bcachefs-tools/bcache-ondisk.h
2016-03-11 21:18:42 -09:00

1067 lines
25 KiB
C

#ifndef _BCACHE_TOOLS_ONDISK_H
#define _BCACHE_TOOLS_ONDISK_H
/*
* Bcache on disk data structures
*/
#ifdef __cplusplus
typedef bool _Bool;
extern "C" {
#endif
#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/uuid.h>
#define BITMASK(name, type, field, offset, end) \
static const unsigned name##_OFFSET = offset; \
static const unsigned name##_BITS = (end - offset); \
static const __u64 name##_MAX = (1ULL << (end - offset)) - 1; \
\
static inline __u64 name(const type *k) \
{ return (k->field >> offset) & ~(~0ULL << (end - offset)); } \
\
static inline void SET_##name(type *k, __u64 v) \
{ \
k->field &= ~(~(~0ULL << (end - offset)) << offset); \
k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
}
struct bkey_format {
__u8 key_u64s;
__u8 nr_fields;
/* One unused slot for now: */
__u8 bits_per_field[6];
__u64 field_offset[6];
};
/* Btree keys - all units are in sectors */
struct bpos {
/* Word order matches machine byte order */
#if defined(__LITTLE_ENDIAN)
__u32 snapshot;
__u64 offset;
__u64 inode;
#elif defined(__BIG_ENDIAN)
__u64 inode;
__u64 offset; /* Points to end of extent - sectors */
__u32 snapshot;
#else
#error edit for your odd byteorder.
#endif
} __attribute__((packed)) __attribute__((aligned(4)));
#define KEY_INODE_MAX ((__u64)~0ULL)
#define KEY_OFFSET_MAX ((__u64)~0ULL)
#define KEY_SNAPSHOT_MAX ((__u32)~0U)
static inline struct bpos POS(__u64 inode, __u64 offset)
{
struct bpos ret;
ret.inode = inode;
ret.offset = offset;
ret.snapshot = 0;
return ret;
}
#define POS_MIN POS(0, 0)
#define POS_MAX POS(KEY_INODE_MAX, KEY_OFFSET_MAX)
/* Empty placeholder struct, for container_of() */
struct bch_val {
__u64 __nothing[0];
};
struct bkey_packed {
__u64 _data[0];
/* Size of combined key and value, in u64s */
__u8 u64s;
/* Format of key (0 for format local to btree node */
__u8 format;
/* Type of the value */
__u8 type;
__u8 key_start[0];
/*
* We copy bkeys with struct assignment in various places, and while
* that shouldn't be done with packed bkeys we can't disallow it in C,
* and it's legal to cast a bkey to a bkey_packed - so padding it out
* to the same size as struct bkey should hopefully be safest.
*/
__u8 pad[5];
__u64 pad2[4];
} __attribute__((packed)) __attribute__((aligned(8)));
struct bkey {
__u64 _data[0];
/* Size of combined key and value, in u64s */
__u8 u64s;
/* Format of key (0 for format local to btree node) */
__u8 format;
/* Type of the value */
__u8 type;
__u8 pad[1];
#if defined(__LITTLE_ENDIAN)
__u32 version;
__u32 size; /* extent size, in sectors */
struct bpos p;
#elif defined(__BIG_ENDIAN)
struct bpos p;
__u32 size; /* extent size, in sectors */
__u32 version;
#endif
} __attribute__((packed)) __attribute__((aligned(8)));
#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
#define KEY_PACKED_BITS_START 24
#define KEY_SIZE_MAX ((__u32)~0U)
#define KEY_FORMAT_LOCAL_BTREE 0
#define KEY_FORMAT_CURRENT 1
enum bch_bkey_fields {
BKEY_FIELD_INODE,
BKEY_FIELD_OFFSET,
BKEY_FIELD_SNAPSHOT,
BKEY_FIELD_SIZE,
BKEY_FIELD_VERSION,
BKEY_NR_FIELDS,
};
#define bkey_format_field(name, field) \
[BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
#define BKEY_FORMAT_CURRENT \
((struct bkey_format) { \
.key_u64s = BKEY_U64s, \
.nr_fields = BKEY_NR_FIELDS, \
.bits_per_field = { \
bkey_format_field(INODE, p.inode), \
bkey_format_field(OFFSET, p.offset), \
bkey_format_field(SNAPSHOT, p.snapshot), \
bkey_format_field(SIZE, size), \
bkey_format_field(VERSION, version), \
}, \
})
/* bkey with inline value */
struct bkey_i {
struct bkey k;
struct bch_val v;
};
#ifndef __cplusplus
#define KEY(_inode, _offset, _size) \
((struct bkey) { \
.u64s = BKEY_U64s, \
.format = KEY_FORMAT_CURRENT, \
.p = POS(_inode, _offset), \
.size = _size, \
})
#else
static inline struct bkey KEY(__u64 inode, __u64 offset, __u64 size)
{
struct bkey ret;
memset(&ret, 0, sizeof(ret));
ret.u64s = BKEY_U64s;
ret.format = KEY_FORMAT_CURRENT;
ret.p.inode = inode;
ret.p.offset = offset;
ret.size = size;
return ret;
}
#endif
static inline void bkey_init(struct bkey *k)
{
*k = KEY(0, 0, 0);
}
#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
static inline void bkey_copy(struct bkey_i *dst, const struct bkey_i *src)
{
memcpy(dst, src, bkey_bytes(&src->k));
}
#define __BKEY_PADDED(key, pad) \
struct { struct bkey_i key; __u64 key ## _pad[pad]; }
#define BKEY_VAL_TYPE(name, nr) \
struct bkey_i_##name { \
union { \
struct bkey k; \
struct bkey_i k_i; \
}; \
struct bch_##name v; \
}
/*
* - DELETED keys are used internally to mark keys that should be ignored but
* override keys in composition order. Their version number is ignored.
*
* - DISCARDED keys indicate that the data is all 0s because it has been
* discarded. DISCARDs may have a version; if the version is nonzero the key
* will be persistent, otherwise the key will be dropped whenever the btree
* node is rewritten (like DELETED keys).
*
* - ERROR: any read of the data returns a read error, as the data was lost due
* to a failing device. Like DISCARDED keys, they can be removed (overridden)
* by new writes or cluster-wide GC. Node repair can also overwrite them with
* the same or a more recent version number, but not with an older version
* number.
*/
#define KEY_TYPE_DELETED 0
#define KEY_TYPE_DISCARD 1
#define KEY_TYPE_ERROR 2
#define KEY_TYPE_COOKIE 3
#define KEY_TYPE_GENERIC_NR 128
struct bch_cookie {
struct bch_val v;
__u64 cookie;
};
BKEY_VAL_TYPE(cookie, KEY_TYPE_COOKIE);
/* Extents */
/*
* In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
* preceded by checksum/compression information (bch_extent_crc32 or
* bch_extent_crc64).
*
* One major determining factor in the format of extents is how we handle and
* represent extents that have been partially overwritten and thus trimmed:
*
* If an extent is not checksummed or compressed, when the extent is trimmed we
* don't have to remember the extent we originally allocated and wrote: we can
* merely adjust ptr->offset to point to the start of the start of the data that
* is currently live. The size field in struct bkey records the current (live)
* size of the extent, and is also used to mean "size of region on disk that we
* point to" in this case.
*
* Thus an extent that is not checksummed or compressed will consist only of a
* list of bch_extent_ptrs, with none of the fields in
* bch_extent_crc32/bch_extent_crc64.
*
* When an extent is checksummed or compressed, it's not possible to read only
* the data that is currently live: we have to read the entire extent that was
* originally written, and then return only the part of the extent that is
* currently live.
*
* Thus, in addition to the current size of the extent in struct bkey, we need
* to store the size of the originally allocated space - this is the
* compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
* when the extent is trimmed, instead of modifying the offset field of the
* pointer, we keep a second smaller offset field - "offset into the original
* extent of the currently live region".
*
* The other major determining factor is replication and data migration:
*
* Each pointer may have its own bch_extent_crc32/64. When doing a replicated
* write, we will initially write all the replicas in the same format, with the
* same checksum type and compression format - however, when copygc runs later (or
* tiering/cache promotion, anything that moves data), it is not in general
* going to rewrite all the pointers at once - one of the replicas may be in a
* bucket on one device that has very little fragmentation while another lives
* in a bucket that has become heavily fragmented, and thus is being rewritten
* sooner than the rest.
*
* Thus it will only move a subset of the pointers (or in the case of
* tiering/cache promotion perhaps add a single pointer without dropping any
* current pointers), and if the extent has been partially overwritten it must
* write only the currently live portion (or copygc would not be able to reduce
* fragmentation!) - which necessitates a different bch_extent_crc format for
* the new pointer.
*
* But in the interests of space efficiency, we don't want to store one
* bch_extent_crc for each pointer if we don't have to.
*
* Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
* bch_extent_ptrs appended arbitrarily one after the other. We determine the
* type of a given entry with a scheme similar to utf8 (except we're encoding a
* type, not a size), encoding the type in the position of the first set bit:
*
* bch_extent_crc32 - 0b1
* bch_extent_ptr - 0b10
* bch_extent_crc64 - 0b100
*
* We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
* bch_extent_crc64 is the least constrained).
*
* Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
* until the next bch_extent_crc32/64.
*
* If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
* is neither checksummed nor compressed.
*/
enum bch_extent_entry_type {
BCH_EXTENT_ENTRY_crc32 = 0,
BCH_EXTENT_ENTRY_ptr = 1,
BCH_EXTENT_ENTRY_crc64 = 2,
};
#define BCH_EXTENT_ENTRY_MAX 3
struct bch_extent_crc32 {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u32 type:1,
offset:7,
compressed_size:8,
uncompressed_size:8,
csum_type:4,
compression_type:4;
#elif defined (__BIG_ENDIAN_BITFIELD)
__u32 csum_type:4,
compression_type:4,
uncompressed_size:8,
compressed_size:8,
offset:7,
type:1;
#endif
__u32 csum;
} __attribute__((packed)) __attribute__((aligned(8)));
#define CRC32_EXTENT_SIZE_MAX (1U << 7)
struct bch_extent_crc64 {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u64 type:3,
compressed_size:18,
uncompressed_size:18,
offset:17,
csum_type:4,
compression_type:4;
#elif defined (__BIG_ENDIAN_BITFIELD)
__u64 csum_type:4,
compression_type:4,
offset:17,
uncompressed_size:18,
compressed_size:18,
type:3;
#endif
__u64 csum;
} __attribute__((packed)) __attribute__((aligned(8)));
#define CRC64_EXTENT_SIZE_MAX (1U << 17)
struct bch_extent_ptr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u64 type:2,
erasure_coded:1,
offset:45, /* 16 petabytes */
dev:8,
gen:8;
#elif defined (__BIG_ENDIAN_BITFIELD)
__u64 gen:8,
dev:8,
offset:45,
erasure_coded:1,
type:2;
#endif
} __attribute__((packed)) __attribute__((aligned(8)));
/* Dummy DEV numbers: */
#define PTR_LOST_DEV 255 /* XXX: kill */
union bch_extent_entry {
__u8 type;
struct bch_extent_crc32 crc32;
struct bch_extent_crc64 crc64;
struct bch_extent_ptr ptr;
};
enum {
BCH_EXTENT = 128,
/*
* This is kind of a hack, we're overloading the type for a boolean that
* really should be part of the value - BCH_EXTENT and BCH_EXTENT_CACHED
* have the same value type:
*/
BCH_EXTENT_CACHED = 129,
};
struct bch_extent {
struct bch_val v;
union bch_extent_entry start[0];
__u64 _data[0];
} __attribute__((packed)) __attribute__((aligned(8)));
BKEY_VAL_TYPE(extent, BCH_EXTENT);
/* Inodes */
#define BLOCKDEV_INODE_MAX 4096
#define BCACHE_ROOT_INO 4096
enum bch_inode_types {
BCH_INODE_FS = 128,
BCH_INODE_BLOCKDEV = 129,
BCH_INODE_CACHED_DEV = 130,
};
enum {
BCH_FS_PRIVATE_START = 16,
__BCH_INODE_I_SIZE_DIRTY = 16,
};
#define BCH_FL_USER_FLAGS ((1U << BCH_FS_PRIVATE_START) - 1)
#define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY)
struct bch_inode {
struct bch_val v;
__u16 i_mode;
__u16 pad;
__u32 i_flags;
/* Nanoseconds */
__s64 i_atime;
__s64 i_ctime;
__s64 i_mtime;
__u64 i_size;
__u32 i_uid;
__u32 i_gid;
__u32 i_nlink;
__u32 i_dev;
};
BKEY_VAL_TYPE(inode, BCH_INODE_FS);
struct bch_inode_blockdev {
struct bch_val v;
struct bch_inode i_inode;
uuid_le i_uuid;
__u8 i_label[32];
} __attribute__((packed));
BKEY_VAL_TYPE(inode_blockdev, BCH_INODE_BLOCKDEV);
/* Dirents */
/*
* Dirents (and xattrs) have to implement string lookups; since our b-tree
* doesn't support arbitrary length strings for the key, we instead index by a
* 64 bit hash (currently truncated sha1) of the string, stored in the offset
* field of the key - using linear probing to resolve hash collisions. This also
* provides us with the readdir cookie posix requires.
*
* Linear probing requires us to use whiteouts for deletions, in the event of a
* collision:
*/
enum {
BCH_DIRENT = 128,
BCH_DIRENT_WHITEOUT = 129,
};
struct bch_dirent {
struct bch_val v;
/* Target inode number: */
__u64 d_inum;
/*
* Copy of mode bits 12-15 from the target inode - so userspace can get
* the filetype without having to do a stat()
*/
__u8 d_type;
__u8 d_name[];
} __attribute__((packed));
BKEY_VAL_TYPE(dirent, BCH_DIRENT);
/* Xattrs */
enum {
BCH_XATTR = 128,
BCH_XATTR_WHITEOUT = 129,
};
#define BCH_XATTR_INDEX_USER 0
#define BCH_XATTR_INDEX_POSIX_ACL_ACCESS 1
#define BCH_XATTR_INDEX_POSIX_ACL_DEFAULT 2
#define BCH_XATTR_INDEX_TRUSTED 3
#define BCH_XATTR_INDEX_SECURITY 4
struct bch_xattr {
struct bch_val v;
__u8 x_type;
__u8 x_name_len;
__u16 x_val_len;
__u8 x_name[];
} __attribute__((packed));
BKEY_VAL_TYPE(xattr, BCH_XATTR);
/* Superblock */
/* Version 0: Cache device
* Version 1: Backing device
* Version 2: Seed pointer into btree node checksum
* Version 3: Cache device with new UUID format
* Version 4: Backing device with data offset
* Version 5: All the incompat changes
* Version 6: Cache device UUIDs all in superblock, another incompat bset change
*/
#define BCACHE_SB_VERSION_CDEV_V0 0
#define BCACHE_SB_VERSION_BDEV 1
#define BCACHE_SB_VERSION_CDEV_WITH_UUID 3
#define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4
#define BCACHE_SB_VERSION_CDEV_V2 5
#define BCACHE_SB_VERSION_CDEV_V3 6
#define BCACHE_SB_VERSION_CDEV 6
#define BCACHE_SB_MAX_VERSION 6
#define SB_SECTOR 8
#define SB_LABEL_SIZE 32
#define MAX_CACHES_PER_SET 64
#define BDEV_DATA_START_DEFAULT 16 /* sectors */
struct cache_member {
uuid_le uuid;
__u64 nbuckets; /* device size */
__u16 first_bucket; /* index of first bucket used */
__u16 bucket_size; /* sectors */
__u32 last_mount; /* time_t */
__u64 f1;
__u64 f2;
};
BITMASK(CACHE_STATE, struct cache_member, f1, 0, 4)
#define CACHE_ACTIVE 0U
#define CACHE_RO 1U
#define CACHE_FAILED 2U
#define CACHE_SPARE 3U
BITMASK(CACHE_TIER, struct cache_member, f1, 4, 8)
#define CACHE_TIERS 4U
BITMASK(CACHE_REPLICATION_SET, struct cache_member, f1, 8, 16)
BITMASK(CACHE_HAS_METADATA, struct cache_member, f1, 24, 25)
BITMASK(CACHE_HAS_DATA, struct cache_member, f1, 25, 26)
BITMASK(CACHE_REPLACEMENT, struct cache_member, f1, 26, 30)
#define CACHE_REPLACEMENT_LRU 0U
#define CACHE_REPLACEMENT_FIFO 1U
#define CACHE_REPLACEMENT_RANDOM 2U
BITMASK(CACHE_DISCARD, struct cache_member, f1, 30, 31);
BITMASK(CACHE_NR_READ_ERRORS, struct cache_member, f2, 0, 20);
BITMASK(CACHE_NR_WRITE_ERRORS, struct cache_member, f2, 20, 40);
struct cache_sb {
__u64 csum;
__u64 offset; /* sector where this sb was written */
__u64 version; /* of on disk format */
uuid_le magic; /* bcache superblock UUID */
/* Identifies this disk within the cache set: */
uuid_le disk_uuid;
/*
* Internal cache set UUID - xored with various magic numbers and thus
* must never change:
*/
union {
uuid_le set_uuid;
__u64 set_magic;
};
__u8 label[SB_LABEL_SIZE];
__u64 flags;
/* Incremented each time superblock is written: */
__u64 seq;
/*
* User visible UUID for identifying the cache set the user is allowed
* to change:
*/
uuid_le user_uuid;
__u64 pad[6];
union {
struct {
/* Cache devices */
/* Number of cache_member entries: */
__u8 nr_in_set;
/*
* Index of this device - for PTR_DEV(), and also this device's
* slot in the cache_member array:
*/
__u8 nr_this_dev;
};
struct {
/* Backing devices */
__u64 bdev_data_offset;
};
};
__u16 block_size; /* sectors */
__u16 pad2[3];
__u32 bdev_last_mount; /* time_t */
__u16 pad3;
__u16 u64s; /* size of variable length portion */
union {
struct cache_member members[0];
/*
* Journal buckets also in the variable length portion, after
* the member info:
*/
__u64 _data[0];
};
};
BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
BITMASK(CACHE_ERROR_ACTION, struct cache_sb, flags, 1, 4);
#define BCH_ON_ERROR_CONTINUE 0U
#define BCH_ON_ERROR_RO 1U
#define BCH_ON_ERROR_PANIC 2U
BITMASK(CACHE_SET_META_REPLICAS_WANT, struct cache_sb, flags, 4, 8);
BITMASK(CACHE_SET_DATA_REPLICAS_WANT, struct cache_sb, flags, 8, 12);
BITMASK(CACHE_SB_CSUM_TYPE, struct cache_sb, flags, 12, 16);
BITMASK(CACHE_META_PREFERRED_CSUM_TYPE, struct cache_sb, flags, 16, 20);
#define BCH_CSUM_NONE 0U
#define BCH_CSUM_CRC32C 1U
#define BCH_CSUM_CRC64 2U
#define BCH_CSUM_NR 3U
BITMASK(CACHE_BTREE_NODE_SIZE, struct cache_sb, flags, 20, 36);
BITMASK(CACHE_SET_META_REPLICAS_HAVE, struct cache_sb, flags, 36, 40);
BITMASK(CACHE_SET_DATA_REPLICAS_HAVE, struct cache_sb, flags, 40, 44);
BITMASK(CACHE_SET_DIRENT_CSUM_TYPE, struct cache_sb, flags, 44, 48);
enum {
BCH_DIRENT_CSUM_CRC32C = 0,
BCH_DIRENT_CSUM_CRC64 = 1,
BCH_DIRENT_CSUM_SIPHASH = 2,
BCH_DIRENT_CSUM_SHA1 = 3,
};
BITMASK(CACHE_DATA_PREFERRED_CSUM_TYPE, struct cache_sb, flags, 48, 52);
BITMASK(CACHE_COMPRESSION_TYPE, struct cache_sb, flags, 52, 56);
enum {
BCH_COMPRESSION_NONE = 0,
BCH_COMPRESSION_LZO1X = 1,
BCH_COMPRESSION_GZIP = 2,
BCH_COMPRESSION_XZ = 3,
};
/* backing device specific stuff: */
BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
#define CACHE_MODE_WRITETHROUGH 0U
#define CACHE_MODE_WRITEBACK 1U
#define CACHE_MODE_WRITEAROUND 2U
#define CACHE_MODE_NONE 3U
BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 63);
#define BDEV_STATE_NONE 0U
#define BDEV_STATE_CLEAN 1U
#define BDEV_STATE_DIRTY 2U
#define BDEV_STATE_STALE 3U
static inline unsigned bch_journal_buckets_offset(struct cache_sb *sb)
{
return sb->nr_in_set * (sizeof(struct cache_member) / sizeof(__u64));
}
static inline unsigned bch_nr_journal_buckets(struct cache_sb *sb)
{
return sb->u64s - bch_journal_buckets_offset(sb);
}
static inline _Bool __SB_IS_BDEV(__u64 version)
{
return version == BCACHE_SB_VERSION_BDEV
|| version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET;
}
static inline _Bool SB_IS_BDEV(const struct cache_sb *sb)
{
return __SB_IS_BDEV(sb->version);
}
/*
* Magic numbers
*
* The various other data structures have their own magic numbers, which are
* xored with the first part of the cache set's UUID
*/
#define BCACHE_MAGIC \
UUID_LE(0xf67385c6, 0x1a4e, 0xca45, \
0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
#define BCACHE_STATFS_MAGIC 0xca451a4e
#define BCACHE_SB_MAGIC 0xca451a4ef67385c6ULL
#define BCACHE_SB_MAGIC2 0x816dba487ff56582ULL
#define JSET_MAGIC 0x245235c1a3625032ULL
#define PSET_MAGIC 0x6750e15f87337f91ULL
#define BSET_MAGIC 0x90135c78b99e07f5ULL
static inline __u64 jset_magic(struct cache_sb *sb)
{
return sb->set_magic ^ JSET_MAGIC;
}
static inline __u64 pset_magic(struct cache_sb *sb)
{
return sb->set_magic ^ PSET_MAGIC;
}
static inline __u64 bset_magic(struct cache_sb *sb)
{
return sb->set_magic ^ BSET_MAGIC;
}
/*
* Journal
*
* On disk format for a journal entry:
* seq is monotonically increasing; every journal entry has its own unique
* sequence number.
*
* last_seq is the oldest journal entry that still has keys the btree hasn't
* flushed to disk yet.
*
* version is for on disk format changes.
*/
#define BCACHE_JSET_VERSION_UUIDv1 1
#define BCACHE_JSET_VERSION_UUID 1 /* Always latest UUID format */
#define BCACHE_JSET_VERSION_JKEYS 2
#define BCACHE_JSET_VERSION 2
#define DEFINE_BCH_BTREE_IDS() \
DEF_BTREE_ID(EXTENTS, 0, "extents") \
DEF_BTREE_ID(INODES, 1, "inodes") \
DEF_BTREE_ID(DIRENTS, 2, "dirents") \
DEF_BTREE_ID(XATTRS, 3, "xattrs")
#define DEF_BTREE_ID(kwd, val, name) BTREE_ID_##kwd = val,
enum btree_id {
DEFINE_BCH_BTREE_IDS()
BTREE_ID_NR
};
#undef DEF_BTREE_ID
struct jset_entry {
__u16 u64s;
__u8 btree_id;
__u8 level;
__u32 flags; /* designates what this jset holds */
union {
struct bkey_i start[0];
__u64 _data[0];
};
};
#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
BITMASK(JKEYS_TYPE, struct jset_entry, flags, 0, 8);
enum {
JKEYS_BTREE_KEYS = 0,
JKEYS_BTREE_ROOT = 1,
JKEYS_PRIO_PTRS = 2,
/*
* Journal sequence numbers can be blacklisted: bsets record the max
* sequence number of all the journal entries they contain updates for,
* so that on recovery we can ignore those bsets that contain index
* updates newer that what made it into the journal.
*
* This means that we can't reuse that journal_seq - we have to skip it,
* and then record that we skipped it so that the next time we crash and
* recover we don't think there was a missing journal entry.
*/
JKEYS_JOURNAL_SEQ_BLACKLISTED = 3,
};
struct jset {
__u64 csum;
__u64 magic;
__u32 version;
__u32 flags;
/* Sequence number of oldest dirty journal entry */
__u64 seq;
__u64 last_seq;
__u16 read_clock;
__u16 write_clock;
__u32 u64s; /* size of d[] in u64s */
union {
struct jset_entry start[0];
__u64 _data[0];
};
};
BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
/* Bucket prios/gens */
struct prio_set {
__u64 csum;
__u64 magic;
__u32 version;
__u32 flags;
__u64 next_bucket;
struct bucket_disk {
__u16 read_prio;
__u16 write_prio;
__u8 gen;
} __attribute((packed)) data[];
};
BITMASK(PSET_CSUM_TYPE, struct prio_set, flags, 0, 4);
/* Btree nodes */
/* Version 1: Seed pointer into btree node checksum
*/
#define BCACHE_BSET_CSUM 1
#define BCACHE_BSET_KEY_v1 2
#define BCACHE_BSET_JOURNAL_SEQ 3
#define BCACHE_BSET_VERSION 3
/*
* Btree nodes
*
* On disk a btree node is a list/log of these; within each set the keys are
* sorted
*/
struct bset {
__u64 seq;
/*
* Highest journal entry this bset contains keys for.
* If on recovery we don't see that journal entry, this bset is ignored:
* this allows us to preserve the order of all index updates after a
* crash, since the journal records a total order of all index updates
* and anything that didn't make it to the journal doesn't get used.
*/
__u64 journal_seq;
__u32 flags;
__u16 version;
__u16 u64s; /* count of d[] in u64s */
union {
struct bkey_packed start[0];
__u64 _data[0];
};
} __attribute((packed));
BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
/* Only used in first bset */
BITMASK(BSET_BTREE_LEVEL, struct bset, flags, 4, 8);
struct btree_node {
__u64 csum;
__u64 magic;
/* Closed interval: */
struct bpos min_key;
struct bpos max_key;
struct bkey_format format;
struct bset keys;
} __attribute((packed));
struct btree_node_entry {
__u64 csum;
struct bset keys;
} __attribute((packed));
/* OBSOLETE */
struct bkey_v0 {
__u64 high;
__u64 low;
__u64 ptr[];
};
#define KEY0_FIELD(name, field, offset, size) \
BITMASK(name, struct bkey_v0, field, offset, size)
KEY0_FIELD(KEY0_PTRS, high, 60, 63)
KEY0_FIELD(KEY0_CSUM, high, 56, 58)
KEY0_FIELD(KEY0_DIRTY, high, 36, 37)
KEY0_FIELD(KEY0_SIZE, high, 20, 36)
KEY0_FIELD(KEY0_INODE, high, 0, 20)
static inline unsigned long bkey_v0_u64s(const struct bkey_v0 *k)
{
return (sizeof(struct bkey_v0) / sizeof(__u64)) + KEY0_PTRS(k);
}
static inline struct bkey_v0 *bkey_v0_next(const struct bkey_v0 *k)
{
__u64 *d = (__u64 *) k;
return (struct bkey_v0 *) (d + bkey_v0_u64s(k));
}
struct jset_v0 {
__u64 csum;
__u64 magic;
__u64 seq;
__u32 version;
__u32 keys;
__u64 last_seq;
__BKEY_PADDED(uuid_bucket, 4);
__BKEY_PADDED(btree_root, 4);
__u16 btree_level;
__u16 pad[3];
__u64 prio_bucket[MAX_CACHES_PER_SET];
union {
struct bkey start[0];
__u64 d[0];
};
};
/* UUIDS - per backing device/flash only volume metadata */
struct uuid_entry_v0 {
uuid_le uuid;
__u8 label[32];
__u32 first_reg;
__u32 last_reg;
__u32 invalidated;
__u32 pad;
};
struct uuid_entry {
union {
struct {
uuid_le uuid;
__u8 label[32];
__u32 first_reg;
__u32 last_reg;
__u32 invalidated;
__u32 flags;
/* Size of flash only volumes */
__u64 sectors;
};
__u8 pad[128];
};
};
BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
#define SB_SIZE 4096
#define SB_JOURNAL_BUCKETS 256U
struct cache_sb_v0 {
__u64 csum;
__u64 offset; /* sector where this sb was written */
__u64 version;
uuid_le magic; /* bcache superblock UUID */
uuid_le uuid;
union {
uuid_le set_uuid;
__u64 set_magic;
};
__u8 label[SB_LABEL_SIZE];
__u64 flags;
__u64 seq;
__u64 pad[8];
union {
struct {
/* Cache devices */
__u64 nbuckets; /* device size */
__u16 block_size; /* sectors */
__u16 bucket_size; /* sectors */
__u16 nr_in_set;
__u16 nr_this_dev;
};
struct {
/* Backing devices */
__u64 data_offset;
/*
* block_size from the cache device section is still used by
* backing devices, so don't add anything here until we fix
* things to not need it for backing devices anymore
*/
};
};
__u32 last_mount; /* time_t */
__u16 first_bucket;
__u16 u64s;
__u64 _data[SB_JOURNAL_BUCKETS]; /* journal buckets */
};
#ifdef __cplusplus
}
#endif
#endif /* _BCACHE_TOOLS_ONDISK_H */
/* vim: set foldnestmax=2: */