bcachefs-tools/linux/six.c

554 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/export.h>
#include <linux/log2.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/six.h>
#ifdef DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#else
#define EBUG_ON(cond) do {} while (0)
#endif
#define six_acquire(l, t) lock_acquire(l, 0, t, 0, 0, NULL, _RET_IP_)
#define six_release(l) lock_release(l, _RET_IP_)
struct six_lock_vals {
/* Value we add to the lock in order to take the lock: */
u64 lock_val;
/* If the lock has this value (used as a mask), taking the lock fails: */
u64 lock_fail;
/* Value we add to the lock in order to release the lock: */
u64 unlock_val;
/* Mask that indicates lock is held for this type: */
u64 held_mask;
/* Waitlist we wakeup when releasing the lock: */
enum six_lock_type unlock_wakeup;
};
#define __SIX_LOCK_HELD_read __SIX_VAL(read_lock, ~0)
#define __SIX_LOCK_HELD_intent __SIX_VAL(intent_lock, ~0)
#define __SIX_LOCK_HELD_write __SIX_VAL(seq, 1)
#define LOCK_VALS { \
[SIX_LOCK_read] = { \
.lock_val = __SIX_VAL(read_lock, 1), \
.lock_fail = __SIX_LOCK_HELD_write, \
.unlock_val = -__SIX_VAL(read_lock, 1), \
.held_mask = __SIX_LOCK_HELD_read, \
.unlock_wakeup = SIX_LOCK_write, \
}, \
[SIX_LOCK_intent] = { \
.lock_val = __SIX_VAL(intent_lock, 1), \
.lock_fail = __SIX_LOCK_HELD_intent, \
.unlock_val = -__SIX_VAL(intent_lock, 1), \
.held_mask = __SIX_LOCK_HELD_intent, \
.unlock_wakeup = SIX_LOCK_intent, \
}, \
[SIX_LOCK_write] = { \
.lock_val = __SIX_VAL(seq, 1), \
.lock_fail = __SIX_LOCK_HELD_read, \
.unlock_val = __SIX_VAL(seq, 1), \
.held_mask = __SIX_LOCK_HELD_write, \
.unlock_wakeup = SIX_LOCK_read, \
}, \
}
static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
union six_lock_state old)
{
if (type != SIX_LOCK_intent)
return;
if (!old.intent_lock) {
EBUG_ON(lock->owner);
lock->owner = current;
} else {
EBUG_ON(lock->owner != current);
}
}
static __always_inline bool do_six_trylock_type(struct six_lock *lock,
enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state old;
u64 v = READ_ONCE(lock->state.v);
EBUG_ON(type == SIX_LOCK_write && lock->owner != current);
do {
old.v = v;
EBUG_ON(type == SIX_LOCK_write &&
((old.v & __SIX_LOCK_HELD_write) ||
!(old.v & __SIX_LOCK_HELD_intent)));
if (old.v & l[type].lock_fail)
return false;
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v,
old.v + l[type].lock_val)) != old.v);
six_set_owner(lock, type, old);
return true;
}
__always_inline __flatten
static bool __six_trylock_type(struct six_lock *lock, enum six_lock_type type)
{
if (!do_six_trylock_type(lock, type))
return false;
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 1);
return true;
}
__always_inline __flatten
static bool __six_relock_type(struct six_lock *lock, enum six_lock_type type,
unsigned seq)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state old;
u64 v = READ_ONCE(lock->state.v);
do {
old.v = v;
if (old.seq != seq || old.v & l[type].lock_fail)
return false;
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v,
old.v + l[type].lock_val)) != old.v);
six_set_owner(lock, type, old);
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 1);
return true;
}
struct six_lock_waiter {
struct list_head list;
struct task_struct *task;
};
/* This is probably up there with the more evil things I've done */
#define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l))
#ifdef CONFIG_LOCK_SPIN_ON_OWNER
static inline int six_can_spin_on_owner(struct six_lock *lock)
{
struct task_struct *owner;
int retval = 1;
if (need_resched())
return 0;
rcu_read_lock();
owner = READ_ONCE(lock->owner);
if (owner)
retval = owner->on_cpu;
rcu_read_unlock();
/*
* if lock->owner is not set, the mutex owner may have just acquired
* it and not set the owner yet or the mutex has been released.
*/
return retval;
}
static inline bool six_spin_on_owner(struct six_lock *lock,
struct task_struct *owner)
{
bool ret = true;
rcu_read_lock();
while (lock->owner == owner) {
/*
* Ensure we emit the owner->on_cpu, dereference _after_
* checking lock->owner still matches owner. If that fails,
* owner might point to freed memory. If it still matches,
* the rcu_read_lock() ensures the memory stays valid.
*/
barrier();
if (!owner->on_cpu || need_resched()) {
ret = false;
break;
}
cpu_relax();
}
rcu_read_unlock();
return ret;
}
static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
{
struct task_struct *task = current;
if (type == SIX_LOCK_write)
return false;
preempt_disable();
if (!six_can_spin_on_owner(lock))
goto fail;
if (!osq_lock(&lock->osq))
goto fail;
while (1) {
struct task_struct *owner;
/*
* If there's an owner, wait for it to either
* release the lock or go to sleep.
*/
owner = READ_ONCE(lock->owner);
if (owner && !six_spin_on_owner(lock, owner))
break;
if (do_six_trylock_type(lock, type)) {
osq_unlock(&lock->osq);
preempt_enable();
return true;
}
/*
* When there's no owner, we might have preempted between the
* owner acquiring the lock and setting the owner field. If
* we're an RT task that will live-lock because we won't let
* the owner complete.
*/
if (!owner && (need_resched() || rt_task(task)))
break;
/*
* The cpu_relax() call is a compiler barrier which forces
* everything in this loop to be re-loaded. We don't need
* memory barriers as we'll eventually observe the right
* values at the cost of a few extra spins.
*/
cpu_relax();
}
osq_unlock(&lock->osq);
fail:
preempt_enable();
/*
* If we fell out of the spin path because of need_resched(),
* reschedule now, before we try-lock again. This avoids getting
* scheduled out right after we obtained the lock.
*/
if (need_resched())
schedule();
return false;
}
#else /* CONFIG_LOCK_SPIN_ON_OWNER */
static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
{
return false;
}
#endif
noinline
static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state old, new;
struct six_lock_waiter wait;
int ret = 0;
u64 v;
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
if (ret)
return ret;
if (six_optimistic_spin(lock, type))
return 0;
lock_contended(&lock->dep_map, _RET_IP_);
INIT_LIST_HEAD(&wait.list);
wait.task = current;
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (type == SIX_LOCK_write)
EBUG_ON(lock->owner != current);
else if (list_empty_careful(&wait.list)) {
raw_spin_lock(&lock->wait_lock);
list_add_tail(&wait.list, &lock->wait_list[type]);
raw_spin_unlock(&lock->wait_lock);
}
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
if (ret)
break;
v = READ_ONCE(lock->state.v);
do {
new.v = old.v = v;
if (!(old.v & l[type].lock_fail))
new.v += l[type].lock_val;
else if (!(new.waiters & (1 << type)))
new.waiters |= 1 << type;
else
break; /* waiting bit already set */
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v, new.v)) != old.v);
if (!(old.v & l[type].lock_fail))
break;
schedule();
}
if (!ret)
six_set_owner(lock, type, old);
__set_current_state(TASK_RUNNING);
if (!list_empty_careful(&wait.list)) {
raw_spin_lock(&lock->wait_lock);
list_del_init(&wait.list);
raw_spin_unlock(&lock->wait_lock);
}
return ret;
}
__always_inline
static int __six_lock_type(struct six_lock *lock, enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p)
{
int ret;
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 0);
ret = do_six_trylock_type(lock, type) ? 0
: __six_lock_type_slowpath(lock, type, should_sleep_fn, p);
if (ret && type != SIX_LOCK_write)
six_release(&lock->dep_map);
if (!ret)
lock_acquired(&lock->dep_map, _RET_IP_);
return ret;
}
static inline void six_lock_wakeup(struct six_lock *lock,
union six_lock_state state,
unsigned waitlist_id)
{
struct list_head *wait_list = &lock->wait_list[waitlist_id];
struct six_lock_waiter *w, *next;
if (waitlist_id == SIX_LOCK_write && state.read_lock)
return;
if (!(state.waiters & (1 << waitlist_id)))
return;
clear_bit(waitlist_bitnr(waitlist_id),
(unsigned long *) &lock->state.v);
if (waitlist_id == SIX_LOCK_write) {
struct task_struct *p = READ_ONCE(lock->owner);
if (p)
wake_up_process(p);
return;
}
raw_spin_lock(&lock->wait_lock);
list_for_each_entry_safe(w, next, wait_list, list) {
list_del_init(&w->list);
if (wake_up_process(w->task) &&
waitlist_id != SIX_LOCK_read) {
if (!list_empty(wait_list))
set_bit(waitlist_bitnr(waitlist_id),
(unsigned long *) &lock->state.v);
break;
}
}
raw_spin_unlock(&lock->wait_lock);
}
__always_inline __flatten
static void __six_unlock_type(struct six_lock *lock, enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state state;
EBUG_ON(!(lock->state.v & l[type].held_mask));
EBUG_ON(type == SIX_LOCK_write &&
!(lock->state.v & __SIX_LOCK_HELD_intent));
if (type != SIX_LOCK_write)
six_release(&lock->dep_map);
if (type == SIX_LOCK_intent) {
EBUG_ON(lock->owner != current);
if (lock->intent_lock_recurse) {
--lock->intent_lock_recurse;
return;
}
lock->owner = NULL;
}
state.v = atomic64_add_return_release(l[type].unlock_val,
&lock->state.counter);
six_lock_wakeup(lock, state, l[type].unlock_wakeup);
}
#define __SIX_LOCK(type) \
bool six_trylock_##type(struct six_lock *lock) \
{ \
return __six_trylock_type(lock, SIX_LOCK_##type); \
} \
EXPORT_SYMBOL_GPL(six_trylock_##type); \
\
bool six_relock_##type(struct six_lock *lock, u32 seq) \
{ \
return __six_relock_type(lock, SIX_LOCK_##type, seq); \
} \
EXPORT_SYMBOL_GPL(six_relock_##type); \
\
int six_lock_##type(struct six_lock *lock, \
six_lock_should_sleep_fn should_sleep_fn, void *p) \
{ \
return __six_lock_type(lock, SIX_LOCK_##type, should_sleep_fn, p);\
} \
EXPORT_SYMBOL_GPL(six_lock_##type); \
\
void six_unlock_##type(struct six_lock *lock) \
{ \
__six_unlock_type(lock, SIX_LOCK_##type); \
} \
EXPORT_SYMBOL_GPL(six_unlock_##type);
__SIX_LOCK(read)
__SIX_LOCK(intent)
__SIX_LOCK(write)
#undef __SIX_LOCK
/* Convert from intent to read: */
void six_lock_downgrade(struct six_lock *lock)
{
six_lock_increment(lock, SIX_LOCK_read);
six_unlock_intent(lock);
}
EXPORT_SYMBOL_GPL(six_lock_downgrade);
bool six_lock_tryupgrade(struct six_lock *lock)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state old, new;
u64 v = READ_ONCE(lock->state.v);
do {
new.v = old.v = v;
EBUG_ON(!(old.v & l[SIX_LOCK_read].held_mask));
new.v += l[SIX_LOCK_read].unlock_val;
if (new.v & l[SIX_LOCK_intent].lock_fail)
return false;
new.v += l[SIX_LOCK_intent].lock_val;
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v, new.v)) != old.v);
six_set_owner(lock, SIX_LOCK_intent, old);
six_lock_wakeup(lock, new, l[SIX_LOCK_read].unlock_wakeup);
return true;
}
EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
bool six_trylock_convert(struct six_lock *lock,
enum six_lock_type from,
enum six_lock_type to)
{
EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
if (to == from)
return true;
if (to == SIX_LOCK_read) {
six_lock_downgrade(lock);
return true;
} else {
return six_lock_tryupgrade(lock);
}
}
EXPORT_SYMBOL_GPL(six_trylock_convert);
/*
* Increment read/intent lock count, assuming we already have it read or intent
* locked:
*/
void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
EBUG_ON(type == SIX_LOCK_write);
six_acquire(&lock->dep_map, 0);
/* XXX: assert already locked, and that we don't overflow: */
switch (type) {
case SIX_LOCK_read:
atomic64_add(l[type].lock_val, &lock->state.counter);
break;
case SIX_LOCK_intent:
lock->intent_lock_recurse++;
break;
case SIX_LOCK_write:
BUG();
break;
}
}
EXPORT_SYMBOL_GPL(six_lock_increment);
void six_lock_wakeup_all(struct six_lock *lock)
{
struct six_lock_waiter *w;
raw_spin_lock(&lock->wait_lock);
list_for_each_entry(w, &lock->wait_list[0], list)
wake_up_process(w->task);
list_for_each_entry(w, &lock->wait_list[1], list)
wake_up_process(w->task);
raw_spin_unlock(&lock->wait_lock);
}
EXPORT_SYMBOL_GPL(six_lock_wakeup_all);