// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_update.h" #include "btree_update_interior.h" #include "buckets.h" #include "debug.h" #include "extents.h" #include "extent_update.h" /* * This counts the number of iterators to the alloc & ec btrees we'll need * inserting/removing this extent: */ static unsigned bch2_bkey_nr_alloc_ptrs(struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; unsigned ret = 0, lru = 0; bkey_extent_entry_for_each(ptrs, entry) { switch (__extent_entry_type(entry)) { case BCH_EXTENT_ENTRY_ptr: /* Might also be updating LRU btree */ if (entry->ptr.cached) lru++; fallthrough; case BCH_EXTENT_ENTRY_stripe_ptr: ret++; } } /* * Updating keys in the alloc btree may also update keys in the * freespace or discard btrees: */ return lru + ret * 2; } static int count_iters_for_insert(struct btree_trans *trans, struct bkey_s_c k, unsigned offset, struct bpos *end, unsigned *nr_iters, unsigned max_iters) { int ret = 0, ret2 = 0; if (*nr_iters >= max_iters) { *end = bpos_min(*end, k.k->p); ret = 1; } switch (k.k->type) { case KEY_TYPE_extent: case KEY_TYPE_reflink_v: *nr_iters += bch2_bkey_nr_alloc_ptrs(k); if (*nr_iters >= max_iters) { *end = bpos_min(*end, k.k->p); ret = 1; } break; case KEY_TYPE_reflink_p: { struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); u64 idx = REFLINK_P_IDX(p.v); unsigned sectors = bpos_min(*end, p.k->p).offset - bkey_start_offset(p.k); struct btree_iter iter; struct bkey_s_c r_k; for_each_btree_key_norestart(trans, iter, BTREE_ID_reflink, POS(0, idx + offset), BTREE_ITER_slots, r_k, ret2) { if (bkey_ge(bkey_start_pos(r_k.k), POS(0, idx + sectors))) break; /* extent_update_to_keys(), for the reflink_v update */ *nr_iters += 1; *nr_iters += 1 + bch2_bkey_nr_alloc_ptrs(r_k); if (*nr_iters >= max_iters) { struct bpos pos = bkey_start_pos(k.k); pos.offset += min_t(u64, k.k->size, r_k.k->p.offset - idx); *end = bpos_min(*end, pos); ret = 1; break; } } bch2_trans_iter_exit(trans, &iter); break; } } return ret2 ?: ret; } #define EXTENT_ITERS_MAX (BTREE_ITER_INITIAL / 3) int bch2_extent_atomic_end(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *insert, struct bpos *end) { struct btree_iter copy; struct bkey_s_c k; unsigned nr_iters = 0; int ret; ret = bch2_btree_iter_traverse(iter); if (ret) return ret; *end = insert->k.p; /* extent_update_to_keys(): */ nr_iters += 1; ret = count_iters_for_insert(trans, bkey_i_to_s_c(insert), 0, end, &nr_iters, EXTENT_ITERS_MAX / 2); if (ret < 0) return ret; bch2_trans_copy_iter(©, iter); for_each_btree_key_max_continue_norestart(copy, insert->k.p, 0, k, ret) { unsigned offset = 0; if (bkey_gt(bkey_start_pos(&insert->k), bkey_start_pos(k.k))) offset = bkey_start_offset(&insert->k) - bkey_start_offset(k.k); /* extent_handle_overwrites(): */ switch (bch2_extent_overlap(&insert->k, k.k)) { case BCH_EXTENT_OVERLAP_ALL: case BCH_EXTENT_OVERLAP_FRONT: nr_iters += 1; break; case BCH_EXTENT_OVERLAP_BACK: case BCH_EXTENT_OVERLAP_MIDDLE: nr_iters += 2; break; } ret = count_iters_for_insert(trans, k, offset, end, &nr_iters, EXTENT_ITERS_MAX); if (ret) break; } bch2_trans_iter_exit(trans, ©); return ret < 0 ? ret : 0; } int bch2_extent_trim_atomic(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *k) { struct bpos end; int ret; ret = bch2_extent_atomic_end(trans, iter, k, &end); if (ret) return ret; bch2_cut_back(end, k); return 0; }