// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Kent Overstreet * Copyright (C) 2014 Datera Inc. */ #include "bcachefs.h" #include "alloc/accounting.h" #include "alloc/background.h" #include "alloc/backpointers.h" #include "alloc/buckets.h" #include "alloc/foreground.h" #include "alloc/replicas.h" #include "btree/bkey_methods.h" #include "btree/bkey_buf.h" #include "btree/check.h" #include "btree/key_cache.h" #include "btree/locking.h" #include "btree/node_scan.h" #include "btree/interior.h" #include "btree/journal_overlay.h" #include "btree/read.h" #include "data/ec.h" #include "data/extents.h" #include "data/keylist.h" #include "data/move.h" #include "data/reflink.h" #include "init/error.h" #include "init/progress.h" #include "init/passes.h" #include "init/recovery.h" #include "journal/journal.h" #include "sb/io.h" #include "util/enumerated_ref.h" #include #include #include #include #include #include #include static const char * const bch2_gc_phase_strs[] = { #define x(n) #n, GC_PHASES() #undef x NULL }; void bch2_gc_pos_to_text(struct printbuf *out, struct gc_pos *p) { prt_str(out, bch2_gc_phase_strs[p->phase]); prt_char(out, ' '); bch2_btree_id_level_to_text(out, p->btree, p->level); prt_char(out, ' '); bch2_bpos_to_text(out, p->pos); } static struct bkey_s unsafe_bkey_s_c_to_s(struct bkey_s_c k) { return (struct bkey_s) {{{ (struct bkey *) k.k, (struct bch_val *) k.v }}}; } static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { guard(preempt)(); write_seqcount_begin(&c->gc_pos_lock); c->gc_pos = new_pos; write_seqcount_end(&c->gc_pos_lock); } static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) < 0); __gc_pos_set(c, new_pos); } static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst) { switch (b->key.k.type) { case KEY_TYPE_btree_ptr: { struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key); dst->k.p = src->k.p; dst->v.mem_ptr = 0; dst->v.seq = b->data->keys.seq; dst->v.sectors_written = 0; dst->v.flags = 0; dst->v.min_key = b->data->min_key; set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k)); memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k)); break; } case KEY_TYPE_btree_ptr_v2: bkey_copy(&dst->k_i, &b->key); break; default: BUG(); } } static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min) { struct bkey_i_btree_ptr_v2 *new; int ret; if (c->opts.verbose) { CLASS(printbuf, buf)(); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, " -> "); bch2_bpos_to_text(&buf, new_min); bch_info(c, "%s(): %s", __func__, buf.buf); } new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); if (!new) return bch_err_throw(c, ENOMEM_gc_repair_key); btree_ptr_to_v2(b, new); b->data->min_key = new_min; new->v.min_key = new_min; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); bkey_copy(&b->key, &new->k_i); return 0; } static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max) { struct bkey_i_btree_ptr_v2 *new; if (c->opts.verbose) { CLASS(printbuf, buf)(); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, " -> "); bch2_bpos_to_text(&buf, new_max); bch_info(c, "%s(): %s", __func__, buf.buf); } try(bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p)); new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); if (!new) return bch_err_throw(c, ENOMEM_gc_repair_key); btree_ptr_to_v2(b, new); b->data->max_key = new_max; new->k.p = new_max; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); int ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); guard(mutex)(&c->btree_cache.lock); __bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, &new->k_i); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); return 0; } static int btree_check_node_boundaries(struct btree_trans *trans, struct btree *b, struct btree *prev, struct btree *cur) { struct bch_fs *c = trans->c; struct bpos expected_start = !prev ? b->data->min_key : bpos_successor(prev->key.k.p); CLASS(printbuf, buf)(); int ret = 0; BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, b->data->min_key)); if (bpos_eq(expected_start, cur->data->min_key)) return 0; prt_printf(&buf, " at "); bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level); prt_printf(&buf, ":\nparent: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); if (prev) { prt_printf(&buf, "\nprev: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&prev->key)); } prt_str(&buf, "\nnext: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&cur->key)); if (bpos_lt(expected_start, cur->data->min_key)) { /* gap */ size_t nodes_found = 0; if (b->c.level == 1 && btree_id_recovers_from_scan(b->c.btree_id)) { try(bch2_get_scanned_nodes(c, b->c.btree_id, 0, expected_start, bpos_predecessor(cur->data->min_key), &buf, &nodes_found)); if (!nodes_found) prt_printf(&buf, "btree node scan found no nodes this range\n"); } if (mustfix_fsck_err(trans, btree_node_topology_gap_between_nodes, "gap between btree nodes%s", buf.buf)) { if (nodes_found) return bch_err_throw(c, topology_repair_did_fill_from_scan); else return set_node_min(c, cur, expected_start); } } else { /* overlap */ if (prev && BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) { /* cur overwrites prev */ if (bpos_ge(prev->data->min_key, cur->data->min_key)) { /* fully? */ if (mustfix_fsck_err(trans, btree_node_topology_overwritten_by_next_node, "btree node overwritten by next node%s", buf.buf)) return bch_err_throw(c, topology_repair_drop_prev_node); } else { if (mustfix_fsck_err(trans, btree_node_topology_bad_max_key, "btree node with incorrect max_key%s", buf.buf)) return set_node_max(c, prev, bpos_predecessor(cur->data->min_key)); } } else { if (bpos_ge(expected_start, cur->data->max_key)) { /* fully? */ if (mustfix_fsck_err(trans, btree_node_topology_overwritten_by_prev_node, "btree node overwritten by prev node%s", buf.buf)) return bch_err_throw(c, topology_repair_drop_this_node); } else { if (mustfix_fsck_err(trans, btree_node_topology_bad_min_key, "btree node with incorrect min_key%s", buf.buf)) return set_node_min(c, cur, expected_start); } } } fsck_err: return ret; } static int btree_check_root_boundaries(struct btree_trans *trans, struct btree *b) { struct bch_fs *c = trans->c; int ret = 0; BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, b->data->min_key)); CLASS(printbuf, buf)(); prt_str(&buf, " at "); bch2_btree_pos_to_text(&buf, c, b); if (mustfix_fsck_err_on(!bpos_eq(b->data->min_key, POS_MIN), trans, btree_node_topology_bad_root_min_key, "btree root with incorrect min_key%s", buf.buf)) try(set_node_min(c, b, POS_MIN)); if (mustfix_fsck_err_on(!bpos_eq(b->data->max_key, SPOS_MAX), trans, btree_node_topology_bad_root_max_key, "btree root with incorrect min_key%s", buf.buf)) try(set_node_max(c, b, SPOS_MAX)); fsck_err: return ret; } static int btree_repair_node_end(struct btree_trans *trans, struct btree *b, struct btree *child) { struct bch_fs *c = trans->c; int ret = 0; if (bpos_eq(child->key.k.p, b->key.k.p)) return 0; CLASS(printbuf, buf)(); prt_printf(&buf, "\nat: "); bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level); prt_printf(&buf, "\nparent: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, "\nchild: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&child->key)); size_t nodes_found = 0; if (b->c.level == 1) try(bch2_get_scanned_nodes(c, b->c.btree_id, 0, bpos_successor(child->key.k.p), b->key.k.p, &buf, &nodes_found)); if (mustfix_fsck_err(trans, btree_node_topology_bad_max_key, "btree node with incorrect max_key%s", buf.buf)) { if (nodes_found) return bch_err_throw(c, topology_repair_did_fill_from_scan); else return set_node_max(c, child, b->key.k.p); } fsck_err: return ret; } static int bch2_btree_repair_topology_recurse(struct btree_trans *trans, struct btree *b) { struct bch_fs *c = trans->c; struct btree_and_journal_iter iter; struct bkey_s_c k; struct btree *prev = NULL, *cur = NULL; bool have_child, new_pass = false; CLASS(printbuf, buf)(); int ret = 0; if (!b->c.level) return 0; struct bkey_buf prev_k __cleanup(bch2_bkey_buf_exit); struct bkey_buf cur_k __cleanup(bch2_bkey_buf_exit); bch2_bkey_buf_init(&prev_k); bch2_bkey_buf_init(&cur_k); again: cur = prev = NULL; have_child = new_pass = false; bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); iter.prefetch = true; while ((k = bch2_btree_and_journal_iter_peek(c, &iter)).k) { BUG_ON(bpos_lt(k.k->p, b->data->min_key)); BUG_ON(bpos_gt(k.k->p, b->data->max_key)); bch2_btree_and_journal_iter_advance(&iter); bch2_bkey_buf_reassemble(&cur_k, k); cur = bch2_btree_node_get_noiter(trans, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); printbuf_reset(&buf); bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level - 1); prt_char(&buf, ' '); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur_k.k)); if (bch2_err_matches(ret, EIO)) { bch2_btree_node_evict(trans, cur_k.k); cur = NULL; ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); if (ret) break; continue; } bch_err_msg(c, ret, "getting btree node"); if (ret) break; if (bch2_btree_node_is_stale(c, cur)) { bch_info(c, "btree node older than nodes found by scanning\n %s", buf.buf); six_unlock_read(&cur->c.lock); bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); cur = NULL; if (ret) break; continue; } ret = lockrestart_do(trans, btree_check_node_boundaries(trans, b, prev, cur)); if (ret && !bch2_err_matches(ret, BCH_ERR_topology_repair)) goto err; if (bch2_err_matches(ret, BCH_ERR_topology_repair_did_fill_from_scan)) { new_pass = true; ret = 0; } if (bch2_err_matches(ret, BCH_ERR_topology_repair_drop_this_node)) { six_unlock_read(&cur->c.lock); bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); cur = NULL; if (ret) break; continue; } if (prev) six_unlock_read(&prev->c.lock); prev = NULL; if (bch2_err_matches(ret, BCH_ERR_topology_repair_drop_prev_node)) { bch_info(c, "dropped prev node"); bch2_btree_node_evict(trans, prev_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, prev_k.k->k.p); if (ret) break; bch2_btree_and_journal_iter_exit(&iter); goto again; } else if (ret) break; prev = cur; cur = NULL; bch2_bkey_buf_copy(&prev_k, cur_k.k); } if (!ret && !IS_ERR_OR_NULL(prev)) { BUG_ON(cur); ret = lockrestart_do(trans, btree_repair_node_end(trans, b, prev)); if (bch2_err_matches(ret, BCH_ERR_topology_repair_did_fill_from_scan)) { new_pass = true; ret = 0; } } if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); prev = NULL; if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); cur = NULL; if (ret) goto err; bch2_btree_and_journal_iter_exit(&iter); if (new_pass) goto again; bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); iter.prefetch = true; while ((k = bch2_btree_and_journal_iter_peek(c, &iter)).k) { bch2_bkey_buf_reassemble(&cur_k, k); bch2_btree_and_journal_iter_advance(&iter); cur = bch2_btree_node_get_noiter(trans, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); bch_err_msg(c, ret, "getting btree node"); if (ret) goto err; ret = bch2_btree_repair_topology_recurse(trans, cur); six_unlock_read(&cur->c.lock); cur = NULL; if (bch2_err_matches(ret, BCH_ERR_topology_repair_drop_this_node)) { bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); new_pass = true; } if (ret) goto err; have_child = true; } printbuf_reset(&buf); bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level); prt_newline(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); /* * XXX: we're not passing the trans object here because we're not set up * to handle a transaction restart - this code needs to be rewritten * when we start doing online topology repair */ bch2_trans_unlock_long(trans); if (mustfix_fsck_err_on(!have_child, c, btree_node_topology_interior_node_empty, "empty interior btree node at %s", buf.buf)) ret = bch_err_throw(c, topology_repair_drop_this_node); err: fsck_err: if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); bch2_btree_and_journal_iter_exit(&iter); if (!ret && new_pass) goto again; BUG_ON(!ret && bch2_btree_node_check_topology(trans, b)); if (!bch2_err_matches(ret, BCH_ERR_topology_repair)) bch_err_fn(c, ret); return ret; } static int bch2_topology_check_root(struct btree_trans *trans, enum btree_id btree, bool *reconstructed_root) { struct bch_fs *c = trans->c; struct btree_root *r = bch2_btree_id_root(c, btree); if (!r->error) return 0; CLASS(printbuf, buf)(); bch2_log_msg_start(c, &buf); prt_printf(&buf, "btree root "); bch2_btree_id_to_text(&buf, btree); prt_printf(&buf, " unreadable: %s\n", bch2_err_str(r->error)); int ret = 0; bool print = true; if (!btree_id_recovers_from_scan(btree)) { r->alive = false; r->error = 0; bch2_btree_root_alloc_fake_trans(trans, btree, 0); *reconstructed_root = true; ret = bch2_btree_lost_data(c, &buf, btree); } else { ret = bch2_btree_has_scanned_nodes(c, btree, &buf); if (ret < 0) { /* * just log our message, we'll be rewinding to run * btree node scan */ } else if (!ret) { print = false; __fsck_err(trans, FSCK_CAN_FIX|(btree_id_can_reconstruct(btree) ? FSCK_AUTOFIX : 0), btree_root_unreadable_and_scan_found_nothing, "%sbtree node scan found no nodes, continue?", buf.buf); r->alive = false; r->error = 0; bch2_btree_root_alloc_fake_trans(trans, btree, 0); *reconstructed_root = true; } else { r->alive = false; r->error = 0; bch2_btree_root_alloc_fake_trans(trans, btree, 1); *reconstructed_root = true; bch2_shoot_down_journal_keys(c, btree, 1, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); size_t nodes_found = 0; try(bch2_get_scanned_nodes(c, btree, 0, POS_MIN, SPOS_MAX, &buf, &nodes_found)); } } if (print) bch2_print_str(c, KERN_NOTICE, buf.buf); fsck_err: bch_err_fn(c, ret); return ret; } int bch2_check_topology(struct bch_fs *c) { CLASS(btree_trans, trans)(c); int ret = 0; bch2_trans_srcu_unlock(trans); for (unsigned i = 0; i < btree_id_nr_alive(c) && !ret; i++) { bool reconstructed_root = false; recover: ret = lockrestart_do(trans, bch2_topology_check_root(trans, i, &reconstructed_root)); if (ret) break; struct btree_root *r = bch2_btree_id_root(c, i); struct btree *b = r->b; btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ret = btree_check_root_boundaries(trans, b) ?: bch2_btree_repair_topology_recurse(trans, b); six_unlock_read(&b->c.lock); if (bch2_err_matches(ret, BCH_ERR_topology_repair_drop_this_node)) { scoped_guard(mutex, &c->btree_cache.lock) bch2_btree_node_hash_remove(&c->btree_cache, b); r->b = NULL; if (!reconstructed_root) { r->error = -EIO; goto recover; } CLASS(printbuf, buf)(); bch2_btree_id_to_text(&buf, i); bch_err(c, "empty btree root %s", buf.buf); bch2_btree_root_alloc_fake_trans(trans, i, 0); r->alive = false; ret = 0; } } return ret; } /* marking of btree keys/nodes: */ static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct btree **prev, struct btree_iter *iter, struct bkey_s_c k, bool initial) { struct bch_fs *c = trans->c; if (iter) { struct btree_path *path = btree_iter_path(trans, iter); struct btree *b = path_l(path)->b; if (*prev != b) try(bch2_btree_node_check_topology(trans, b)); *prev = b; } struct bkey deleted = KEY(0, 0, 0); struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL }; CLASS(printbuf, buf)(); int ret = 0; deleted.p = k.k->p; if (initial) { BUG_ON(static_branch_unlikely(&bch2_journal_seq_verify) && k.k->bversion.lo > atomic64_read(&c->journal.seq)); if (fsck_err_on(btree_id != BTREE_ID_accounting && k.k->bversion.lo > atomic64_read(&c->key_version), trans, bkey_version_in_future, "key version number higher than recorded %llu\n%s", atomic64_read(&c->key_version), (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) atomic64_set(&c->key_version, k.k->bversion.lo); } if (mustfix_fsck_err_on(level && !bch2_dev_btree_bitmap_marked_nogc(c, k), trans, btree_bitmap_not_marked, "btree ptr not marked in member info btree allocated bitmap\n%s", (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, k), buf.buf))) bch2_dev_btree_bitmap_mark(c, k); /* * We require a commit before key_trigger() because * key_trigger(BTREE_TRIGGER_GC) is not idempotant; we'll calculate the * wrong result if we run it multiple times. */ unsigned flags = !iter ? BTREE_TRIGGER_is_root : 0; try(bch2_key_trigger(trans, btree_id, level, old, unsafe_bkey_s_c_to_s(k), BTREE_TRIGGER_check_repair|flags)); if (bch2_trans_has_updates(trans)) { CLASS(disk_reservation, res)(c); return bch2_trans_commit(trans, &res.r, NULL, BCH_TRANS_COMMIT_no_enospc) ?: -BCH_ERR_transaction_restart_nested; } try(bch2_key_trigger(trans, btree_id, level, old, unsafe_bkey_s_c_to_s(k), BTREE_TRIGGER_gc|BTREE_TRIGGER_insert|flags)); fsck_err: return ret; } static int bch2_gc_btree_root(struct btree_trans *trans, enum btree_id btree, bool initial) { struct bch_fs *c = trans->c; CLASS(btree_node_iter, iter)(trans, btree, POS_MIN, 0, bch2_btree_id_root(c, btree)->b->c.level, 0); struct btree *b = errptr_try(bch2_btree_iter_peek_node(&iter)); if (b != btree_node_root(c, b)) return btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_root_race); gc_pos_set(c, gc_pos_btree(btree, b->c.level + 1, SPOS_MAX)); struct bkey_s_c k = bkey_i_to_s_c(&b->key); return bch2_gc_mark_key(trans, btree, b->c.level + 1, NULL, NULL, k, initial); } static int bch2_gc_btree(struct btree_trans *trans, struct progress_indicator *progress, enum btree_id btree, unsigned target_depth, bool initial) { for (unsigned level = target_depth; level < BTREE_MAX_DEPTH; level++) { struct btree *prev = NULL; CLASS(btree_node_iter, iter)(trans, btree, POS_MIN, 0, level, BTREE_ITER_prefetch); try(for_each_btree_key_continue(trans, iter, 0, k, ({ gc_pos_set(trans->c, gc_pos_btree(btree, level, k.k->p)); bch2_progress_update_iter(trans, progress, &iter, "check_allocations") ?: bch2_gc_mark_key(trans, btree, level, &prev, &iter, k, initial); }))); } return lockrestart_do(trans, bch2_gc_btree_root(trans, btree, initial)); } static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) { return cmp_int(gc_btree_order(l), gc_btree_order(r)); } static int bch2_gc_btrees(struct bch_fs *c) { CLASS(btree_trans, trans)(c); CLASS(printbuf, buf)(); int ret = 0; struct progress_indicator progress; bch2_progress_init_inner(&progress, c, ~0ULL, ~0ULL); enum btree_id ids[BTREE_ID_NR]; for (unsigned i = 0; i < BTREE_ID_NR; i++) ids[i] = i; bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); for (unsigned i = 0; i < btree_id_nr_alive(c) && !ret; i++) { unsigned btree = i < BTREE_ID_NR ? ids[i] : i; if (IS_ERR_OR_NULL(bch2_btree_id_root(c, btree)->b)) continue; unsigned target_depth = BIT_ULL(btree) & btree_leaf_has_triggers_mask ? 0 : 1; /* * In fsck, we need to make sure every leaf node is readable * before going RW, otherwise we can no longer rewind inside * btree_lost_data to repair during the current fsck run. * * Otherwise, we can delay the repair to the next * mount or offline fsck. */ if (test_bit(BCH_FS_in_fsck, &c->flags)) target_depth = 0; ret = bch2_gc_btree(trans, &progress, btree, target_depth, true); } bch_err_fn(c, ret); return ret; } static int bch2_mark_superblocks(struct bch_fs *c) { gc_pos_set(c, gc_phase(GC_PHASE_sb)); return bch2_trans_mark_dev_sbs_flags(c, BTREE_TRIGGER_gc); } static void bch2_gc_free(struct bch_fs *c) { bch2_accounting_gc_free(c); genradix_free(&c->reflink_gc_table); genradix_free(&c->gc_stripes); for_each_member_device(c, ca) genradix_free(&ca->buckets_gc); } static int bch2_gc_start(struct bch_fs *c) { for_each_member_device(c, ca) try(bch2_dev_usage_init(ca, true)); return 0; } /* returns true if not equal */ static inline bool bch2_alloc_v4_cmp(struct bch_alloc_v4 l, struct bch_alloc_v4 r) { return l.gen != r.gen || l.oldest_gen != r.oldest_gen || l.data_type != r.data_type || l.dirty_sectors != r.dirty_sectors || l.stripe_sectors != r.stripe_sectors || l.cached_sectors != r.cached_sectors || l.stripe != r.stripe; } static int bch2_alloc_write_key(struct btree_trans *trans, struct btree_iter *iter, struct bch_dev *ca, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct bkey_i_alloc_v4 *a; struct bch_alloc_v4 old_gc, gc, old_convert, new; const struct bch_alloc_v4 *old; if (!bucket_valid(ca, k.k->p.offset)) return 0; old = bch2_alloc_to_v4(k, &old_convert); gc = new = *old; __bucket_m_to_alloc(&gc, *gc_bucket(ca, iter->pos.offset)); old_gc = gc; if ((old->data_type == BCH_DATA_sb || old->data_type == BCH_DATA_journal) && !bch2_dev_is_online(ca)) { gc.data_type = old->data_type; gc.dirty_sectors = old->dirty_sectors; } /* * gc.data_type doesn't yet include need_discard & need_gc_gen states - * fix that here: */ alloc_data_type_set(&gc, gc.data_type); if (gc.data_type != old_gc.data_type || gc.dirty_sectors != old_gc.dirty_sectors) { try(bch2_alloc_key_to_dev_counters(trans, ca, &old_gc, &gc, BTREE_TRIGGER_gc)); /* * Ugly: alloc_key_to_dev_counters(..., BTREE_TRIGGER_gc) is not * safe w.r.t. transaction restarts, so fixup the gc_bucket so * we don't run it twice: */ struct bucket *gc_m = gc_bucket(ca, iter->pos.offset); gc_m->data_type = gc.data_type; gc_m->dirty_sectors = gc.dirty_sectors; } if (ret_fsck_err_on(new.data_type != gc.data_type, trans, alloc_key_data_type_wrong, "bucket %llu:%llu gen %u has wrong data_type" ": got %s, should be %s", iter->pos.inode, iter->pos.offset, gc.gen, bch2_data_type_str(new.data_type), bch2_data_type_str(gc.data_type))) new.data_type = gc.data_type; #define copy_bucket_field(_errtype, _f) \ if (ret_fsck_err_on(new._f != gc._f, \ trans, _errtype, \ "bucket %llu:%llu gen %u data type %s has wrong " #_f \ ": got %llu, should be %llu", \ iter->pos.inode, iter->pos.offset, \ gc.gen, \ bch2_data_type_str(gc.data_type), \ (u64) new._f, (u64) gc._f)) \ new._f = gc._f; \ copy_bucket_field(alloc_key_gen_wrong, gen); copy_bucket_field(alloc_key_dirty_sectors_wrong, dirty_sectors); copy_bucket_field(alloc_key_stripe_sectors_wrong, stripe_sectors); copy_bucket_field(alloc_key_cached_sectors_wrong, cached_sectors); copy_bucket_field(alloc_key_stripe_wrong, stripe); #undef copy_bucket_field if (!bch2_alloc_v4_cmp(*old, new)) return 0; a = errptr_try(bch2_alloc_to_v4_mut(trans, k)); a->v = new; /* * The trigger normally makes sure these are set, but we're not running * triggers: */ if (a->v.data_type == BCH_DATA_cached && !a->v.io_time[READ]) a->v.io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); try(bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_norun)); return 0; } static int bch2_gc_alloc_done(struct bch_fs *c) { CLASS(btree_trans, trans)(c); for_each_member_device(c, ca) try(for_each_btree_key_max_commit(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, ca->mi.first_bucket), POS(ca->dev_idx, ca->mi.nbuckets - 1), BTREE_ITER_slots|BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, bch2_alloc_write_key(trans, &iter, ca, k))); return 0; } static int bch2_gc_alloc_start(struct bch_fs *c) { for_each_member_device(c, ca) { int ret = genradix_prealloc(&ca->buckets_gc, ca->mi.nbuckets, GFP_KERNEL); if (ret) return bch_err_throw(c, ENOMEM_gc_alloc_start); } return 0; } static int bch2_gc_write_stripes_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { if (k.k->type != KEY_TYPE_stripe) return 0; struct bch_fs *c = trans->c; CLASS(printbuf, buf)(); const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; struct gc_stripe *m = genradix_ptr(&c->gc_stripes, k.k->p.offset); bool bad = false; for (unsigned i = 0; i < s->nr_blocks; i++) { u32 old = stripe_blockcount_get(s, i); u32 new = (m ? m->block_sectors[i] : 0); if (old != new) { prt_printf(&buf, "stripe block %u has wrong sector count: got %u, should be %u\n", i, old, new); bad = true; } } if (bad) bch2_bkey_val_to_text(&buf, c, k); if (ret_fsck_err_on(bad, trans, stripe_sector_count_wrong, "%s", buf.buf)) { struct bkey_i_stripe *new = errptr_try(bch2_trans_kmalloc(trans, bkey_bytes(k.k))); bkey_reassemble(&new->k_i, k); for (unsigned i = 0; i < new->v.nr_blocks; i++) stripe_blockcount_set(&new->v, i, m ? m->block_sectors[i] : 0); try(bch2_trans_update(trans, iter, &new->k_i, 0)); } return 0; } static int bch2_gc_stripes_done(struct bch_fs *c) { CLASS(btree_trans, trans)(c); return for_each_btree_key_commit(trans, iter, BTREE_ID_stripes, POS_MIN, BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, bch2_gc_write_stripes_key(trans, &iter, k)); } /** * bch2_check_allocations - walk all references to buckets, and recompute them: * * @c: filesystem object * * Returns: 0 on success, or standard errcode on failure * * Order matters here: * - Concurrent GC relies on the fact that we have a total ordering for * everything that GC walks - see gc_will_visit_node(), * gc_will_visit_root() * * - also, references move around in the course of index updates and * various other crap: everything needs to agree on the ordering * references are allowed to move around in - e.g., we're allowed to * start with a reference owned by an open_bucket (the allocator) and * move it to the btree, but not the reverse. * * This is necessary to ensure that gc doesn't miss references that * move around - if references move backwards in the ordering GC * uses, GC could skip past them */ int bch2_check_allocations(struct bch_fs *c) { int ret; guard(rwsem_read)(&c->state_lock); guard(rwsem_write)(&c->gc_lock); bch2_btree_interior_updates_flush(c); ret = bch2_gc_accounting_start(c) ?: bch2_gc_start(c) ?: bch2_gc_alloc_start(c) ?: bch2_gc_reflink_start(c); if (ret) goto out; gc_pos_set(c, gc_phase(GC_PHASE_start)); ret = bch2_mark_superblocks(c); bch_err_msg(c, ret, "marking superblocks"); if (ret) goto out; ret = bch2_gc_btrees(c); if (ret) goto out; c->gc_count++; ret = bch2_gc_alloc_done(c) ?: bch2_gc_accounting_done(c) ?: bch2_gc_stripes_done(c) ?: bch2_gc_reflink_done(c); out: scoped_guard(percpu_write, &c->mark_lock) { /* Indicates that gc is no longer in progress: */ __gc_pos_set(c, gc_phase(GC_PHASE_not_running)); bch2_gc_free(c); } /* * At startup, allocations can happen directly instead of via the * allocator thread - issue wakeup in case they blocked on gc_lock: */ closure_wake_up(&c->freelist_wait); if (!ret && !test_bit(BCH_FS_errors_not_fixed, &c->flags)) bch2_sb_members_clean_deleted(c); return ret; } static int gc_btree_gens_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { struct bch_fs *c = trans->c; if (unlikely(test_bit(BCH_FS_going_ro, &c->flags))) return -EROFS; return bch2_bkey_drop_stale_ptrs(trans, iter, k); } static int bch2_alloc_write_oldest_gen(struct btree_trans *trans, struct bch_dev *ca, struct btree_iter *iter, struct bkey_s_c k) { struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); if (a->oldest_gen == ca->oldest_gen[iter->pos.offset]) return 0; struct bkey_i_alloc_v4 *a_mut = errptr_try(bch2_alloc_to_v4_mut(trans, k)); a_mut->v.oldest_gen = ca->oldest_gen[iter->pos.offset]; return bch2_trans_update(trans, iter, &a_mut->k_i, 0); } int bch2_gc_gens(struct bch_fs *c) { u64 b, start_time = local_clock(); int ret; if (!mutex_trylock(&c->gc_gens_lock)) return 0; trace_and_count(c, gc_gens_start, c); /* * We have to use trylock here. Otherwise, we would * introduce a deadlock in the RO path - we take the * state lock at the start of going RO. */ if (!down_read_trylock(&c->state_lock)) { mutex_unlock(&c->gc_gens_lock); return 0; } for_each_member_device(c, ca) { struct bucket_gens *gens = bucket_gens(ca); BUG_ON(ca->oldest_gen); ca->oldest_gen = kvmalloc(gens->nbuckets, GFP_KERNEL); if (!ca->oldest_gen) { ret = bch_err_throw(c, ENOMEM_gc_gens); goto err; } for (b = gens->first_bucket; b < gens->nbuckets; b++) ca->oldest_gen[b] = gens->b[b]; } for (unsigned i = 0; i < BTREE_ID_NR; i++) if (btree_type_has_data_ptrs(i)) { c->gc_gens_btree = i; c->gc_gens_pos = POS_MIN; ret = bch2_trans_run(c, for_each_btree_key_commit(trans, iter, i, POS_MIN, BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, gc_btree_gens_key(trans, &iter, k))); if (ret) goto err; } struct bch_dev *ca = NULL; ret = bch2_trans_run(c, for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ ca = bch2_dev_iterate(c, ca, k.k->p.inode); if (!ca) { bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0)); continue; } bch2_alloc_write_oldest_gen(trans, ca, &iter, k); }))); bch2_dev_put(ca); if (ret) goto err; c->gc_gens_btree = 0; c->gc_gens_pos = POS_MIN; c->gc_count++; bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); trace_and_count(c, gc_gens_end, c); if (!(c->sb.compat & BIT_ULL(BCH_COMPAT_no_stale_ptrs))) { guard(mutex)(&c->sb_lock); c->disk_sb.sb->compat[0] |= cpu_to_le64(BIT_ULL(BCH_COMPAT_no_stale_ptrs)); bch2_write_super(c); } err: for_each_member_device(c, ca) { kvfree(ca->oldest_gen); ca->oldest_gen = NULL; } up_read(&c->state_lock); mutex_unlock(&c->gc_gens_lock); if (!bch2_err_matches(ret, EROFS)) bch_err_fn(c, ret); return ret; } static void bch2_gc_gens_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, gc_gens_work); bch2_gc_gens(c); enumerated_ref_put(&c->writes, BCH_WRITE_REF_gc_gens); } void bch2_gc_gens_async(struct bch_fs *c) { if (enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_gc_gens) && !queue_work(c->write_ref_wq, &c->gc_gens_work)) enumerated_ref_put(&c->writes, BCH_WRITE_REF_gc_gens); } static int merge_btree_node_one(struct btree_trans *trans, struct progress_indicator *progress, struct btree_iter *iter, u64 *merge_count) { try(bch2_btree_iter_traverse(iter)); struct btree_path *path = btree_iter_path(trans, iter); struct btree *b = path->l[path->level].b; if (!b) return 1; try(bch2_progress_update_iter(trans, progress, iter, "merge_btree_nodes")); if (!btree_node_needs_merge(trans, b, 0)) { if (bpos_eq(b->key.k.p, SPOS_MAX)) return 1; bch2_btree_iter_set_pos(iter, bpos_successor(b->key.k.p)); return 0; } try(bch2_btree_path_upgrade(trans, path, path->level + 1)); try(bch2_foreground_maybe_merge(trans, iter->path, path->level, 0, 0, merge_count)); return 0; } int bch2_merge_btree_nodes(struct bch_fs *c) { struct progress_indicator progress; bch2_progress_init_inner(&progress, c, ~0ULL, ~0ULL); CLASS(btree_trans, trans)(c); for (unsigned i = 0; i < btree_id_nr_alive(c); i++) { u64 merge_count = 0; for (unsigned level = 0; level < BTREE_MAX_DEPTH; level++) { CLASS(btree_node_iter, iter)(trans, i, POS_MIN, 0, level, BTREE_ITER_prefetch); while (true) { int ret = lockrestart_do(trans, merge_btree_node_one(trans, &progress, &iter, &merge_count)); if (ret < 0) return ret; if (ret) break; } } if (merge_count) { CLASS(printbuf, buf)(); prt_printf(&buf, "merge_btree_nodes: %llu merges in ", merge_count); bch2_btree_id_to_text(&buf, i); prt_str(&buf, " btree"); bch_info(c, "%s", buf.buf); } } return 0; } void bch2_fs_btree_gc_init_early(struct bch_fs *c) { seqcount_init(&c->gc_pos_lock); INIT_WORK(&c->gc_gens_work, bch2_gc_gens_work); init_rwsem(&c->gc_lock); mutex_init(&c->gc_gens_lock); }