#include "bcachefs.h" #include "checksum.h" #include "error.h" #include "io.h" #include "super-io.h" #include "super.h" #include "vstructs.h" #include #include static int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *); static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, struct bch_replicas_cpu *); /* superblock fields (optional/variable size sections: */ const char * const bch2_sb_fields[] = { #define x(name, nr) #name, BCH_SB_FIELDS() #undef x NULL }; #define x(f, nr) \ static const char *bch2_sb_validate_##f(struct bch_sb *, struct bch_sb_field *); BCH_SB_FIELDS() #undef x struct bch_sb_field_ops { const char * (*validate)(struct bch_sb *, struct bch_sb_field *); }; static const struct bch_sb_field_ops bch2_sb_field_ops[] = { #define x(f, nr) \ [BCH_SB_FIELD_##f] = { \ .validate = bch2_sb_validate_##f, \ }, BCH_SB_FIELDS() #undef x }; static const char *bch2_sb_field_validate(struct bch_sb *sb, struct bch_sb_field *f) { unsigned type = le32_to_cpu(f->type); return type < BCH_SB_FIELD_NR ? bch2_sb_field_ops[type].validate(sb, f) : NULL; } struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb, enum bch_sb_field_type type) { struct bch_sb_field *f; /* XXX: need locking around superblock to access optional fields */ vstruct_for_each(sb, f) if (le32_to_cpu(f->type) == type) return f; return NULL; } static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb *sb, struct bch_sb_field *f, unsigned u64s) { unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0; if (!f) { f = vstruct_last(sb); memset(f, 0, sizeof(u64) * u64s); f->u64s = cpu_to_le32(u64s); f->type = 0; } else { void *src, *dst; src = vstruct_end(f); f->u64s = cpu_to_le32(u64s); dst = vstruct_end(f); memmove(dst, src, vstruct_end(sb) - src); if (dst > src) memset(src, 0, dst - src); } le32_add_cpu(&sb->u64s, u64s - old_u64s); return f; } /* Superblock realloc/free: */ void bch2_free_super(struct bch_sb_handle *sb) { if (sb->bio) bio_put(sb->bio); if (!IS_ERR_OR_NULL(sb->bdev)) blkdev_put(sb->bdev, sb->mode); free_pages((unsigned long) sb->sb, sb->page_order); memset(sb, 0, sizeof(*sb)); } static int __bch2_super_realloc(struct bch_sb_handle *sb, unsigned order) { struct bch_sb *new_sb; struct bio *bio; if (sb->page_order >= order && sb->sb) return 0; if (dynamic_fault("bcachefs:add:super_realloc")) return -ENOMEM; bio = bio_kmalloc(GFP_KERNEL, 1 << order); if (!bio) return -ENOMEM; if (sb->bio) bio_put(sb->bio); sb->bio = bio; new_sb = (void *) __get_free_pages(GFP_KERNEL, order); if (!new_sb) return -ENOMEM; if (sb->sb) memcpy(new_sb, sb->sb, PAGE_SIZE << sb->page_order); free_pages((unsigned long) sb->sb, sb->page_order); sb->sb = new_sb; sb->page_order = order; return 0; } static int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s) { u64 new_bytes = __vstruct_bytes(struct bch_sb, u64s); u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits; if (new_bytes > max_bytes) { char buf[BDEVNAME_SIZE]; pr_err("%s: superblock too big: want %llu but have %llu", bdevname(sb->bdev, buf), new_bytes, max_bytes); return -ENOSPC; } return __bch2_super_realloc(sb, get_order(new_bytes)); } static int bch2_fs_sb_realloc(struct bch_fs *c, unsigned u64s) { u64 bytes = __vstruct_bytes(struct bch_sb, u64s); struct bch_sb *sb; unsigned order = get_order(bytes); if (c->disk_sb && order <= c->disk_sb_order) return 0; sb = (void *) __get_free_pages(GFP_KERNEL|__GFP_ZERO, order); if (!sb) return -ENOMEM; if (c->disk_sb) memcpy(sb, c->disk_sb, PAGE_SIZE << c->disk_sb_order); free_pages((unsigned long) c->disk_sb, c->disk_sb_order); c->disk_sb = sb; c->disk_sb_order = order; return 0; } struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb, enum bch_sb_field_type type, unsigned u64s) { struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type); ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ssize_t d = -old_u64s + u64s; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) return NULL; f = __bch2_sb_field_resize(sb->sb, f, u64s); f->type = cpu_to_le32(type); return f; } struct bch_sb_field *bch2_fs_sb_field_resize(struct bch_fs *c, enum bch_sb_field_type type, unsigned u64s) { struct bch_sb_field *f = bch2_sb_field_get(c->disk_sb, type); ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ssize_t d = -old_u64s + u64s; struct bch_dev *ca; unsigned i; lockdep_assert_held(&c->sb_lock); if (bch2_fs_sb_realloc(c, le32_to_cpu(c->disk_sb->u64s) + d)) return NULL; /* XXX: we're not checking that offline device have enough space */ for_each_online_member(ca, c, i) { struct bch_sb_handle *sb = &ca->disk_sb; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) { percpu_ref_put(&ca->ref); return NULL; } } f = __bch2_sb_field_resize(c->disk_sb, f, u64s); f->type = cpu_to_le32(type); return f; } /* Superblock validate: */ static inline void __bch2_sb_layout_size_assert(void) { BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512); } static const char *validate_sb_layout(struct bch_sb_layout *layout) { u64 offset, prev_offset, max_sectors; unsigned i; if (uuid_le_cmp(layout->magic, BCACHE_MAGIC)) return "Not a bcachefs superblock layout"; if (layout->layout_type != 0) return "Invalid superblock layout type"; if (!layout->nr_superblocks) return "Invalid superblock layout: no superblocks"; if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) return "Invalid superblock layout: too many superblocks"; max_sectors = 1 << layout->sb_max_size_bits; prev_offset = le64_to_cpu(layout->sb_offset[0]); for (i = 1; i < layout->nr_superblocks; i++) { offset = le64_to_cpu(layout->sb_offset[i]); if (offset < prev_offset + max_sectors) return "Invalid superblock layout: superblocks overlap"; prev_offset = offset; } return NULL; } const char *bch2_sb_validate(struct bch_sb_handle *disk_sb) { struct bch_sb *sb = disk_sb->sb; struct bch_sb_field *f; struct bch_sb_field_members *mi; const char *err; u16 block_size; if (le64_to_cpu(sb->version) < BCH_SB_VERSION_MIN || le64_to_cpu(sb->version) > BCH_SB_VERSION_MAX) return"Unsupported superblock version"; if (le64_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_MAX) { SET_BCH_SB_ENCODED_EXTENT_MAX_BITS(sb, 7); SET_BCH_SB_POSIX_ACL(sb, 1); } block_size = le16_to_cpu(sb->block_size); if (!is_power_of_2(block_size) || block_size > PAGE_SECTORS) return "Bad block size"; if (bch2_is_zero(sb->user_uuid.b, sizeof(uuid_le))) return "Bad user UUID"; if (bch2_is_zero(sb->uuid.b, sizeof(uuid_le))) return "Bad internal UUID"; if (!sb->nr_devices || sb->nr_devices <= sb->dev_idx || sb->nr_devices > BCH_SB_MEMBERS_MAX) return "Bad cache device number in set"; if (!BCH_SB_META_REPLICAS_WANT(sb) || BCH_SB_META_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX) return "Invalid number of metadata replicas"; if (!BCH_SB_META_REPLICAS_REQ(sb) || BCH_SB_META_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX) return "Invalid number of metadata replicas"; if (!BCH_SB_DATA_REPLICAS_WANT(sb) || BCH_SB_DATA_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX) return "Invalid number of data replicas"; if (!BCH_SB_DATA_REPLICAS_REQ(sb) || BCH_SB_DATA_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX) return "Invalid number of data replicas"; if (BCH_SB_META_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR) return "Invalid metadata checksum type"; if (BCH_SB_DATA_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR) return "Invalid metadata checksum type"; if (BCH_SB_COMPRESSION_TYPE(sb) >= BCH_COMPRESSION_OPT_NR) return "Invalid compression type"; if (!BCH_SB_BTREE_NODE_SIZE(sb)) return "Btree node size not set"; if (!is_power_of_2(BCH_SB_BTREE_NODE_SIZE(sb))) return "Btree node size not a power of two"; if (BCH_SB_BTREE_NODE_SIZE(sb) > BTREE_NODE_SIZE_MAX) return "Btree node size too large"; if (BCH_SB_GC_RESERVE(sb) < 5) return "gc reserve percentage too small"; if (!sb->time_precision || le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) return "invalid time precision"; /* validate layout */ err = validate_sb_layout(&sb->layout); if (err) return err; vstruct_for_each(sb, f) { if (!f->u64s) return "Invalid superblock: invalid optional field"; if (vstruct_next(f) > vstruct_last(sb)) return "Invalid superblock: invalid optional field"; } /* members must be validated first: */ mi = bch2_sb_get_members(sb); if (!mi) return "Invalid superblock: member info area missing"; err = bch2_sb_field_validate(sb, &mi->field); if (err) return err; vstruct_for_each(sb, f) { if (le32_to_cpu(f->type) == BCH_SB_FIELD_members) continue; err = bch2_sb_field_validate(sb, f); if (err) return err; } if (le64_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_NONCE_V1 && bch2_sb_get_crypt(sb) && BCH_SB_INITIALIZED(sb)) return "Incompatible extent nonces"; sb->version = cpu_to_le64(BCH_SB_VERSION_MAX); return NULL; } /* device open: */ static const char *bch2_blkdev_open(const char *path, fmode_t mode, void *holder, struct block_device **ret) { struct block_device *bdev; *ret = NULL; bdev = blkdev_get_by_path(path, mode, holder); if (bdev == ERR_PTR(-EBUSY)) return "device busy"; if (IS_ERR(bdev)) return "failed to open device"; if (mode & FMODE_WRITE) bdev_get_queue(bdev)->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; *ret = bdev; return NULL; } static void bch2_sb_update(struct bch_fs *c) { struct bch_sb *src = c->disk_sb; struct bch_sb_field_members *mi = bch2_sb_get_members(src); struct bch_dev *ca; unsigned i; lockdep_assert_held(&c->sb_lock); c->sb.uuid = src->uuid; c->sb.user_uuid = src->user_uuid; c->sb.nr_devices = src->nr_devices; c->sb.clean = BCH_SB_CLEAN(src); c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src); c->sb.encoded_extent_max= 1 << BCH_SB_ENCODED_EXTENT_MAX_BITS(src); c->sb.time_base_lo = le64_to_cpu(src->time_base_lo); c->sb.time_base_hi = le32_to_cpu(src->time_base_hi); c->sb.time_precision = le32_to_cpu(src->time_precision); for_each_member_device(ca, c, i) ca->mi = bch2_mi_to_cpu(mi->members + i); } /* doesn't copy member info */ static void __copy_super(struct bch_sb *dst, struct bch_sb *src) { struct bch_sb_field *src_f, *dst_f; dst->version = src->version; dst->seq = src->seq; dst->uuid = src->uuid; dst->user_uuid = src->user_uuid; memcpy(dst->label, src->label, sizeof(dst->label)); dst->block_size = src->block_size; dst->nr_devices = src->nr_devices; dst->time_base_lo = src->time_base_lo; dst->time_base_hi = src->time_base_hi; dst->time_precision = src->time_precision; memcpy(dst->flags, src->flags, sizeof(dst->flags)); memcpy(dst->features, src->features, sizeof(dst->features)); memcpy(dst->compat, src->compat, sizeof(dst->compat)); vstruct_for_each(src, src_f) { if (src_f->type == BCH_SB_FIELD_journal) continue; dst_f = bch2_sb_field_get(dst, le32_to_cpu(src_f->type)); dst_f = __bch2_sb_field_resize(dst, dst_f, le32_to_cpu(src_f->u64s)); memcpy(dst_f, src_f, vstruct_bytes(src_f)); } } int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src) { struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(src); unsigned journal_u64s = journal_buckets ? le32_to_cpu(journal_buckets->field.u64s) : 0; int ret; lockdep_assert_held(&c->sb_lock); ret = bch2_fs_sb_realloc(c, le32_to_cpu(src->u64s) - journal_u64s); if (ret) return ret; __copy_super(c->disk_sb, src); ret = bch2_sb_replicas_to_cpu_replicas(c); if (ret) return ret; bch2_sb_update(c); return 0; } int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca) { struct bch_sb *src = c->disk_sb, *dst = ca->disk_sb.sb; struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(dst); unsigned journal_u64s = journal_buckets ? le32_to_cpu(journal_buckets->field.u64s) : 0; unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s; int ret; ret = bch2_sb_realloc(&ca->disk_sb, u64s); if (ret) return ret; __copy_super(dst, src); return 0; } /* read superblock: */ static const char *read_one_super(struct bch_sb_handle *sb, u64 offset) { struct bch_csum csum; size_t bytes; unsigned order; reread: bio_reset(sb->bio); sb->bio->bi_bdev = sb->bdev; sb->bio->bi_iter.bi_sector = offset; sb->bio->bi_iter.bi_size = PAGE_SIZE << sb->page_order; bio_set_op_attrs(sb->bio, REQ_OP_READ, REQ_SYNC|REQ_META); bch2_bio_map(sb->bio, sb->sb); if (submit_bio_wait(sb->bio)) return "IO error"; if (uuid_le_cmp(sb->sb->magic, BCACHE_MAGIC)) return "Not a bcachefs superblock"; if (le64_to_cpu(sb->sb->version) < BCH_SB_VERSION_MIN || le64_to_cpu(sb->sb->version) > BCH_SB_VERSION_MAX) return"Unsupported superblock version"; bytes = vstruct_bytes(sb->sb); if (bytes > 512 << sb->sb->layout.sb_max_size_bits) return "Bad superblock: too big"; order = get_order(bytes); if (order > sb->page_order) { if (__bch2_super_realloc(sb, order)) return "cannot allocate memory"; goto reread; } if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR) return "unknown csum type"; /* XXX: verify MACs */ csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb), null_nonce(), sb->sb); if (bch2_crc_cmp(csum, sb->sb->csum)) return "bad checksum reading superblock"; return NULL; } const char *bch2_read_super(const char *path, struct bch_opts opts, struct bch_sb_handle *ret) { u64 offset = opt_get(opts, sb); struct bch_sb_layout layout; const char *err; unsigned i; memset(ret, 0, sizeof(*ret)); ret->mode = FMODE_READ; if (!opt_get(opts, noexcl)) ret->mode |= FMODE_EXCL; if (!opt_get(opts, nochanges)) ret->mode |= FMODE_WRITE; err = bch2_blkdev_open(path, ret->mode, ret, &ret->bdev); if (err) return err; err = "cannot allocate memory"; if (__bch2_super_realloc(ret, 0)) goto err; err = "dynamic fault"; if (bch2_fs_init_fault("read_super")) goto err; err = read_one_super(ret, offset); if (!err) goto got_super; if (offset != BCH_SB_SECTOR) { pr_err("error reading superblock: %s", err); goto err; } pr_err("error reading default superblock: %s", err); /* * Error reading primary superblock - read location of backup * superblocks: */ bio_reset(ret->bio); ret->bio->bi_bdev = ret->bdev; ret->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR; ret->bio->bi_iter.bi_size = sizeof(struct bch_sb_layout); bio_set_op_attrs(ret->bio, REQ_OP_READ, REQ_SYNC|REQ_META); /* * use sb buffer to read layout, since sb buffer is page aligned but * layout won't be: */ bch2_bio_map(ret->bio, ret->sb); err = "IO error"; if (submit_bio_wait(ret->bio)) goto err; memcpy(&layout, ret->sb, sizeof(layout)); err = validate_sb_layout(&layout); if (err) goto err; for (i = 0; i < layout.nr_superblocks; i++) { u64 offset = le64_to_cpu(layout.sb_offset[i]); if (offset == BCH_SB_SECTOR) continue; err = read_one_super(ret, offset); if (!err) goto got_super; } goto err; got_super: pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u", le64_to_cpu(ret->sb->version), le64_to_cpu(ret->sb->flags[0]), le64_to_cpu(ret->sb->seq), le32_to_cpu(ret->sb->u64s)); err = "Superblock block size smaller than device block size"; if (le16_to_cpu(ret->sb->block_size) << 9 < bdev_logical_block_size(ret->bdev)) goto err; return NULL; err: bch2_free_super(ret); return err; } /* write superblock: */ static void write_super_endio(struct bio *bio) { struct bch_dev *ca = bio->bi_private; /* XXX: return errors directly */ if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write")) ca->sb_write_error = 1; closure_put(&ca->fs->sb_write); percpu_ref_put(&ca->io_ref); } static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx) { struct bch_sb *sb = ca->disk_sb.sb; struct bio *bio = ca->disk_sb.bio; sb->offset = sb->layout.sb_offset[idx]; SET_BCH_SB_CSUM_TYPE(sb, c->opts.metadata_checksum); sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb), null_nonce(), sb); bio_reset(bio); bio->bi_bdev = ca->disk_sb.bdev; bio->bi_iter.bi_sector = le64_to_cpu(sb->offset); bio->bi_iter.bi_size = roundup(vstruct_bytes(sb), bdev_logical_block_size(ca->disk_sb.bdev)); bio->bi_end_io = write_super_endio; bio->bi_private = ca; bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META); bch2_bio_map(bio, sb); this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_SB], bio_sectors(bio)); percpu_ref_get(&ca->io_ref); closure_bio_submit(bio, &c->sb_write); } void bch2_write_super(struct bch_fs *c) { struct closure *cl = &c->sb_write; struct bch_dev *ca; unsigned i, sb = 0, nr_wrote; const char *err; struct bch_devs_mask sb_written; bool wrote, can_mount_without_written, can_mount_with_written; lockdep_assert_held(&c->sb_lock); closure_init_stack(cl); memset(&sb_written, 0, sizeof(sb_written)); le64_add_cpu(&c->disk_sb->seq, 1); for_each_online_member(ca, c, i) bch2_sb_from_fs(c, ca); for_each_online_member(ca, c, i) { err = bch2_sb_validate(&ca->disk_sb); if (err) { bch2_fs_inconsistent(c, "sb invalid before write: %s", err); goto out; } } if (c->opts.nochanges || test_bit(BCH_FS_ERROR, &c->flags)) goto out; for_each_online_member(ca, c, i) { __set_bit(ca->dev_idx, sb_written.d); ca->sb_write_error = 0; } do { wrote = false; for_each_online_member(ca, c, i) if (sb < ca->disk_sb.sb->layout.nr_superblocks) { write_one_super(c, ca, sb); wrote = true; } closure_sync(cl); sb++; } while (wrote); for_each_online_member(ca, c, i) if (ca->sb_write_error) __clear_bit(ca->dev_idx, sb_written.d); nr_wrote = dev_mask_nr(&sb_written); can_mount_with_written = bch2_have_enough_devs(c, __bch2_replicas_status(c, sb_written), BCH_FORCE_IF_DEGRADED); for (i = 0; i < ARRAY_SIZE(sb_written.d); i++) sb_written.d[i] = ~sb_written.d[i]; can_mount_without_written = bch2_have_enough_devs(c, __bch2_replicas_status(c, sb_written), BCH_FORCE_IF_DEGRADED); /* * If we would be able to mount _without_ the devices we successfully * wrote superblocks to, we weren't able to write to enough devices: * * Exception: if we can mount without the successes because we haven't * written anything (new filesystem), we continue if we'd be able to * mount with the devices we did successfully write to: */ bch2_fs_fatal_err_on(!nr_wrote || (can_mount_without_written && !can_mount_with_written), c, "Unable to write superblock to sufficient devices"); out: /* Make new options visible after they're persistent: */ bch2_sb_update(c); } /* BCH_SB_FIELD_journal: */ static int u64_cmp(const void *_l, const void *_r) { u64 l = *((const u64 *) _l), r = *((const u64 *) _r); return l < r ? -1 : l > r ? 1 : 0; } static const char *bch2_sb_validate_journal(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_journal *journal = field_to_type(f, journal); struct bch_member *m = bch2_sb_get_members(sb)->members + sb->dev_idx; const char *err; unsigned nr; unsigned i; u64 *b; journal = bch2_sb_get_journal(sb); if (!journal) return NULL; nr = bch2_nr_journal_buckets(journal); if (!nr) return NULL; b = kmalloc_array(sizeof(u64), nr, GFP_KERNEL); if (!b) return "cannot allocate memory"; for (i = 0; i < nr; i++) b[i] = le64_to_cpu(journal->buckets[i]); sort(b, nr, sizeof(u64), u64_cmp, NULL); err = "journal bucket at sector 0"; if (!b[0]) goto err; err = "journal bucket before first bucket"; if (m && b[0] < le16_to_cpu(m->first_bucket)) goto err; err = "journal bucket past end of device"; if (m && b[nr - 1] >= le64_to_cpu(m->nbuckets)) goto err; err = "duplicate journal buckets"; for (i = 0; i + 1 < nr; i++) if (b[i] == b[i + 1]) goto err; err = NULL; err: kfree(b); return err; } /* BCH_SB_FIELD_members: */ static const char *bch2_sb_validate_members(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_members *mi = field_to_type(f, members); struct bch_member *m; if ((void *) (mi->members + sb->nr_devices) > vstruct_end(&mi->field)) return "Invalid superblock: bad member info"; for (m = mi->members; m < mi->members + sb->nr_devices; m++) { if (!bch2_member_exists(m)) continue; if (le64_to_cpu(m->nbuckets) > LONG_MAX) return "Too many buckets"; if (le64_to_cpu(m->nbuckets) - le16_to_cpu(m->first_bucket) < 1 << 10) return "Not enough buckets"; if (le16_to_cpu(m->bucket_size) < le16_to_cpu(sb->block_size)) return "bucket size smaller than block size"; if (le16_to_cpu(m->bucket_size) < BCH_SB_BTREE_NODE_SIZE(sb)) return "bucket size smaller than btree node size"; } if (le64_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_MAX) for (m = mi->members; m < mi->members + sb->nr_devices; m++) SET_BCH_MEMBER_DATA_ALLOWED(m, ~0); return NULL; } /* BCH_SB_FIELD_crypt: */ static const char *bch2_sb_validate_crypt(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); if (vstruct_bytes(&crypt->field) != sizeof(*crypt)) return "invalid field crypt: wrong size"; if (BCH_CRYPT_KDF_TYPE(crypt)) return "invalid field crypt: bad kdf type"; return NULL; } /* BCH_SB_FIELD_replicas: */ /* Replicas tracking - in memory: */ #define for_each_cpu_replicas_entry(_r, _i) \ for (_i = (_r)->entries; \ (void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size;\ _i = (void *) (_i) + (_r)->entry_size) static inline struct bch_replicas_cpu_entry * cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i) { return (void *) r->entries + r->entry_size * i; } static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) { eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL); } static inline bool replicas_test_dev(struct bch_replicas_cpu_entry *e, unsigned dev) { return (e->devs[dev >> 3] & (1 << (dev & 7))) != 0; } static inline void replicas_set_dev(struct bch_replicas_cpu_entry *e, unsigned dev) { e->devs[dev >> 3] |= 1 << (dev & 7); } static inline unsigned replicas_dev_slots(struct bch_replicas_cpu *r) { return (r->entry_size - offsetof(struct bch_replicas_cpu_entry, devs)) * 8; } int bch2_cpu_replicas_to_text(struct bch_replicas_cpu *r, char *buf, size_t size) { char *out = buf, *end = out + size; struct bch_replicas_cpu_entry *e; bool first = true; unsigned i; for_each_cpu_replicas_entry(r, e) { bool first_e = true; if (!first) out += scnprintf(out, end - out, " "); first = false; out += scnprintf(out, end - out, "%u: [", e->data_type); for (i = 0; i < replicas_dev_slots(r); i++) if (replicas_test_dev(e, i)) { if (!first_e) out += scnprintf(out, end - out, " "); first_e = false; out += scnprintf(out, end - out, "%u", i); } out += scnprintf(out, end - out, "]"); } return out - buf; } static inline unsigned bkey_to_replicas(struct bkey_s_c_extent e, enum bch_data_type data_type, struct bch_replicas_cpu_entry *r, unsigned *max_dev) { const struct bch_extent_ptr *ptr; unsigned nr = 0; BUG_ON(!data_type || data_type == BCH_DATA_SB || data_type >= BCH_DATA_NR); memset(r, 0, sizeof(*r)); r->data_type = data_type; *max_dev = 0; extent_for_each_ptr(e, ptr) if (!ptr->cached) { *max_dev = max_t(unsigned, *max_dev, ptr->dev); replicas_set_dev(r, ptr->dev); nr++; } return nr; } static inline void devlist_to_replicas(struct bch_devs_list devs, enum bch_data_type data_type, struct bch_replicas_cpu_entry *r, unsigned *max_dev) { unsigned i; BUG_ON(!data_type || data_type == BCH_DATA_SB || data_type >= BCH_DATA_NR); memset(r, 0, sizeof(*r)); r->data_type = data_type; *max_dev = 0; for (i = 0; i < devs.nr; i++) { *max_dev = max_t(unsigned, *max_dev, devs.devs[i]); replicas_set_dev(r, devs.devs[i]); } } static struct bch_replicas_cpu * cpu_replicas_add_entry(struct bch_replicas_cpu *old, struct bch_replicas_cpu_entry new_entry, unsigned max_dev) { struct bch_replicas_cpu *new; unsigned i, nr, entry_size; entry_size = offsetof(struct bch_replicas_cpu_entry, devs) + DIV_ROUND_UP(max_dev + 1, 8); entry_size = max(entry_size, old->entry_size); nr = old->nr + 1; new = kzalloc(sizeof(struct bch_replicas_cpu) + nr * entry_size, GFP_NOIO); if (!new) return NULL; new->nr = nr; new->entry_size = entry_size; for (i = 0; i < old->nr; i++) memcpy(cpu_replicas_entry(new, i), cpu_replicas_entry(old, i), min(new->entry_size, old->entry_size)); memcpy(cpu_replicas_entry(new, old->nr), &new_entry, new->entry_size); bch2_cpu_replicas_sort(new); return new; } static bool replicas_has_entry(struct bch_replicas_cpu *r, struct bch_replicas_cpu_entry search, unsigned max_dev) { return max_dev < replicas_dev_slots(r) && eytzinger0_find(r->entries, r->nr, r->entry_size, memcmp, &search) < r->nr; } noinline static int bch2_check_mark_super_slowpath(struct bch_fs *c, struct bch_replicas_cpu_entry new_entry, unsigned max_dev) { struct bch_replicas_cpu *old_gc, *new_gc = NULL, *old_r, *new_r = NULL; int ret = -ENOMEM; mutex_lock(&c->sb_lock); old_gc = rcu_dereference_protected(c->replicas_gc, lockdep_is_held(&c->sb_lock)); if (old_gc && !replicas_has_entry(old_gc, new_entry, max_dev)) { new_gc = cpu_replicas_add_entry(old_gc, new_entry, max_dev); if (!new_gc) goto err; } old_r = rcu_dereference_protected(c->replicas, lockdep_is_held(&c->sb_lock)); if (!replicas_has_entry(old_r, new_entry, max_dev)) { new_r = cpu_replicas_add_entry(old_r, new_entry, max_dev); if (!new_r) goto err; ret = bch2_cpu_replicas_to_sb_replicas(c, new_r); if (ret) goto err; } /* allocations done, now commit: */ if (new_gc) { rcu_assign_pointer(c->replicas_gc, new_gc); kfree_rcu(old_gc, rcu); } if (new_r) { rcu_assign_pointer(c->replicas, new_r); kfree_rcu(old_r, rcu); bch2_write_super(c); } mutex_unlock(&c->sb_lock); return 0; err: mutex_unlock(&c->sb_lock); if (new_gc) kfree(new_gc); if (new_r) kfree(new_r); return ret; } static inline int __bch2_check_mark_super(struct bch_fs *c, struct bch_replicas_cpu_entry search, unsigned max_dev) { struct bch_replicas_cpu *r, *gc_r; bool marked; rcu_read_lock(); r = rcu_dereference(c->replicas); gc_r = rcu_dereference(c->replicas_gc); marked = replicas_has_entry(r, search, max_dev) && (!likely(gc_r) || replicas_has_entry(gc_r, search, max_dev)); rcu_read_unlock(); return likely(marked) ? 0 : bch2_check_mark_super_slowpath(c, search, max_dev); } int bch2_check_mark_super(struct bch_fs *c, struct bkey_s_c_extent e, enum bch_data_type data_type) { struct bch_replicas_cpu_entry search; unsigned max_dev; if (!bkey_to_replicas(e, data_type, &search, &max_dev)) return 0; return __bch2_check_mark_super(c, search, max_dev); } int bch2_check_mark_super_devlist(struct bch_fs *c, struct bch_devs_list *devs, enum bch_data_type data_type) { struct bch_replicas_cpu_entry search; unsigned max_dev; if (!devs->nr) return 0; devlist_to_replicas(*devs, data_type, &search, &max_dev); return __bch2_check_mark_super(c, search, max_dev); } int bch2_replicas_gc_end(struct bch_fs *c, int err) { struct bch_replicas_cpu *new_r, *old_r; int ret = 0; lockdep_assert_held(&c->replicas_gc_lock); mutex_lock(&c->sb_lock); new_r = rcu_dereference_protected(c->replicas_gc, lockdep_is_held(&c->sb_lock)); if (err) { rcu_assign_pointer(c->replicas_gc, NULL); kfree_rcu(new_r, rcu); goto err; } if (bch2_cpu_replicas_to_sb_replicas(c, new_r)) { ret = -ENOSPC; goto err; } old_r = rcu_dereference_protected(c->replicas, lockdep_is_held(&c->sb_lock)); rcu_assign_pointer(c->replicas, new_r); rcu_assign_pointer(c->replicas_gc, NULL); kfree_rcu(old_r, rcu); bch2_write_super(c); err: mutex_unlock(&c->sb_lock); return ret; } int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask) { struct bch_replicas_cpu *dst, *src; struct bch_replicas_cpu_entry *e; lockdep_assert_held(&c->replicas_gc_lock); mutex_lock(&c->sb_lock); BUG_ON(c->replicas_gc); src = rcu_dereference_protected(c->replicas, lockdep_is_held(&c->sb_lock)); dst = kzalloc(sizeof(struct bch_replicas_cpu) + src->nr * src->entry_size, GFP_NOIO); if (!dst) { mutex_unlock(&c->sb_lock); return -ENOMEM; } dst->nr = 0; dst->entry_size = src->entry_size; for_each_cpu_replicas_entry(src, e) if (!((1 << e->data_type) & typemask)) memcpy(cpu_replicas_entry(dst, dst->nr++), e, dst->entry_size); bch2_cpu_replicas_sort(dst); rcu_assign_pointer(c->replicas_gc, dst); mutex_unlock(&c->sb_lock); return 0; } /* Replicas tracking - superblock: */ static void bch2_sb_replicas_nr_entries(struct bch_sb_field_replicas *r, unsigned *nr, unsigned *bytes, unsigned *max_dev) { struct bch_replicas_entry *i; unsigned j; *nr = 0; *bytes = sizeof(*r); *max_dev = 0; if (!r) return; for_each_replicas_entry(r, i) { for (j = 0; j < i->nr; j++) *max_dev = max_t(unsigned, *max_dev, i->devs[j]); (*nr)++; } *bytes = (void *) i - (void *) r; } static struct bch_replicas_cpu * __bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r) { struct bch_replicas_cpu *cpu_r; unsigned i, nr, bytes, max_dev, entry_size; bch2_sb_replicas_nr_entries(sb_r, &nr, &bytes, &max_dev); entry_size = offsetof(struct bch_replicas_cpu_entry, devs) + DIV_ROUND_UP(max_dev + 1, 8); cpu_r = kzalloc(sizeof(struct bch_replicas_cpu) + nr * entry_size, GFP_NOIO); if (!cpu_r) return NULL; cpu_r->nr = nr; cpu_r->entry_size = entry_size; if (nr) { struct bch_replicas_cpu_entry *dst = cpu_replicas_entry(cpu_r, 0); struct bch_replicas_entry *src = sb_r->entries; while (dst < cpu_replicas_entry(cpu_r, nr)) { dst->data_type = src->data_type; for (i = 0; i < src->nr; i++) replicas_set_dev(dst, src->devs[i]); src = replicas_entry_next(src); dst = (void *) dst + entry_size; } } bch2_cpu_replicas_sort(cpu_r); return cpu_r; } static int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) { struct bch_sb_field_replicas *sb_r; struct bch_replicas_cpu *cpu_r, *old_r; sb_r = bch2_sb_get_replicas(c->disk_sb); cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_r); if (!cpu_r) return -ENOMEM; old_r = rcu_dereference_check(c->replicas, lockdep_is_held(&c->sb_lock)); rcu_assign_pointer(c->replicas, cpu_r); if (old_r) kfree_rcu(old_r, rcu); return 0; } static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas *sb_r; struct bch_replicas_entry *sb_e; struct bch_replicas_cpu_entry *e; size_t i, bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, e) { bytes += sizeof(struct bch_replicas_entry); for (i = 0; i < r->entry_size - 1; i++) bytes += hweight8(e->devs[i]); } sb_r = bch2_fs_sb_resize_replicas(c, DIV_ROUND_UP(sizeof(*sb_r) + bytes, sizeof(u64))); if (!sb_r) return -ENOSPC; memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); sb_e = sb_r->entries; for_each_cpu_replicas_entry(r, e) { sb_e->data_type = e->data_type; for (i = 0; i < replicas_dev_slots(r); i++) if (replicas_test_dev(e, i)) sb_e->devs[sb_e->nr++] = i; sb_e = replicas_entry_next(sb_e); BUG_ON((void *) sb_e > vstruct_end(&sb_r->field)); } return 0; } static const char *bch2_sb_validate_replicas(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); struct bch_sb_field_members *mi = bch2_sb_get_members(sb); struct bch_replicas_cpu *cpu_r = NULL; struct bch_replicas_entry *e; const char *err; unsigned i; for_each_replicas_entry(sb_r, e) { err = "invalid replicas entry: invalid data type"; if (e->data_type >= BCH_DATA_NR) goto err; err = "invalid replicas entry: no devices"; if (!e->nr) goto err; err = "invalid replicas entry: too many devices"; if (e->nr >= BCH_REPLICAS_MAX) goto err; err = "invalid replicas entry: invalid device"; for (i = 0; i < e->nr; i++) if (!bch2_dev_exists(sb, mi, e->devs[i])) goto err; } err = "cannot allocate memory"; cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_r); if (!cpu_r) goto err; sort_cmp_size(cpu_r->entries, cpu_r->nr, cpu_r->entry_size, memcmp, NULL); for (i = 0; i + 1 < cpu_r->nr; i++) { struct bch_replicas_cpu_entry *l = cpu_replicas_entry(cpu_r, i); struct bch_replicas_cpu_entry *r = cpu_replicas_entry(cpu_r, i + 1); BUG_ON(memcmp(l, r, cpu_r->entry_size) > 0); err = "duplicate replicas entry"; if (!memcmp(l, r, cpu_r->entry_size)) goto err; } err = NULL; err: kfree(cpu_r); return err; } int bch2_sb_replicas_to_text(struct bch_sb_field_replicas *r, char *buf, size_t size) { char *out = buf, *end = out + size; struct bch_replicas_entry *e; bool first = true; unsigned i; if (!r) { out += scnprintf(out, end - out, "(no replicas section found)"); return out - buf; } for_each_replicas_entry(r, e) { if (!first) out += scnprintf(out, end - out, " "); first = false; out += scnprintf(out, end - out, "%u: [", e->data_type); for (i = 0; i < e->nr; i++) out += scnprintf(out, end - out, i ? " %u" : "%u", e->devs[i]); out += scnprintf(out, end - out, "]"); } return out - buf; } /* Query replicas: */ static bool __bch2_sb_has_replicas(struct bch_fs *c, struct bch_replicas_cpu_entry search, unsigned max_dev) { bool ret; rcu_read_lock(); ret = replicas_has_entry(rcu_dereference(c->replicas), search, max_dev); rcu_read_unlock(); return ret; } bool bch2_sb_has_replicas(struct bch_fs *c, struct bkey_s_c_extent e, enum bch_data_type data_type) { struct bch_replicas_cpu_entry search; unsigned max_dev; if (!bkey_to_replicas(e, data_type, &search, &max_dev)) return true; return __bch2_sb_has_replicas(c, search, max_dev); } bool bch2_sb_has_replicas_devlist(struct bch_fs *c, struct bch_devs_list *devs, enum bch_data_type data_type) { struct bch_replicas_cpu_entry search; unsigned max_dev; if (!devs->nr) return true; devlist_to_replicas(*devs, data_type, &search, &max_dev); return __bch2_sb_has_replicas(c, search, max_dev); } struct replicas_status __bch2_replicas_status(struct bch_fs *c, struct bch_devs_mask online_devs) { struct bch_sb_field_members *mi; struct bch_replicas_cpu_entry *e; struct bch_replicas_cpu *r; unsigned i, dev, dev_slots, nr_online, nr_offline; struct replicas_status ret; memset(&ret, 0, sizeof(ret)); for (i = 0; i < ARRAY_SIZE(ret.replicas); i++) ret.replicas[i].nr_online = UINT_MAX; mi = bch2_sb_get_members(c->disk_sb); rcu_read_lock(); r = rcu_dereference(c->replicas); dev_slots = replicas_dev_slots(r); for_each_cpu_replicas_entry(r, e) { if (e->data_type >= ARRAY_SIZE(ret.replicas)) panic("e %p data_type %u\n", e, e->data_type); nr_online = nr_offline = 0; for (dev = 0; dev < dev_slots; dev++) { if (!replicas_test_dev(e, dev)) continue; BUG_ON(!bch2_dev_exists(c->disk_sb, mi, dev)); if (test_bit(dev, online_devs.d)) nr_online++; else nr_offline++; } ret.replicas[e->data_type].nr_online = min(ret.replicas[e->data_type].nr_online, nr_online); ret.replicas[e->data_type].nr_offline = max(ret.replicas[e->data_type].nr_offline, nr_offline); } rcu_read_unlock(); return ret; } struct replicas_status bch2_replicas_status(struct bch_fs *c) { return __bch2_replicas_status(c, bch2_online_devs(c)); } bool bch2_have_enough_devs(struct bch_fs *c, struct replicas_status s, unsigned flags) { if ((s.replicas[BCH_DATA_JOURNAL].nr_offline || s.replicas[BCH_DATA_BTREE].nr_offline) && !(flags & BCH_FORCE_IF_METADATA_DEGRADED)) return false; if ((!s.replicas[BCH_DATA_JOURNAL].nr_online || !s.replicas[BCH_DATA_BTREE].nr_online) && !(flags & BCH_FORCE_IF_METADATA_LOST)) return false; if (s.replicas[BCH_DATA_USER].nr_offline && !(flags & BCH_FORCE_IF_DATA_DEGRADED)) return false; if (!s.replicas[BCH_DATA_USER].nr_online && !(flags & BCH_FORCE_IF_DATA_LOST)) return false; return true; } unsigned bch2_replicas_online(struct bch_fs *c, bool meta) { struct replicas_status s = bch2_replicas_status(c); return meta ? min(s.replicas[BCH_DATA_JOURNAL].nr_online, s.replicas[BCH_DATA_BTREE].nr_online) : s.replicas[BCH_DATA_USER].nr_online; } unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) { struct bch_replicas_cpu_entry *e; struct bch_replicas_cpu *r; unsigned ret = 0; rcu_read_lock(); r = rcu_dereference(c->replicas); if (ca->dev_idx >= replicas_dev_slots(r)) goto out; for_each_cpu_replicas_entry(r, e) if (replicas_test_dev(e, ca->dev_idx)) { ret |= 1 << e->data_type; break; } out: rcu_read_unlock(); return ret; }