// SPDX-License-Identifier: GPL-2.0 /* * Functions for incremental mean and variance. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * Copyright © 2022 Daniel B. Hill * * Author: Daniel B. Hill * * Description: * * This is includes some incremental algorithms for mean and variance calculation * * Derived from the paper: https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf * * Create a struct and if it's the weighted variant set the w field (weight = 2^k). * * Use mean_and_variance[_weighted]_update() on the struct to update it's state. * * Use the mean_and_variance[_weighted]_get_* functions to calculate the mean and variance, some computation * is deferred to these functions for performance reasons. * * see lib/math/mean_and_variance_test.c for examples of usage. * * DO NOT access the mean and variance fields of the weighted variants directly. * DO NOT change the weight after calling update. */ #include #include #include #include #include #include #include #include #include /** * fast_divpow2() - fast approximation for n / (1 << d) * @n: numerator * @d: the power of 2 denominator. * * note: this rounds towards 0. */ s64 fast_divpow2(s64 n, u8 d) { return (n + ((n < 0) ? ((1 << d) - 1) : 0)) >> d; } /** * mean_and_variance_update() - update a mean_and_variance struct @s1 with a new sample @v1 * and return it. * @s1: the mean_and_variance to update. * @v1: the new sample. * * see linked pdf equation 12. */ struct mean_and_variance mean_and_variance_update(struct mean_and_variance s1, s64 v1) { struct mean_and_variance s2; u64 v2 = abs(v1); s2.n = s1.n + 1; s2.sum = s1.sum + v1; s2.sum_squares = u128_add(s1.sum_squares, u128_square(v2)); return s2; } EXPORT_SYMBOL_GPL(mean_and_variance_update); /** * mean_and_variance_get_mean() - get mean from @s */ s64 mean_and_variance_get_mean(struct mean_and_variance s) { return div64_u64(s.sum, s.n); } EXPORT_SYMBOL_GPL(mean_and_variance_get_mean); /** * mean_and_variance_get_variance() - get variance from @s1 * * see linked pdf equation 12. */ u64 mean_and_variance_get_variance(struct mean_and_variance s1) { u128 s2 = u128_div(s1.sum_squares, s1.n); u64 s3 = abs(mean_and_variance_get_mean(s1)); return u128_to_u64(u128_sub(s2, u128_square(s3))); } EXPORT_SYMBOL_GPL(mean_and_variance_get_variance); /** * mean_and_variance_get_stddev() - get standard deviation from @s */ u32 mean_and_variance_get_stddev(struct mean_and_variance s) { return int_sqrt64(mean_and_variance_get_variance(s)); } EXPORT_SYMBOL_GPL(mean_and_variance_get_stddev); /** * mean_and_variance_weighted_update() - exponentially weighted variant of mean_and_variance_update() * @s1: .. * @s2: .. * * see linked pdf: function derived from equations 140-143 where alpha = 2^w. * values are stored bitshifted for performance and added precision. */ struct mean_and_variance_weighted mean_and_variance_weighted_update(struct mean_and_variance_weighted s1, s64 x) { struct mean_and_variance_weighted s2; // previous weighted variance. u64 var_w0 = s1.variance; u8 w = s2.w = s1.w; // new value weighted. s64 x_w = x << w; s64 diff_w = x_w - s1.mean; s64 diff = fast_divpow2(diff_w, w); // new mean weighted. s64 u_w1 = s1.mean + diff; BUG_ON(w % 2 != 0); if (!s1.init) { s2.mean = x_w; s2.variance = 0; } else { s2.mean = u_w1; s2.variance = ((var_w0 << w) - var_w0 + ((diff_w * (x_w - u_w1)) >> w)) >> w; } s2.init = true; return s2; } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_update); /** * mean_and_variance_weighted_get_mean() - get mean from @s */ s64 mean_and_variance_weighted_get_mean(struct mean_and_variance_weighted s) { return fast_divpow2(s.mean, s.w); } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_mean); /** * mean_and_variance_weighted_get_variance() -- get variance from @s */ u64 mean_and_variance_weighted_get_variance(struct mean_and_variance_weighted s) { // always positive don't need fast divpow2 return s.variance >> s.w; } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_variance); /** * mean_and_variance_weighted_get_stddev() - get standard deviation from @s */ u32 mean_and_variance_weighted_get_stddev(struct mean_and_variance_weighted s) { return int_sqrt64(mean_and_variance_weighted_get_variance(s)); } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_stddev); MODULE_AUTHOR("Daniel B. Hill"); MODULE_LICENSE("GPL");