// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bcachefs_ioctl.h" #include "btree_cache.h" #include "btree_journal_iter.h" #include "btree_update.h" #include "btree_write_buffer.h" #include "buckets.h" #include "compress.h" #include "disk_accounting.h" #include "error.h" #include "journal_io.h" #include "replicas.h" /* * Notes on disk accounting: * * We have two parallel sets of counters to be concerned with, and both must be * kept in sync. * * - Persistent/on disk accounting, stored in the accounting btree and updated * via btree write buffer updates that treat new accounting keys as deltas to * apply to existing values. But reading from a write buffer btree is * expensive, so we also have * * - In memory accounting, where accounting is stored as an array of percpu * counters, indexed by an eytzinger array of disk acounting keys/bpos (which * are the same thing, excepting byte swabbing on big endian). * * Cheap to read, but non persistent. * * Disk accounting updates are generated by transactional triggers; these run as * keys enter and leave the btree, and can compare old and new versions of keys; * the output of these triggers are deltas to the various counters. * * Disk accounting updates are done as btree write buffer updates, where the * counters in the disk accounting key are deltas that will be applied to the * counter in the btree when the key is flushed by the write buffer (or journal * replay). * * To do a disk accounting update: * - initialize a disk_accounting_pos, to specify which counter is being update * - initialize counter deltas, as an array of 1-3 s64s * - call bch2_disk_accounting_mod() * * This queues up the accounting update to be done at transaction commit time. * Underneath, it's a normal btree write buffer update. * * The transaction commit path is responsible for propagating updates to the in * memory counters, with bch2_accounting_mem_mod(). * * The commit path also assigns every disk accounting update a unique version * number, based on the journal sequence number and offset within that journal * buffer; this is used by journal replay to determine which updates have been * done. * * The transaction commit path also ensures that replicas entry accounting * updates are properly marked in the superblock (so that we know whether we can * mount without data being unavailable); it will update the superblock if * bch2_accounting_mem_mod() tells it to. */ static const char * const disk_accounting_type_strs[] = { #define x(t, n, ...) [n] = #t, BCH_DISK_ACCOUNTING_TYPES() #undef x NULL }; static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos, s64 *d, unsigned nr) { struct bkey_i_accounting *acc = bkey_accounting_init(k); acc->k.p = disk_accounting_pos_to_bpos(pos); set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr); memcpy_u64s_small(acc->v.d, d, nr); } static int bch2_accounting_update_sb_one(struct bch_fs *, struct bpos); int bch2_disk_accounting_mod(struct btree_trans *trans, struct disk_accounting_pos *k, s64 *d, unsigned nr, bool gc) { /* Normalize: */ switch (k->type) { case BCH_DISK_ACCOUNTING_replicas: bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp); break; } BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS); struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; accounting_key_init(&k_i.k, k, d, nr); if (unlikely(gc)) { int ret = bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true); if (ret == -BCH_ERR_btree_insert_need_mark_replicas) ret = drop_locks_do(trans, bch2_accounting_update_sb_one(trans->c, disk_accounting_pos_to_bpos(k))) ?: bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true); return ret; } else { return bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k); } } int bch2_mod_dev_cached_sectors(struct btree_trans *trans, unsigned dev, s64 sectors, bool gc) { struct disk_accounting_pos acc = { .type = BCH_DISK_ACCOUNTING_replicas, }; bch2_replicas_entry_cached(&acc.replicas, dev); return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); } static inline bool is_zero(char *start, char *end) { BUG_ON(start > end); for (; start < end; start++) if (*start) return false; return true; } #define field_end(p, member) (((void *) (&p.member)) + sizeof(p.member)) int bch2_accounting_validate(struct bch_fs *c, struct bkey_s_c k, struct bkey_validate_context from) { struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, k.k->p); void *end = &acc_k + 1; int ret = 0; bkey_fsck_err_on((from.flags & BCH_VALIDATE_commit) && bversion_zero(k.k->bversion), c, accounting_key_version_0, "accounting key with version=0"); switch (acc_k.type) { case BCH_DISK_ACCOUNTING_nr_inodes: end = field_end(acc_k, nr_inodes); break; case BCH_DISK_ACCOUNTING_persistent_reserved: end = field_end(acc_k, persistent_reserved); break; case BCH_DISK_ACCOUNTING_replicas: bkey_fsck_err_on(!acc_k.replicas.nr_devs, c, accounting_key_replicas_nr_devs_0, "accounting key replicas entry with nr_devs=0"); bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs || (acc_k.replicas.nr_required > 1 && acc_k.replicas.nr_required == acc_k.replicas.nr_devs), c, accounting_key_replicas_nr_required_bad, "accounting key replicas entry with bad nr_required"); for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++) bkey_fsck_err_on(acc_k.replicas.devs[i] >= acc_k.replicas.devs[i + 1], c, accounting_key_replicas_devs_unsorted, "accounting key replicas entry with unsorted devs"); end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas); break; case BCH_DISK_ACCOUNTING_dev_data_type: end = field_end(acc_k, dev_data_type); break; case BCH_DISK_ACCOUNTING_compression: end = field_end(acc_k, compression); break; case BCH_DISK_ACCOUNTING_snapshot: end = field_end(acc_k, snapshot); break; case BCH_DISK_ACCOUNTING_btree: end = field_end(acc_k, btree); break; case BCH_DISK_ACCOUNTING_rebalance_work: end = field_end(acc_k, rebalance_work); break; } bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)), c, accounting_key_junk_at_end, "junk at end of accounting key"); fsck_err: return ret; } void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k) { if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) { prt_printf(out, "unknown type %u", k->type); return; } prt_str(out, disk_accounting_type_strs[k->type]); prt_str(out, " "); switch (k->type) { case BCH_DISK_ACCOUNTING_nr_inodes: break; case BCH_DISK_ACCOUNTING_persistent_reserved: prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas); break; case BCH_DISK_ACCOUNTING_replicas: bch2_replicas_entry_to_text(out, &k->replicas); break; case BCH_DISK_ACCOUNTING_dev_data_type: prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev); bch2_prt_data_type(out, k->dev_data_type.data_type); break; case BCH_DISK_ACCOUNTING_compression: bch2_prt_compression_type(out, k->compression.type); break; case BCH_DISK_ACCOUNTING_snapshot: prt_printf(out, "id=%u", k->snapshot.id); break; case BCH_DISK_ACCOUNTING_btree: prt_str(out, "btree="); bch2_btree_id_to_text(out, k->btree.id); break; } } void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k); struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, k.k->p); bch2_accounting_key_to_text(out, &acc_k); for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++) prt_printf(out, " %lli", acc.v->d[i]); } void bch2_accounting_swab(struct bkey_s k) { for (u64 *p = (u64 *) k.v; p < (u64 *) bkey_val_end(k); p++) *p = swab64(*p); } static inline void __accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct disk_accounting_pos *acc) { unsafe_memcpy(r, &acc->replicas, replicas_entry_bytes(&acc->replicas), "variable length struct"); } static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p) { struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, p); switch (acc_k.type) { case BCH_DISK_ACCOUNTING_replicas: __accounting_to_replicas(r, &acc_k); return true; default: return false; } } static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p) { struct bch_replicas_padded r; return accounting_to_replicas(&r.e, p) ? bch2_mark_replicas(c, &r.e) : 0; } /* * Ensure accounting keys being updated are present in the superblock, when * applicable (i.e. replicas updates) */ int bch2_accounting_update_sb(struct btree_trans *trans) { for (struct jset_entry *i = trans->journal_entries; i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s); i = vstruct_next(i)) if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) { int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p); if (ret) return ret; } return 0; } static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a) { struct bch_accounting_mem *acc = &c->accounting; /* raced with another insert, already present: */ if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, &a.k->p) < acc->k.nr) return 0; struct accounting_mem_entry n = { .pos = a.k->p, .bversion = a.k->bversion, .nr_counters = bch2_accounting_counters(a.k), .v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), sizeof(u64), GFP_KERNEL), }; if (!n.v[0]) goto err; if (acc->gc_running) { n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!n.v[1]) goto err; } if (darray_push(&acc->k, n)) goto err; eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, NULL); if (trace_accounting_mem_insert_enabled()) { struct printbuf buf = PRINTBUF; bch2_accounting_to_text(&buf, c, a.s_c); trace_accounting_mem_insert(c, buf.buf); printbuf_exit(&buf); } return 0; err: free_percpu(n.v[1]); free_percpu(n.v[0]); return -BCH_ERR_ENOMEM_disk_accounting; } int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a, enum bch_accounting_mode mode) { struct bch_replicas_padded r; if (mode != BCH_ACCOUNTING_read && accounting_to_replicas(&r.e, a.k->p) && !bch2_replicas_marked_locked(c, &r.e)) return -BCH_ERR_btree_insert_need_mark_replicas; percpu_up_read(&c->mark_lock); percpu_down_write(&c->mark_lock); int ret = __bch2_accounting_mem_insert(c, a); percpu_up_write(&c->mark_lock); percpu_down_read(&c->mark_lock); return ret; } static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e) { for (unsigned i = 0; i < e->nr_counters; i++) if (percpu_u64_get(e->v[0] + i) || (e->v[1] && percpu_u64_get(e->v[1] + i))) return false; return true; } void bch2_accounting_mem_gc(struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting; percpu_down_write(&c->mark_lock); struct accounting_mem_entry *dst = acc->k.data; darray_for_each(acc->k, src) { if (accounting_mem_entry_is_zero(src)) { free_percpu(src->v[0]); free_percpu(src->v[1]); } else { *dst++ = *src; } } acc->k.nr = dst - acc->k.data; eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, NULL); percpu_up_write(&c->mark_lock); } /* * Read out accounting keys for replicas entries, as an array of * bch_replicas_usage entries. * * Note: this may be deprecated/removed at smoe point in the future and replaced * with something more general, it exists to support the ioctl used by the * 'bcachefs fs usage' command. */ int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage) { struct bch_accounting_mem *acc = &c->accounting; int ret = 0; darray_init(usage); percpu_down_read(&c->mark_lock); darray_for_each(acc->k, i) { struct { struct bch_replicas_usage r; u8 pad[BCH_BKEY_PTRS_MAX]; } u; if (!accounting_to_replicas(&u.r.r, i->pos)) continue; u64 sectors; bch2_accounting_mem_read_counters(acc, i - acc->k.data, §ors, 1, false); u.r.sectors = sectors; ret = darray_make_room(usage, replicas_usage_bytes(&u.r)); if (ret) break; memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r)); usage->nr += replicas_usage_bytes(&u.r); } percpu_up_read(&c->mark_lock); if (ret) darray_exit(usage); return ret; } int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask) { struct bch_accounting_mem *acc = &c->accounting; int ret = 0; darray_init(out_buf); percpu_down_read(&c->mark_lock); darray_for_each(acc->k, i) { struct disk_accounting_pos a_p; bpos_to_disk_accounting_pos(&a_p, i->pos); if (!(accounting_types_mask & BIT(a_p.type))) continue; ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) + sizeof(u64) * i->nr_counters); if (ret) break; struct bkey_i_accounting *a_out = bkey_accounting_init((void *) &darray_top(*out_buf)); set_bkey_val_u64s(&a_out->k, i->nr_counters); a_out->k.p = i->pos; bch2_accounting_mem_read_counters(acc, i - acc->k.data, a_out->v.d, i->nr_counters, false); if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out))) out_buf->nr += bkey_bytes(&a_out->k); } percpu_up_read(&c->mark_lock); if (ret) darray_exit(out_buf); return ret; } static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc) { darray_for_each(acc->k, e) { free_percpu(e->v[gc]); e->v[gc] = NULL; } } int bch2_gc_accounting_start(struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting; int ret = 0; percpu_down_write(&c->mark_lock); darray_for_each(acc->k, e) { e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!e->v[1]) { bch2_accounting_free_counters(acc, true); ret = -BCH_ERR_ENOMEM_disk_accounting; break; } } acc->gc_running = !ret; percpu_up_write(&c->mark_lock); return ret; } int bch2_gc_accounting_done(struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting; struct btree_trans *trans = bch2_trans_get(c); struct printbuf buf = PRINTBUF; struct bpos pos = POS_MIN; int ret = 0; percpu_down_write(&c->mark_lock); while (1) { unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, &pos); if (idx >= acc->k.nr) break; struct accounting_mem_entry *e = acc->k.data + idx; pos = bpos_successor(e->pos); struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, e->pos); if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) continue; u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS]; u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS]; unsigned nr = e->nr_counters; bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false); bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true); if (memcmp(dst_v, src_v, nr * sizeof(u64))) { printbuf_reset(&buf); prt_str(&buf, "accounting mismatch for "); bch2_accounting_key_to_text(&buf, &acc_k); prt_str(&buf, ": got"); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", dst_v[j]); prt_str(&buf, " should be"); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", src_v[j]); for (unsigned j = 0; j < nr; j++) src_v[j] -= dst_v[j]; if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) { percpu_up_write(&c->mark_lock); ret = commit_do(trans, NULL, NULL, 0, bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false)); percpu_down_write(&c->mark_lock); if (ret) goto err; if (!test_bit(BCH_FS_may_go_rw, &c->flags)) { memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta)); struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; accounting_key_init(&k_i.k, &acc_k, src_v, nr); bch2_accounting_mem_mod_locked(trans, bkey_i_to_s_c_accounting(&k_i.k), BCH_ACCOUNTING_normal); preempt_disable(); struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage); struct bch_fs_usage_base *src = &trans->fs_usage_delta; acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64)); preempt_enable(); } } } } err: fsck_err: percpu_up_write(&c->mark_lock); printbuf_exit(&buf); bch2_trans_put(trans); bch_err_fn(c, ret); return ret; } static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k) { struct bch_fs *c = trans->c; if (k.k->type != KEY_TYPE_accounting) return 0; percpu_down_read(&c->mark_lock); int ret = bch2_accounting_mem_mod_locked(trans, bkey_s_c_to_accounting(k), BCH_ACCOUNTING_read); percpu_up_read(&c->mark_lock); return ret; } static int bch2_disk_accounting_validate_late(struct btree_trans *trans, struct disk_accounting_pos acc, u64 *v, unsigned nr) { struct bch_fs *c = trans->c; struct printbuf buf = PRINTBUF; int ret = 0, invalid_dev = -1; switch (acc.type) { case BCH_DISK_ACCOUNTING_replicas: { struct bch_replicas_padded r; __accounting_to_replicas(&r.e, &acc); for (unsigned i = 0; i < r.e.nr_devs; i++) if (r.e.devs[i] != BCH_SB_MEMBER_INVALID && !bch2_dev_exists(c, r.e.devs[i])) { invalid_dev = r.e.devs[i]; goto invalid_device; } /* * All replicas entry checks except for invalid device are done * in bch2_accounting_validate */ BUG_ON(bch2_replicas_entry_validate(&r.e, c, &buf)); if (fsck_err_on(!bch2_replicas_marked_locked(c, &r.e), trans, accounting_replicas_not_marked, "accounting not marked in superblock replicas\n %s", (printbuf_reset(&buf), bch2_accounting_key_to_text(&buf, &acc), buf.buf))) { /* * We're not RW yet and still single threaded, dropping * and retaking lock is ok: */ percpu_up_write(&c->mark_lock); ret = bch2_mark_replicas(c, &r.e); if (ret) goto fsck_err; percpu_down_write(&c->mark_lock); } break; } case BCH_DISK_ACCOUNTING_dev_data_type: if (!bch2_dev_exists(c, acc.dev_data_type.dev)) { invalid_dev = acc.dev_data_type.dev; goto invalid_device; } break; } fsck_err: printbuf_exit(&buf); return ret; invalid_device: if (fsck_err(trans, accounting_to_invalid_device, "accounting entry points to invalid device %i\n %s", invalid_dev, (printbuf_reset(&buf), bch2_accounting_key_to_text(&buf, &acc), buf.buf))) { for (unsigned i = 0; i < nr; i++) v[i] = -v[i]; ret = commit_do(trans, NULL, NULL, 0, bch2_disk_accounting_mod(trans, &acc, v, nr, false)) ?: -BCH_ERR_remove_disk_accounting_entry; } else { ret = -BCH_ERR_remove_disk_accounting_entry; } goto fsck_err; } /* * At startup time, initialize the in memory accounting from the btree (and * journal) */ int bch2_accounting_read(struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting; struct btree_trans *trans = bch2_trans_get(c); struct printbuf buf = PRINTBUF; /* * We might run more than once if we rewind to start topology repair or * btree node scan - and those might cause us to get different results, * so we can't just skip if we've already run. * * Instead, zero out any accounting we have: */ percpu_down_write(&c->mark_lock); darray_for_each(acc->k, e) percpu_memset(e->v[0], 0, sizeof(u64) * e->nr_counters); for_each_member_device(c, ca) percpu_memset(ca->usage, 0, sizeof(*ca->usage)); percpu_memset(c->usage, 0, sizeof(*c->usage)); percpu_up_write(&c->mark_lock); struct btree_iter iter; bch2_trans_iter_init(trans, &iter, BTREE_ID_accounting, POS_MIN, BTREE_ITER_prefetch|BTREE_ITER_all_snapshots); iter.flags &= ~BTREE_ITER_with_journal; int ret = for_each_btree_key_continue(trans, iter, BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({ struct bkey u; struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u); if (k.k->type != KEY_TYPE_accounting) continue; struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, k.k->p); if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) break; if (!bch2_accounting_is_mem(acc_k)) { struct disk_accounting_pos next = { .type = acc_k.type + 1 }; bch2_btree_iter_set_pos(&iter, disk_accounting_pos_to_bpos(&next)); continue; } accounting_read_key(trans, k); })); if (ret) goto err; struct journal_keys *keys = &c->journal_keys; struct journal_key *dst = keys->data; move_gap(keys, keys->nr); darray_for_each(*keys, i) { if (i->k->k.type == KEY_TYPE_accounting) { struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, i->k->k.p); if (!bch2_accounting_is_mem(acc_k)) continue; struct bkey_s_c k = bkey_i_to_s_c(i->k); unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, &k.k->p); bool applied = idx < acc->k.nr && bversion_cmp(acc->k.data[idx].bversion, k.k->bversion) >= 0; if (applied) continue; if (i + 1 < &darray_top(*keys) && i[1].k->k.type == KEY_TYPE_accounting && !journal_key_cmp(i, i + 1)) { WARN_ON(bversion_cmp(i[0].k->k.bversion, i[1].k->k.bversion) >= 0); i[1].journal_seq = i[0].journal_seq; bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k), bkey_s_c_to_accounting(k)); continue; } ret = accounting_read_key(trans, k); if (ret) goto err; } *dst++ = *i; } keys->gap = keys->nr = dst - keys->data; percpu_down_write(&c->mark_lock); darray_for_each_reverse(acc->k, i) { struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, i->pos); u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; memset(v, 0, sizeof(v)); for (unsigned j = 0; j < i->nr_counters; j++) v[j] = percpu_u64_get(i->v[0] + j); /* * If the entry counters are zeroed, it should be treated as * nonexistent - it might point to an invalid device. * * Remove it, so that if it's re-added it gets re-marked in the * superblock: */ ret = bch2_is_zero(v, sizeof(v[0]) * i->nr_counters) ? -BCH_ERR_remove_disk_accounting_entry : bch2_disk_accounting_validate_late(trans, acc_k, v, i->nr_counters); if (ret == -BCH_ERR_remove_disk_accounting_entry) { free_percpu(i->v[0]); free_percpu(i->v[1]); darray_remove_item(&acc->k, i); ret = 0; continue; } if (ret) goto fsck_err; } eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, NULL); preempt_disable(); struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage); for (unsigned i = 0; i < acc->k.nr; i++) { struct disk_accounting_pos k; bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); switch (k.type) { case BCH_DISK_ACCOUNTING_persistent_reserved: usage->reserved += v[0] * k.persistent_reserved.nr_replicas; break; case BCH_DISK_ACCOUNTING_replicas: fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]); break; case BCH_DISK_ACCOUNTING_dev_data_type: rcu_read_lock(); struct bch_dev *ca = bch2_dev_rcu_noerror(c, k.dev_data_type.dev); if (ca) { struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type]; percpu_u64_set(&d->buckets, v[0]); percpu_u64_set(&d->sectors, v[1]); percpu_u64_set(&d->fragmented, v[2]); if (k.dev_data_type.data_type == BCH_DATA_sb || k.dev_data_type.data_type == BCH_DATA_journal) usage->hidden += v[0] * ca->mi.bucket_size; } rcu_read_unlock(); break; } } preempt_enable(); fsck_err: percpu_up_write(&c->mark_lock); err: printbuf_exit(&buf); bch2_trans_put(trans); bch_err_fn(c, ret); return ret; } int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev) { return bch2_trans_run(c, bch2_btree_write_buffer_flush_sync(trans) ?: for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN, BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({ struct disk_accounting_pos acc; bpos_to_disk_accounting_pos(&acc, k.k->p); acc.type == BCH_DISK_ACCOUNTING_dev_data_type && acc.dev_data_type.dev == dev ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0) : 0; })) ?: bch2_btree_write_buffer_flush_sync(trans)); } int bch2_dev_usage_init(struct bch_dev *ca, bool gc) { struct bch_fs *c = ca->fs; struct disk_accounting_pos acc = { .type = BCH_DISK_ACCOUNTING_dev_data_type, .dev_data_type.dev = ca->dev_idx, .dev_data_type.data_type = BCH_DATA_free, }; u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 }; int ret = bch2_trans_do(c, ({ bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc) ?: (!gc ? bch2_trans_commit(trans, NULL, NULL, 0) : 0); })); bch_err_fn(c, ret); return ret; } void bch2_verify_accounting_clean(struct bch_fs *c) { bool mismatch = false; struct bch_fs_usage_base base = {}, base_inmem = {}; bch2_trans_run(c, for_each_btree_key(trans, iter, BTREE_ID_accounting, POS_MIN, BTREE_ITER_all_snapshots, k, ({ u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k); unsigned nr = bch2_accounting_counters(k.k); struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, k.k->p); if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) break; if (!bch2_accounting_is_mem(acc_k)) { struct disk_accounting_pos next = { .type = acc_k.type + 1 }; bch2_btree_iter_set_pos(&iter, disk_accounting_pos_to_bpos(&next)); continue; } bch2_accounting_mem_read(c, k.k->p, v, nr); if (memcmp(a.v->d, v, nr * sizeof(u64))) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); prt_str(&buf, " !="); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", v[j]); pr_err("%s", buf.buf); printbuf_exit(&buf); mismatch = true; } switch (acc_k.type) { case BCH_DISK_ACCOUNTING_persistent_reserved: base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0]; break; case BCH_DISK_ACCOUNTING_replicas: fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]); break; case BCH_DISK_ACCOUNTING_dev_data_type: { rcu_read_lock(); struct bch_dev *ca = bch2_dev_rcu_noerror(c, acc_k.dev_data_type.dev); if (!ca) { rcu_read_unlock(); continue; } v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets); v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors); v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented); rcu_read_unlock(); if (memcmp(a.v->d, v, 3 * sizeof(u64))) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); prt_str(&buf, " in mem"); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", v[j]); pr_err("dev accounting mismatch: %s", buf.buf); printbuf_exit(&buf); mismatch = true; } } } 0; }))); acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64)); #define check(x) \ if (base.x != base_inmem.x) { \ pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \ mismatch = true; \ } //check(hidden); check(btree); check(data); check(cached); check(reserved); check(nr_inodes); WARN_ON(mismatch); } void bch2_accounting_gc_free(struct bch_fs *c) { lockdep_assert_held(&c->mark_lock); struct bch_accounting_mem *acc = &c->accounting; bch2_accounting_free_counters(acc, true); acc->gc_running = false; } void bch2_fs_accounting_exit(struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting; bch2_accounting_free_counters(acc, false); darray_exit(&acc->k); }