; list_move(&ob->list, &c->open_buckets_free); c->open_buckets_nr_free++; closure_wake_up(&c->open_buckets_wait); } void bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *b) { if (atomic_dec_and_test(&b->pin)) { spin_lock(&c->open_buckets_lock); __bch2_open_bucket_put(c, b); spin_unlock(&c->open_buckets_lock); } } static struct open_bucket *bch2_open_bucket_get(struct bch_fs *c, unsigned nr_reserved, struct closure *cl) { struct open_bucket *ret; spin_lock(&c->open_buckets_lock); if (c->open_buckets_nr_free > nr_reserved) { BUG_ON(list_empty(&c->open_buckets_free)); ret = list_first_entry(&c->open_buckets_free, struct open_bucket, list); list_move(&ret->list, &c->open_buckets_open); BUG_ON(ret->nr_ptrs); atomic_set(&ret->pin, 1); /* XXX */ ret->has_full_ptrs = false; c->open_buckets_nr_free--; trace_open_bucket_alloc(c, cl); } else { trace_open_bucket_alloc_fail(c, cl); if (cl) { closure_wait(&c->open_buckets_wait, cl); ret = ERR_PTR(-EAGAIN); } else ret = ERR_PTR(-ENOSPC); } spin_unlock(&c->open_buckets_lock); return ret; } static unsigned ob_ptr_sectors_free(struct bch_fs *c, struct open_bucket *ob, struct bch_extent_ptr *ptr) { struct bch_dev *ca = c->devs[ptr->dev]; unsigned i = ptr - ob->ptrs; unsigned bucket_size = ca->mi.bucket_size; unsigned used = (ptr->offset & (bucket_size - 1)) + ob->ptr_offset[i]; BUG_ON(used > bucket_size); return bucket_size - used; } static unsigned open_bucket_sectors_free(struct bch_fs *c, struct open_bucket *ob, unsigned nr_replicas) { unsigned i, sectors_free = UINT_MAX; for (i = 0; i < min(nr_replicas, ob->nr_ptrs); i++) sectors_free = min(sectors_free, ob_ptr_sectors_free(c, ob, &ob->ptrs[i])); return sectors_free != UINT_MAX ? sectors_free : 0; } static void open_bucket_copy_unused_ptrs(struct bch_fs *c, struct open_bucket *new, struct open_bucket *old) { unsigned i; for (i = 0; i < old->nr_ptrs; i++) if (ob_ptr_sectors_free(c, old, &old->ptrs[i])) { struct bch_extent_ptr tmp = old->ptrs[i]; tmp.offset += old->ptr_offset[i]; new->ptrs[new->nr_ptrs] = tmp; new->ptr_offset[new->nr_ptrs] = 0; new->nr_ptrs++; } } static void verify_not_stale(struct bch_fs *c, const struct open_bucket *ob) { #ifdef CONFIG_BCACHEFS_DEBUG const struct bch_extent_ptr *ptr; open_bucket_for_each_ptr(ob, ptr) { struct bch_dev *ca = c->devs[ptr->dev]; BUG_ON(ptr_stale(ca, ptr)); } #endif } /* Sector allocator */ static struct open_bucket *lock_writepoint(struct bch_fs *c, struct write_point *wp) { struct open_bucket *ob; while ((ob = ACCESS_ONCE(wp->b))) { mutex_lock(&ob->lock); if (wp->b == ob) break; mutex_unlock(&ob->lock); } return ob; } static int open_bucket_add_buckets(struct bch_fs *c, struct write_point *wp, struct open_bucket *ob, unsigned nr_replicas, unsigned nr_replicas_required, enum alloc_reserve reserve, struct closure *cl) { long devs_used[BITS_TO_LONGS(BCH_SB_MEMBERS_MAX)]; unsigned i; int ret; /* * We might be allocating pointers to add to an existing extent * (tiering/copygc/migration) - if so, some of the pointers in our * existing open bucket might duplicate devices we already have. This is * moderately annoying. */ /* Short circuit all the fun stuff if posssible: */ if (ob->nr_ptrs >= nr_replicas) return 0; memset(devs_used, 0, sizeof(devs_used)); for (i = 0; i < ob->nr_ptrs; i++) __set_bit(ob->ptrs[i].dev, devs_used); ret = bch2_bucket_alloc_set(c, wp, ob, nr_replicas, reserve, devs_used, cl); if (ret == -EROFS && ob->nr_ptrs >= nr_replicas_required) ret = 0; return ret; } /* * Get us an open_bucket we can allocate from, return with it locked: */ struct open_bucket *bch2_alloc_sectors_start(struct bch_fs *c, struct write_point *wp, unsigned nr_replicas, unsigned nr_replicas_required, enum alloc_reserve reserve, struct closure *cl) { struct open_bucket *ob; unsigned open_buckets_reserved = wp == &c->btree_write_point ? 0 : BTREE_NODE_RESERVE; int ret; BUG_ON(!nr_replicas); retry: ob = lock_writepoint(c, wp); /* * If ob->sectors_free == 0, one or more of the buckets ob points to is * full. We can't drop pointers from an open bucket - garbage collection * still needs to find them; instead, we must allocate a new open bucket * and copy any pointers to non-full buckets into the new open bucket. */ if (!ob || ob->has_full_ptrs) { struct open_bucket *new_ob; new_ob = bch2_open_bucket_get(c, open_buckets_reserved, cl); if (IS_ERR(new_ob)) return new_ob; mutex_lock(&new_ob->lock); /* * We point the write point at the open_bucket before doing the * allocation to avoid a race with shutdown: */ if (race_fault() || cmpxchg(&wp->b, ob, new_ob) != ob) { /* We raced: */ mutex_unlock(&new_ob->lock); bch2_open_bucket_put(c, new_ob); if (ob) mutex_unlock(&ob->lock); goto retry; } if (ob) { open_bucket_copy_unused_ptrs(c, new_ob, ob); mutex_unlock(&ob->lock); bch2_open_bucket_put(c, ob); } ob = new_ob; } ret = open_bucket_add_buckets(c, wp, ob, nr_replicas, nr_replicas_required, reserve, cl); if (ret) { mutex_unlock(&ob->lock); return ERR_PTR(ret); } ob->sectors_free = open_bucket_sectors_free(c, ob, nr_replicas); BUG_ON(!ob->sectors_free); verify_not_stale(c, ob); return ob; } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct bkey_i_extent *e, unsigned nr_replicas, struct open_bucket *ob, unsigned sectors) { struct bch_extent_ptr tmp; bool has_data = false; unsigned i; /* * We're keeping any existing pointer k has, and appending new pointers: * __bch2_write() will only write to the pointers we add here: */ BUG_ON(sectors > ob->sectors_free); /* didn't use all the ptrs: */ if (nr_replicas < ob->nr_ptrs) has_data = true; for (i = 0; i < min(ob->nr_ptrs, nr_replicas); i++) { EBUG_ON(bch2_extent_has_device(extent_i_to_s_c(e), ob->ptrs[i].dev)); tmp = ob->ptrs[i]; tmp.cached = bkey_extent_is_cached(&e->k); tmp.offset += ob->ptr_offset[i]; extent_ptr_append(e, tmp); ob->ptr_offset[i] += sectors; this_cpu_add(*c->devs[tmp.dev]->sectors_written, sectors); } } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp, struct open_bucket *ob) { bool has_data = false; unsigned i; for (i = 0; i < ob->nr_ptrs; i++) { if (!ob_ptr_sectors_free(c, ob, &ob->ptrs[i])) ob->has_full_ptrs = true; else has_data = true; } if (likely(has_data)) atomic_inc(&ob->pin); else BUG_ON(xchg(&wp->b, NULL) != ob); mutex_unlock(&ob->lock); } /* * Allocates some space in the cache to write to, and k to point to the newly * allocated space, and updates k->size and k->offset (to point to the * end of the newly allocated space). * * May allocate fewer sectors than @sectors, k->size indicates how many * sectors were actually allocated. * * Return codes: * - -EAGAIN: closure was added to waitlist * - -ENOSPC: out of space and no closure provided * * @c - filesystem. * @wp - write point to use for allocating sectors. * @k - key to return the allocated space information. * @cl - closure to wait for a bucket */ struct open_bucket *bch2_alloc_sectors(struct bch_fs *c, struct write_point *wp, struct bkey_i_extent *e, unsigned nr_replicas, unsigned nr_replicas_required, enum alloc_reserve reserve, struct closure *cl) { struct open_bucket *ob; ob = bch2_alloc_sectors_start(c, wp, nr_replicas, nr_replicas_required, reserve, cl); if (IS_ERR_OR_NULL(ob)) return ob; if (e->k.size > ob->sectors_free) bch2_key_resize(&e->k, ob->sectors_free); bch2_alloc_sectors_append_ptrs(c, e, nr_replicas, ob, e->k.size); bch2_alloc_sectors_done(c, wp, ob); return ob; } /* Startup/shutdown (ro/rw): */ void bch2_recalc_capacity(struct bch_fs *c) { struct bch_tier *fastest_tier = NULL, *slowest_tier = NULL, *tier; struct bch_dev *ca; u64 total_capacity, capacity = 0, reserved_sectors = 0; unsigned long ra_pages = 0; unsigned i, j; for_each_online_member(ca, c, i) { struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi; ra_pages += bdi->ra_pages; } c->bdi.ra_pages = ra_pages; /* Find fastest, slowest tiers with devices: */ for (tier = c->tiers; tier < c->tiers + ARRAY_SIZE(c->tiers); tier++) { if (!tier->devs.nr) continue; if (!fastest_tier) fastest_tier = tier; slowest_tier = tier; } c->fastest_tier = fastest_tier != slowest_tier ? fastest_tier : NULL; c->promote_write_point.group = &fastest_tier->devs; if (!fastest_tier) goto set_capacity; /* * Capacity of the filesystem is the capacity of all the devices in the * slowest (highest) tier - we don't include lower tier devices. */ spin_lock(&slowest_tier->devs.lock); group_for_each_dev(ca, &slowest_tier->devs, i) { size_t reserve = 0; /* * We need to reserve buckets (from the number * of currently available buckets) against * foreground writes so that mainly copygc can * make forward progress. * * We need enough to refill the various reserves * from scratch - copygc will use its entire * reserve all at once, then run against when * its reserve is refilled (from the formerly * available buckets). * * This reserve is just used when considering if * allocations for foreground writes must wait - * not -ENOSPC calculations. */ for (j = 0; j < RESERVE_NONE; j++) reserve += ca->free[j].size; reserve += ca->free_inc.size; reserve += ARRAY_SIZE(c->write_points); if (ca->mi.tier) reserve += 1; /* tiering write point */ reserve += 1; /* btree write point */ reserved_sectors += reserve << ca->bucket_bits; capacity += (ca->mi.nbuckets - ca->mi.first_bucket) << ca->bucket_bits; } spin_unlock(&slowest_tier->devs.lock); set_capacity: total_capacity = capacity; capacity *= (100 - c->opts.gc_reserve_percent); capacity = div64_u64(capacity, 100); BUG_ON(reserved_sectors > total_capacity); capacity = min(capacity, total_capacity - reserved_sectors); c->capacity = capacity; if (c->capacity) { bch2_io_timer_add(&c->io_clock[READ], &c->prio_clock[READ].rescale); bch2_io_timer_add(&c->io_clock[WRITE], &c->prio_clock[WRITE].rescale); } else { bch2_io_timer_del(&c->io_clock[READ], &c->prio_clock[READ].rescale); bch2_io_timer_del(&c->io_clock[WRITE], &c->prio_clock[WRITE].rescale); } /* Wake up case someone was waiting for buckets */ closure_wake_up(&c->freelist_wait); } static void bch2_stop_write_point(struct bch_fs *c, struct bch_dev *ca, struct write_point *wp) { struct open_bucket *ob; struct bch_extent_ptr *ptr; ob = lock_writepoint(c, wp); if (!ob) return; for (ptr = ob->ptrs; ptr < ob->ptrs + ob->nr_ptrs; ptr++) if (ptr->dev == ca->dev_idx) goto found; mutex_unlock(&ob->lock); return; found: BUG_ON(xchg(&wp->b, NULL) != ob); mutex_unlock(&ob->lock); /* Drop writepoint's ref: */ bch2_open_bucket_put(c, ob); } static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) { struct bch_extent_ptr *ptr; struct open_bucket *ob; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) if (atomic_read(&ob->pin)) { mutex_lock(&ob->lock); for (ptr = ob->ptrs; ptr < ob->ptrs + ob->nr_ptrs; ptr++) if (ptr->dev == ca->dev_idx) { mutex_unlock(&ob->lock); return true; } mutex_unlock(&ob->lock); } return false; } /* device goes ro: */ void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) { struct dev_group *tier = &c->tiers[ca->mi.tier].devs; struct closure cl; unsigned i; BUG_ON(ca->alloc_thread); closure_init_stack(&cl); /* First, remove device from allocation groups: */ bch2_dev_group_remove(&c->journal.devs, ca); bch2_dev_group_remove(tier, ca); bch2_dev_group_remove(&c->all_devs, ca); /* * Capacity is calculated based off of devices in allocation groups: */ bch2_recalc_capacity(c); /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_stop_write_point(c, ca, &c->write_points[i]); bch2_stop_write_point(c, ca, &ca->copygc_write_point); bch2_stop_write_point(c, ca, &c->promote_write_point); bch2_stop_write_point(c, ca, &ca->tiering_write_point); bch2_stop_write_point(c, ca, &c->migration_write_point); bch2_stop_write_point(c, ca, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_bucket_put(c, a->ob); } mutex_unlock(&c->btree_reserve_cache_lock); /* * Wake up threads that were blocked on allocation, so they can notice * the device can no longer be removed and the capacity has changed: */ closure_wake_up(&c->freelist_wait); /* * journal_res_get() can block waiting for free space in the journal - * it needs to notice there may not be devices to allocate from anymore: */ wake_up(&c->journal.wait); /* Now wait for any in flight writes: */ while (1) { closure_wait(&c->open_buckets_wait, &cl); if (!bch2_dev_has_open_write_point(c, ca)) { closure_wake_up(&c->open_buckets_wait); break; } closure_sync(&cl); } } /* device goes rw: */ void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) { struct dev_group *tier = &c->tiers[ca->mi.tier].devs; struct bch_sb_field_journal *journal_buckets; bool has_journal; bch2_dev_group_add(&c->all_devs, ca); bch2_dev_group_add(tier, ca); mutex_lock(&c->sb_lock); journal_buckets = bch2_sb_get_journal(ca->disk_sb.sb); has_journal = bch2_nr_journal_buckets(journal_buckets) >= BCH_JOURNAL_BUCKETS_MIN; mutex_unlock(&c->sb_lock); if (has_journal) bch2_dev_group_add(&c->journal.devs, ca); } /* stop allocator thread: */ void bch2_dev_allocator_stop(struct bch_dev *ca) { struct task_struct *p = ca->alloc_thread; ca->alloc_thread = NULL; smp_wmb(); /* * We need an rcu barrier between setting ca->alloc_thread = NULL and * the thread shutting down to avoid a race with bch2_usage_update() - * the allocator thread itself does a synchronize_rcu() on exit. * * XXX: it would be better to have the rcu barrier be asynchronous * instead of blocking us here */ if (p) kthread_stop(p); } /* start allocator thread: */ int bch2_dev_allocator_start(struct bch_dev *ca) { struct task_struct *p; /* * allocator thread already started? */ if (ca->alloc_thread) return 0; p = kthread_run(bch2_allocator_thread, ca, "bcache_allocator"); if (IS_ERR(p)) return PTR_ERR(p); ca->alloc_thread = p; return 0; } void bch2_fs_allocator_init(struct bch_fs *c) { unsigned i; INIT_LIST_HEAD(&c->open_buckets_open); INIT_LIST_HEAD(&c->open_buckets_free); spin_lock_init(&c->open_buckets_lock); bch2_prio_timer_init(c, READ); bch2_prio_timer_init(c, WRITE); /* open bucket 0 is a sentinal NULL: */ mutex_init(&c->open_buckets[0].lock); INIT_LIST_HEAD(&c->open_buckets[0].list); for (i = 1; i < ARRAY_SIZE(c->open_buckets); i++) { mutex_init(&c->open_buckets[i].lock); c->open_buckets_nr_free++; list_add(&c->open_buckets[i].list, &c->open_buckets_free); } spin_lock_init(&c->all_devs.lock); for (i = 0; i < ARRAY_SIZE(c->tiers); i++) spin_lock_init(&c->tiers[i].devs.lock); for (i = 0; i < ARRAY_SIZE(c->write_points); i++) c->write_points[i].throttle = true; c->pd_controllers_update_seconds = 5; INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update); spin_lock_init(&c->foreground_write_pd_lock); bch2_pd_controller_init(&c->foreground_write_pd); /* * We do not want the write rate to have an effect on the computed * rate, for two reasons: * * We do not call bch2_ratelimit_delay() at all if the write rate * exceeds 1GB/s. In this case, the PD controller will think we are * not "keeping up" and not change the rate. */ c->foreground_write_pd.backpressure = 0; init_timer(&c->foreground_write_wakeup); c->foreground_write_wakeup.data = (unsigned long) c; c->foreground_write_wakeup.function = bch2_wake_delayed_writes; }