mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-02-03 00:00:07 +03:00
2345 lines
60 KiB
C
2345 lines
60 KiB
C
|
|
#include "bcachefs.h"
|
|
#include "alloc.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_gc.h"
|
|
#include "btree_update.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "buckets.h"
|
|
#include "extents.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "super-io.h"
|
|
|
|
#include <linux/random.h>
|
|
#include <linux/sort.h>
|
|
#include <trace/events/bcachefs.h>
|
|
|
|
static void btree_interior_update_updated_root(struct bch_fs *,
|
|
struct btree_interior_update *,
|
|
enum btree_id);
|
|
|
|
/* Calculate ideal packed bkey format for new btree nodes: */
|
|
|
|
void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
|
|
{
|
|
struct bkey_packed *k;
|
|
struct bset_tree *t;
|
|
struct bkey uk;
|
|
|
|
bch2_bkey_format_add_pos(s, b->data->min_key);
|
|
|
|
for_each_bset(b, t)
|
|
for (k = btree_bkey_first(b, t);
|
|
k != btree_bkey_last(b, t);
|
|
k = bkey_next(k))
|
|
if (!bkey_whiteout(k)) {
|
|
uk = bkey_unpack_key(b, k);
|
|
bch2_bkey_format_add_key(s, &uk);
|
|
}
|
|
}
|
|
|
|
static struct bkey_format bch2_btree_calc_format(struct btree *b)
|
|
{
|
|
struct bkey_format_state s;
|
|
|
|
bch2_bkey_format_init(&s);
|
|
__bch2_btree_calc_format(&s, b);
|
|
|
|
return bch2_bkey_format_done(&s);
|
|
}
|
|
|
|
static size_t btree_node_u64s_with_format(struct btree *b,
|
|
struct bkey_format *new_f)
|
|
{
|
|
struct bkey_format *old_f = &b->format;
|
|
|
|
/* stupid integer promotion rules */
|
|
ssize_t delta =
|
|
(((int) new_f->key_u64s - old_f->key_u64s) *
|
|
(int) b->nr.packed_keys) +
|
|
(((int) new_f->key_u64s - BKEY_U64s) *
|
|
(int) b->nr.unpacked_keys);
|
|
|
|
BUG_ON(delta + b->nr.live_u64s < 0);
|
|
|
|
return b->nr.live_u64s + delta;
|
|
}
|
|
|
|
/**
|
|
* btree_node_format_fits - check if we could rewrite node with a new format
|
|
*
|
|
* This assumes all keys can pack with the new format -- it just checks if
|
|
* the re-packed keys would fit inside the node itself.
|
|
*/
|
|
bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
|
|
struct bkey_format *new_f)
|
|
{
|
|
size_t u64s = btree_node_u64s_with_format(b, new_f);
|
|
|
|
return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
|
|
}
|
|
|
|
/* Btree node freeing/allocation: */
|
|
|
|
/*
|
|
* We're doing the index update that makes @b unreachable, update stuff to
|
|
* reflect that:
|
|
*
|
|
* Must be called _before_ btree_interior_update_updated_root() or
|
|
* btree_interior_update_updated_btree:
|
|
*/
|
|
static void bch2_btree_node_free_index(struct bch_fs *c, struct btree *b,
|
|
enum btree_id id, struct bkey_s_c k,
|
|
struct bch_fs_usage *stats)
|
|
{
|
|
struct btree_interior_update *as;
|
|
struct pending_btree_node_free *d;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
for_each_pending_btree_node_free(c, as, d)
|
|
if (!bkey_cmp(k.k->p, d->key.k.p) &&
|
|
bkey_val_bytes(k.k) == bkey_val_bytes(&d->key.k) &&
|
|
!memcmp(k.v, &d->key.v, bkey_val_bytes(k.k)))
|
|
goto found;
|
|
|
|
BUG();
|
|
found:
|
|
d->index_update_done = true;
|
|
|
|
/*
|
|
* Btree nodes are accounted as freed in bch_alloc_stats when they're
|
|
* freed from the index:
|
|
*/
|
|
stats->s[S_COMPRESSED][S_META] -= c->sb.btree_node_size;
|
|
stats->s[S_UNCOMPRESSED][S_META] -= c->sb.btree_node_size;
|
|
|
|
/*
|
|
* We're dropping @k from the btree, but it's still live until the
|
|
* index update is persistent so we need to keep a reference around for
|
|
* mark and sweep to find - that's primarily what the
|
|
* btree_node_pending_free list is for.
|
|
*
|
|
* So here (when we set index_update_done = true), we're moving an
|
|
* existing reference to a different part of the larger "gc keyspace" -
|
|
* and the new position comes after the old position, since GC marks
|
|
* the pending free list after it walks the btree.
|
|
*
|
|
* If we move the reference while mark and sweep is _between_ the old
|
|
* and the new position, mark and sweep will see the reference twice
|
|
* and it'll get double accounted - so check for that here and subtract
|
|
* to cancel out one of mark and sweep's markings if necessary:
|
|
*/
|
|
|
|
/*
|
|
* bch2_mark_key() compares the current gc pos to the pos we're
|
|
* moving this reference from, hence one comparison here:
|
|
*/
|
|
if (gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) {
|
|
struct bch_fs_usage tmp = { 0 };
|
|
|
|
bch2_mark_key(c, bkey_i_to_s_c(&d->key),
|
|
-c->sb.btree_node_size, true, b
|
|
? gc_pos_btree_node(b)
|
|
: gc_pos_btree_root(id),
|
|
&tmp, 0);
|
|
/*
|
|
* Don't apply tmp - pending deletes aren't tracked in
|
|
* bch_alloc_stats:
|
|
*/
|
|
}
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
static void __btree_node_free(struct bch_fs *c, struct btree *b,
|
|
struct btree_iter *iter)
|
|
{
|
|
trace_btree_node_free(c, b);
|
|
|
|
BUG_ON(b == btree_node_root(c, b));
|
|
BUG_ON(b->ob);
|
|
BUG_ON(!list_empty(&b->write_blocked));
|
|
|
|
six_lock_write(&b->lock);
|
|
|
|
if (btree_node_dirty(b))
|
|
bch2_btree_complete_write(c, b, btree_current_write(b));
|
|
clear_btree_node_dirty(b);
|
|
|
|
bch2_btree_node_hash_remove(c, b);
|
|
|
|
mutex_lock(&c->btree_cache_lock);
|
|
list_move(&b->list, &c->btree_cache_freeable);
|
|
mutex_unlock(&c->btree_cache_lock);
|
|
|
|
/*
|
|
* By using six_unlock_write() directly instead of
|
|
* bch2_btree_node_unlock_write(), we don't update the iterator's
|
|
* sequence numbers and cause future bch2_btree_node_relock() calls to
|
|
* fail:
|
|
*/
|
|
six_unlock_write(&b->lock);
|
|
}
|
|
|
|
void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct open_bucket *ob = b->ob;
|
|
|
|
b->ob = NULL;
|
|
|
|
__btree_node_free(c, b, NULL);
|
|
|
|
bch2_open_bucket_put(c, ob);
|
|
}
|
|
|
|
void bch2_btree_node_free_inmem(struct btree_iter *iter, struct btree *b)
|
|
{
|
|
bch2_btree_iter_node_drop_linked(iter, b);
|
|
|
|
__btree_node_free(iter->c, b, iter);
|
|
|
|
bch2_btree_iter_node_drop(iter, b);
|
|
}
|
|
|
|
static void bch2_btree_node_free_ondisk(struct bch_fs *c,
|
|
struct pending_btree_node_free *pending)
|
|
{
|
|
struct bch_fs_usage stats = { 0 };
|
|
|
|
BUG_ON(!pending->index_update_done);
|
|
|
|
bch2_mark_key(c, bkey_i_to_s_c(&pending->key),
|
|
-c->sb.btree_node_size, true,
|
|
gc_phase(GC_PHASE_PENDING_DELETE),
|
|
&stats, 0);
|
|
/*
|
|
* Don't apply stats - pending deletes aren't tracked in
|
|
* bch_alloc_stats:
|
|
*/
|
|
}
|
|
|
|
void bch2_btree_open_bucket_put(struct bch_fs *c, struct btree *b)
|
|
{
|
|
bch2_open_bucket_put(c, b->ob);
|
|
b->ob = NULL;
|
|
}
|
|
|
|
static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
|
|
bool use_reserve,
|
|
struct disk_reservation *res,
|
|
struct closure *cl)
|
|
{
|
|
BKEY_PADDED(k) tmp;
|
|
struct open_bucket *ob;
|
|
struct btree *b;
|
|
unsigned reserve = use_reserve ? 0 : BTREE_NODE_RESERVE;
|
|
|
|
mutex_lock(&c->btree_reserve_cache_lock);
|
|
if (c->btree_reserve_cache_nr > reserve) {
|
|
struct btree_alloc *a =
|
|
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
|
|
|
|
ob = a->ob;
|
|
bkey_copy(&tmp.k, &a->k);
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
goto mem_alloc;
|
|
}
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
|
|
retry:
|
|
/* alloc_sectors is weird, I suppose */
|
|
bkey_extent_init(&tmp.k);
|
|
tmp.k.k.size = c->sb.btree_node_size,
|
|
|
|
ob = bch2_alloc_sectors(c, &c->btree_write_point,
|
|
bkey_i_to_extent(&tmp.k),
|
|
res->nr_replicas,
|
|
c->opts.metadata_replicas_required,
|
|
use_reserve ? RESERVE_BTREE : RESERVE_NONE,
|
|
cl);
|
|
if (IS_ERR(ob))
|
|
return ERR_CAST(ob);
|
|
|
|
if (tmp.k.k.size < c->sb.btree_node_size) {
|
|
bch2_open_bucket_put(c, ob);
|
|
goto retry;
|
|
}
|
|
mem_alloc:
|
|
b = bch2_btree_node_mem_alloc(c);
|
|
|
|
/* we hold cannibalize_lock: */
|
|
BUG_ON(IS_ERR(b));
|
|
BUG_ON(b->ob);
|
|
|
|
bkey_copy(&b->key, &tmp.k);
|
|
b->key.k.size = 0;
|
|
b->ob = ob;
|
|
|
|
return b;
|
|
}
|
|
|
|
static struct btree *bch2_btree_node_alloc(struct bch_fs *c,
|
|
unsigned level, enum btree_id id,
|
|
struct btree_reserve *reserve)
|
|
{
|
|
struct btree *b;
|
|
|
|
BUG_ON(!reserve->nr);
|
|
|
|
b = reserve->b[--reserve->nr];
|
|
|
|
BUG_ON(bch2_btree_node_hash_insert(c, b, level, id));
|
|
|
|
set_btree_node_accessed(b);
|
|
set_btree_node_dirty(b);
|
|
|
|
bch2_bset_init_first(b, &b->data->keys);
|
|
memset(&b->nr, 0, sizeof(b->nr));
|
|
b->data->magic = cpu_to_le64(bset_magic(c));
|
|
b->data->flags = 0;
|
|
SET_BTREE_NODE_ID(b->data, id);
|
|
SET_BTREE_NODE_LEVEL(b->data, level);
|
|
b->data->ptr = bkey_i_to_extent(&b->key)->v.start->ptr;
|
|
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
bch2_check_mark_super(c, &b->key, true);
|
|
|
|
trace_btree_node_alloc(c, b);
|
|
return b;
|
|
}
|
|
|
|
struct btree *__bch2_btree_node_alloc_replacement(struct bch_fs *c,
|
|
struct btree *b,
|
|
struct bkey_format format,
|
|
struct btree_reserve *reserve)
|
|
{
|
|
struct btree *n;
|
|
|
|
n = bch2_btree_node_alloc(c, b->level, b->btree_id, reserve);
|
|
|
|
n->data->min_key = b->data->min_key;
|
|
n->data->max_key = b->data->max_key;
|
|
n->data->format = format;
|
|
|
|
btree_node_set_format(n, format);
|
|
|
|
bch2_btree_sort_into(c, n, b);
|
|
|
|
btree_node_reset_sib_u64s(n);
|
|
|
|
n->key.k.p = b->key.k.p;
|
|
return n;
|
|
}
|
|
|
|
static struct btree *bch2_btree_node_alloc_replacement(struct bch_fs *c,
|
|
struct btree *b,
|
|
struct btree_reserve *reserve)
|
|
{
|
|
struct bkey_format new_f = bch2_btree_calc_format(b);
|
|
|
|
/*
|
|
* The keys might expand with the new format - if they wouldn't fit in
|
|
* the btree node anymore, use the old format for now:
|
|
*/
|
|
if (!bch2_btree_node_format_fits(c, b, &new_f))
|
|
new_f = b->format;
|
|
|
|
return __bch2_btree_node_alloc_replacement(c, b, new_f, reserve);
|
|
}
|
|
|
|
static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b,
|
|
struct btree_reserve *btree_reserve)
|
|
{
|
|
struct btree *old = btree_node_root(c, b);
|
|
|
|
/* Root nodes cannot be reaped */
|
|
mutex_lock(&c->btree_cache_lock);
|
|
list_del_init(&b->list);
|
|
mutex_unlock(&c->btree_cache_lock);
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
btree_node_root(c, b) = b;
|
|
mutex_unlock(&c->btree_root_lock);
|
|
|
|
if (btree_reserve) {
|
|
/*
|
|
* New allocation (we're not being called because we're in
|
|
* bch2_btree_root_read()) - do marking while holding
|
|
* btree_root_lock:
|
|
*/
|
|
struct bch_fs_usage stats = { 0 };
|
|
|
|
bch2_mark_key(c, bkey_i_to_s_c(&b->key),
|
|
c->sb.btree_node_size, true,
|
|
gc_pos_btree_root(b->btree_id),
|
|
&stats, 0);
|
|
|
|
if (old)
|
|
bch2_btree_node_free_index(c, NULL, old->btree_id,
|
|
bkey_i_to_s_c(&old->key),
|
|
&stats);
|
|
bch2_fs_usage_apply(c, &stats, &btree_reserve->disk_res,
|
|
gc_pos_btree_root(b->btree_id));
|
|
}
|
|
|
|
bch2_recalc_btree_reserve(c);
|
|
}
|
|
|
|
static void bch2_btree_set_root_ondisk(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct btree_root *r = &c->btree_roots[b->btree_id];
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
|
|
BUG_ON(b != r->b);
|
|
bkey_copy(&r->key, &b->key);
|
|
r->level = b->level;
|
|
r->alive = true;
|
|
|
|
mutex_unlock(&c->btree_root_lock);
|
|
}
|
|
|
|
/*
|
|
* Only for filesystem bringup, when first reading the btree roots or allocating
|
|
* btree roots when initializing a new filesystem:
|
|
*/
|
|
void bch2_btree_set_root_initial(struct bch_fs *c, struct btree *b,
|
|
struct btree_reserve *btree_reserve)
|
|
{
|
|
BUG_ON(btree_node_root(c, b));
|
|
|
|
bch2_btree_set_root_inmem(c, b, btree_reserve);
|
|
bch2_btree_set_root_ondisk(c, b);
|
|
}
|
|
|
|
/**
|
|
* bch_btree_set_root - update the root in memory and on disk
|
|
*
|
|
* To ensure forward progress, the current task must not be holding any
|
|
* btree node write locks. However, you must hold an intent lock on the
|
|
* old root.
|
|
*
|
|
* Note: This allocates a journal entry but doesn't add any keys to
|
|
* it. All the btree roots are part of every journal write, so there
|
|
* is nothing new to be done. This just guarantees that there is a
|
|
* journal write.
|
|
*/
|
|
static void bch2_btree_set_root(struct btree_iter *iter, struct btree *b,
|
|
struct btree_interior_update *as,
|
|
struct btree_reserve *btree_reserve)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree *old;
|
|
|
|
trace_btree_set_root(c, b);
|
|
BUG_ON(!b->written);
|
|
|
|
old = btree_node_root(c, b);
|
|
|
|
/*
|
|
* Ensure no one is using the old root while we switch to the
|
|
* new root:
|
|
*/
|
|
bch2_btree_node_lock_write(old, iter);
|
|
|
|
bch2_btree_set_root_inmem(c, b, btree_reserve);
|
|
|
|
btree_interior_update_updated_root(c, as, iter->btree_id);
|
|
|
|
/*
|
|
* Unlock old root after new root is visible:
|
|
*
|
|
* The new root isn't persistent, but that's ok: we still have
|
|
* an intent lock on the new root, and any updates that would
|
|
* depend on the new root would have to update the new root.
|
|
*/
|
|
bch2_btree_node_unlock_write(old, iter);
|
|
}
|
|
|
|
static struct btree *__btree_root_alloc(struct bch_fs *c, unsigned level,
|
|
enum btree_id id,
|
|
struct btree_reserve *reserve)
|
|
{
|
|
struct btree *b = bch2_btree_node_alloc(c, level, id, reserve);
|
|
|
|
b->data->min_key = POS_MIN;
|
|
b->data->max_key = POS_MAX;
|
|
b->data->format = bch2_btree_calc_format(b);
|
|
b->key.k.p = POS_MAX;
|
|
|
|
btree_node_set_format(b, b->data->format);
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
six_unlock_write(&b->lock);
|
|
|
|
return b;
|
|
}
|
|
|
|
void bch2_btree_reserve_put(struct bch_fs *c, struct btree_reserve *reserve)
|
|
{
|
|
bch2_disk_reservation_put(c, &reserve->disk_res);
|
|
|
|
mutex_lock(&c->btree_reserve_cache_lock);
|
|
|
|
while (reserve->nr) {
|
|
struct btree *b = reserve->b[--reserve->nr];
|
|
|
|
six_unlock_write(&b->lock);
|
|
|
|
if (c->btree_reserve_cache_nr <
|
|
ARRAY_SIZE(c->btree_reserve_cache)) {
|
|
struct btree_alloc *a =
|
|
&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
|
|
|
|
a->ob = b->ob;
|
|
b->ob = NULL;
|
|
bkey_copy(&a->k, &b->key);
|
|
} else {
|
|
bch2_open_bucket_put(c, b->ob);
|
|
b->ob = NULL;
|
|
}
|
|
|
|
__btree_node_free(c, b, NULL);
|
|
|
|
six_unlock_intent(&b->lock);
|
|
}
|
|
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
|
|
mempool_free(reserve, &c->btree_reserve_pool);
|
|
}
|
|
|
|
static struct btree_reserve *__bch2_btree_reserve_get(struct bch_fs *c,
|
|
unsigned nr_nodes,
|
|
unsigned flags,
|
|
struct closure *cl)
|
|
{
|
|
struct btree_reserve *reserve;
|
|
struct btree *b;
|
|
struct disk_reservation disk_res = { 0, 0 };
|
|
unsigned sectors = nr_nodes * c->sb.btree_node_size;
|
|
int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD|
|
|
BCH_DISK_RESERVATION_METADATA;
|
|
|
|
if (flags & BTREE_INSERT_NOFAIL)
|
|
disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL;
|
|
|
|
/*
|
|
* This check isn't necessary for correctness - it's just to potentially
|
|
* prevent us from doing a lot of work that'll end up being wasted:
|
|
*/
|
|
ret = bch2_journal_error(&c->journal);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (bch2_disk_reservation_get(c, &disk_res, sectors, disk_res_flags))
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
|
|
|
|
/*
|
|
* Protects reaping from the btree node cache and using the btree node
|
|
* open bucket reserve:
|
|
*/
|
|
ret = bch2_btree_node_cannibalize_lock(c, cl);
|
|
if (ret) {
|
|
bch2_disk_reservation_put(c, &disk_res);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO);
|
|
|
|
reserve->disk_res = disk_res;
|
|
reserve->nr = 0;
|
|
|
|
while (reserve->nr < nr_nodes) {
|
|
b = __bch2_btree_node_alloc(c, flags & BTREE_INSERT_USE_RESERVE,
|
|
&disk_res, cl);
|
|
if (IS_ERR(b)) {
|
|
ret = PTR_ERR(b);
|
|
goto err_free;
|
|
}
|
|
|
|
reserve->b[reserve->nr++] = b;
|
|
}
|
|
|
|
bch2_btree_node_cannibalize_unlock(c);
|
|
return reserve;
|
|
err_free:
|
|
bch2_btree_reserve_put(c, reserve);
|
|
bch2_btree_node_cannibalize_unlock(c);
|
|
trace_btree_reserve_get_fail(c, nr_nodes, cl);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct btree_reserve *bch2_btree_reserve_get(struct bch_fs *c,
|
|
struct btree *b,
|
|
unsigned extra_nodes,
|
|
unsigned flags,
|
|
struct closure *cl)
|
|
{
|
|
unsigned depth = btree_node_root(c, b)->level - b->level;
|
|
unsigned nr_nodes = btree_reserve_required_nodes(depth) + extra_nodes;
|
|
|
|
return __bch2_btree_reserve_get(c, nr_nodes, flags, cl);
|
|
|
|
}
|
|
|
|
int bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id,
|
|
struct closure *writes)
|
|
{
|
|
struct closure cl;
|
|
struct btree_reserve *reserve;
|
|
struct btree *b;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
while (1) {
|
|
/* XXX haven't calculated capacity yet :/ */
|
|
reserve = __bch2_btree_reserve_get(c, 1, 0, &cl);
|
|
if (!IS_ERR(reserve))
|
|
break;
|
|
|
|
if (PTR_ERR(reserve) == -ENOSPC)
|
|
return PTR_ERR(reserve);
|
|
|
|
closure_sync(&cl);
|
|
}
|
|
|
|
b = __btree_root_alloc(c, 0, id, reserve);
|
|
|
|
bch2_btree_node_write(c, b, writes, SIX_LOCK_intent, -1);
|
|
|
|
bch2_btree_set_root_initial(c, b, reserve);
|
|
bch2_btree_open_bucket_put(c, b);
|
|
six_unlock_intent(&b->lock);
|
|
|
|
bch2_btree_reserve_put(c, reserve);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bch2_insert_fixup_btree_ptr(struct btree_iter *iter,
|
|
struct btree *b,
|
|
struct bkey_i *insert,
|
|
struct btree_node_iter *node_iter,
|
|
struct disk_reservation *disk_res)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct bch_fs_usage stats = { 0 };
|
|
struct bkey_packed *k;
|
|
struct bkey tmp;
|
|
|
|
if (bkey_extent_is_data(&insert->k))
|
|
bch2_mark_key(c, bkey_i_to_s_c(insert),
|
|
c->sb.btree_node_size, true,
|
|
gc_pos_btree_node(b), &stats, 0);
|
|
|
|
while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
|
|
!btree_iter_pos_cmp_packed(b, &insert->k.p, k, false))
|
|
bch2_btree_node_iter_advance(node_iter, b);
|
|
|
|
/*
|
|
* If we're overwriting, look up pending delete and mark so that gc
|
|
* marks it on the pending delete list:
|
|
*/
|
|
if (k && !bkey_cmp_packed(b, k, &insert->k))
|
|
bch2_btree_node_free_index(c, b, iter->btree_id,
|
|
bkey_disassemble(b, k, &tmp),
|
|
&stats);
|
|
|
|
bch2_fs_usage_apply(c, &stats, disk_res, gc_pos_btree_node(b));
|
|
|
|
bch2_btree_bset_insert_key(iter, b, node_iter, insert);
|
|
set_btree_node_dirty(b);
|
|
}
|
|
|
|
/* Inserting into a given leaf node (last stage of insert): */
|
|
|
|
/* Handle overwrites and do insert, for non extents: */
|
|
bool bch2_btree_bset_insert_key(struct btree_iter *iter,
|
|
struct btree *b,
|
|
struct btree_node_iter *node_iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
const struct bkey_format *f = &b->format;
|
|
struct bkey_packed *k;
|
|
struct bset_tree *t;
|
|
unsigned clobber_u64s;
|
|
|
|
EBUG_ON(btree_node_just_written(b));
|
|
EBUG_ON(bset_written(b, btree_bset_last(b)));
|
|
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
|
|
EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
|
|
bkey_cmp(insert->k.p, b->data->max_key) > 0);
|
|
BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(iter->c, b));
|
|
|
|
k = bch2_btree_node_iter_peek_all(node_iter, b);
|
|
if (k && !bkey_cmp_packed(b, k, &insert->k)) {
|
|
BUG_ON(bkey_whiteout(k));
|
|
|
|
t = bch2_bkey_to_bset(b, k);
|
|
|
|
if (bset_unwritten(b, bset(b, t)) &&
|
|
bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k)) {
|
|
BUG_ON(bkey_whiteout(k) != bkey_whiteout(&insert->k));
|
|
|
|
k->type = insert->k.type;
|
|
memcpy_u64s(bkeyp_val(f, k), &insert->v,
|
|
bkey_val_u64s(&insert->k));
|
|
return true;
|
|
}
|
|
|
|
insert->k.needs_whiteout = k->needs_whiteout;
|
|
|
|
btree_keys_account_key_drop(&b->nr, t - b->set, k);
|
|
|
|
if (t == bset_tree_last(b)) {
|
|
clobber_u64s = k->u64s;
|
|
|
|
/*
|
|
* If we're deleting, and the key we're deleting doesn't
|
|
* need a whiteout (it wasn't overwriting a key that had
|
|
* been written to disk) - just delete it:
|
|
*/
|
|
if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
|
|
bch2_bset_delete(b, k, clobber_u64s);
|
|
bch2_btree_node_iter_fix(iter, b, node_iter, t,
|
|
k, clobber_u64s, 0);
|
|
return true;
|
|
}
|
|
|
|
goto overwrite;
|
|
}
|
|
|
|
k->type = KEY_TYPE_DELETED;
|
|
bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
|
|
k->u64s, k->u64s);
|
|
|
|
if (bkey_whiteout(&insert->k)) {
|
|
reserve_whiteout(b, t, k);
|
|
return true;
|
|
} else {
|
|
k->needs_whiteout = false;
|
|
}
|
|
} else {
|
|
/*
|
|
* Deleting, but the key to delete wasn't found - nothing to do:
|
|
*/
|
|
if (bkey_whiteout(&insert->k))
|
|
return false;
|
|
|
|
insert->k.needs_whiteout = false;
|
|
}
|
|
|
|
t = bset_tree_last(b);
|
|
k = bch2_btree_node_iter_bset_pos(node_iter, b, t);
|
|
clobber_u64s = 0;
|
|
overwrite:
|
|
bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
|
|
if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
|
|
bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
|
|
clobber_u64s, k->u64s);
|
|
return true;
|
|
}
|
|
|
|
static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
|
|
unsigned i)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct btree_write *w = container_of(pin, struct btree_write, journal);
|
|
struct btree *b = container_of(w, struct btree, writes[i]);
|
|
|
|
six_lock_read(&b->lock);
|
|
/*
|
|
* Reusing a btree node can race with the journal reclaim code calling
|
|
* the journal pin flush fn, and there's no good fix for this: we don't
|
|
* really want journal_pin_drop() to block until the flush fn is no
|
|
* longer running, because journal_pin_drop() is called from the btree
|
|
* node write endio function, and we can't wait on the flush fn to
|
|
* finish running in mca_reap() - where we make reused btree nodes ready
|
|
* to use again - because there, we're holding the lock this function
|
|
* needs - deadlock.
|
|
*
|
|
* So, the b->level check is a hack so we don't try to write nodes we
|
|
* shouldn't:
|
|
*/
|
|
if (!b->level)
|
|
bch2_btree_node_write(c, b, NULL, SIX_LOCK_read, i);
|
|
six_unlock_read(&b->lock);
|
|
}
|
|
|
|
static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin)
|
|
{
|
|
return __btree_node_flush(j, pin, 0);
|
|
}
|
|
|
|
static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin)
|
|
{
|
|
return __btree_node_flush(j, pin, 1);
|
|
}
|
|
|
|
void bch2_btree_journal_key(struct btree_insert *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct journal *j = &c->journal;
|
|
struct btree *b = iter->nodes[0];
|
|
struct btree_write *w = btree_current_write(b);
|
|
|
|
EBUG_ON(iter->level || b->level);
|
|
EBUG_ON(!trans->journal_res.ref &&
|
|
test_bit(JOURNAL_REPLAY_DONE, &j->flags));
|
|
|
|
if (!journal_pin_active(&w->journal))
|
|
bch2_journal_pin_add(j, &w->journal,
|
|
btree_node_write_idx(b) == 0
|
|
? btree_node_flush0
|
|
: btree_node_flush1);
|
|
|
|
if (trans->journal_res.ref) {
|
|
u64 seq = trans->journal_res.seq;
|
|
bool needs_whiteout = insert->k.needs_whiteout;
|
|
|
|
/*
|
|
* have a bug where we're seeing an extent with an invalid crc
|
|
* entry in the journal, trying to track it down:
|
|
*/
|
|
BUG_ON(bch2_bkey_invalid(c, b->btree_id, bkey_i_to_s_c(insert)));
|
|
|
|
/* ick */
|
|
insert->k.needs_whiteout = false;
|
|
bch2_journal_add_keys(j, &trans->journal_res,
|
|
b->btree_id, insert);
|
|
insert->k.needs_whiteout = needs_whiteout;
|
|
|
|
if (trans->journal_seq)
|
|
*trans->journal_seq = seq;
|
|
btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
|
|
}
|
|
|
|
if (!btree_node_dirty(b))
|
|
set_btree_node_dirty(b);
|
|
}
|
|
|
|
static enum btree_insert_ret
|
|
bch2_insert_fixup_key(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert)
|
|
{
|
|
struct btree_iter *iter = insert->iter;
|
|
|
|
BUG_ON(iter->level);
|
|
|
|
if (bch2_btree_bset_insert_key(iter,
|
|
iter->nodes[0],
|
|
&iter->node_iters[0],
|
|
insert->k))
|
|
bch2_btree_journal_key(trans, iter, insert->k);
|
|
|
|
trans->did_work = true;
|
|
return BTREE_INSERT_OK;
|
|
}
|
|
|
|
static void verify_keys_sorted(struct keylist *l)
|
|
{
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
struct bkey_i *k;
|
|
|
|
for_each_keylist_key(l, k)
|
|
BUG_ON(bkey_next(k) != l->top &&
|
|
bkey_cmp(k->k.p, bkey_next(k)->k.p) >= 0);
|
|
#endif
|
|
}
|
|
|
|
static void btree_node_lock_for_insert(struct btree *b, struct btree_iter *iter)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
|
|
bch2_btree_node_lock_write(b, iter);
|
|
|
|
if (btree_node_just_written(b) &&
|
|
bch2_btree_post_write_cleanup(c, b))
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
|
|
/*
|
|
* If the last bset has been written, or if it's gotten too big - start
|
|
* a new bset to insert into:
|
|
*/
|
|
if (want_new_bset(c, b))
|
|
bch2_btree_init_next(c, b, iter);
|
|
}
|
|
|
|
/* Asynchronous interior node update machinery */
|
|
|
|
struct btree_interior_update *
|
|
bch2_btree_interior_update_alloc(struct bch_fs *c)
|
|
{
|
|
struct btree_interior_update *as;
|
|
|
|
as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
|
|
memset(as, 0, sizeof(*as));
|
|
closure_init(&as->cl, &c->cl);
|
|
as->c = c;
|
|
as->mode = BTREE_INTERIOR_NO_UPDATE;
|
|
|
|
bch2_keylist_init(&as->parent_keys, as->inline_keys,
|
|
ARRAY_SIZE(as->inline_keys));
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_add(&as->list, &c->btree_interior_update_list);
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
return as;
|
|
}
|
|
|
|
static void btree_interior_update_free(struct closure *cl)
|
|
{
|
|
struct btree_interior_update *as = container_of(cl, struct btree_interior_update, cl);
|
|
|
|
mempool_free(as, &as->c->btree_interior_update_pool);
|
|
}
|
|
|
|
static void btree_interior_update_nodes_reachable(struct closure *cl)
|
|
{
|
|
struct btree_interior_update *as =
|
|
container_of(cl, struct btree_interior_update, cl);
|
|
struct bch_fs *c = as->c;
|
|
unsigned i;
|
|
|
|
bch2_journal_pin_drop(&c->journal, &as->journal);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
for (i = 0; i < as->nr_pending; i++)
|
|
bch2_btree_node_free_ondisk(c, &as->pending[i]);
|
|
as->nr_pending = 0;
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_del(&as->list);
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
closure_wake_up(&as->wait);
|
|
|
|
closure_return_with_destructor(cl, btree_interior_update_free);
|
|
}
|
|
|
|
static void btree_interior_update_nodes_written(struct closure *cl)
|
|
{
|
|
struct btree_interior_update *as =
|
|
container_of(cl, struct btree_interior_update, cl);
|
|
struct bch_fs *c = as->c;
|
|
struct btree *b;
|
|
|
|
if (bch2_journal_error(&c->journal)) {
|
|
/* XXX what? */
|
|
}
|
|
|
|
/* XXX: missing error handling, damnit */
|
|
|
|
/* check for journal error, bail out if we flushed */
|
|
|
|
/*
|
|
* We did an update to a parent node where the pointers we added pointed
|
|
* to child nodes that weren't written yet: now, the child nodes have
|
|
* been written so we can write out the update to the interior node.
|
|
*/
|
|
retry:
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
switch (as->mode) {
|
|
case BTREE_INTERIOR_NO_UPDATE:
|
|
BUG();
|
|
case BTREE_INTERIOR_UPDATING_NODE:
|
|
/* The usual case: */
|
|
b = READ_ONCE(as->b);
|
|
|
|
if (!six_trylock_read(&b->lock)) {
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
six_lock_read(&b->lock);
|
|
six_unlock_read(&b->lock);
|
|
goto retry;
|
|
}
|
|
|
|
BUG_ON(!btree_node_dirty(b));
|
|
closure_wait(&btree_current_write(b)->wait, cl);
|
|
|
|
list_del(&as->write_blocked_list);
|
|
|
|
if (list_empty(&b->write_blocked))
|
|
bch2_btree_node_write(c, b, NULL, SIX_LOCK_read, -1);
|
|
six_unlock_read(&b->lock);
|
|
break;
|
|
|
|
case BTREE_INTERIOR_UPDATING_AS:
|
|
/*
|
|
* The btree node we originally updated has been freed and is
|
|
* being rewritten - so we need to write anything here, we just
|
|
* need to signal to that btree_interior_update that it's ok to make the
|
|
* new replacement node visible:
|
|
*/
|
|
closure_put(&as->parent_as->cl);
|
|
|
|
/*
|
|
* and then we have to wait on that btree_interior_update to finish:
|
|
*/
|
|
closure_wait(&as->parent_as->wait, cl);
|
|
break;
|
|
|
|
case BTREE_INTERIOR_UPDATING_ROOT:
|
|
/* b is the new btree root: */
|
|
b = READ_ONCE(as->b);
|
|
|
|
if (!six_trylock_read(&b->lock)) {
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
six_lock_read(&b->lock);
|
|
six_unlock_read(&b->lock);
|
|
goto retry;
|
|
}
|
|
|
|
BUG_ON(c->btree_roots[b->btree_id].as != as);
|
|
c->btree_roots[b->btree_id].as = NULL;
|
|
|
|
bch2_btree_set_root_ondisk(c, b);
|
|
|
|
/*
|
|
* We don't have to wait anything anything here (before
|
|
* btree_interior_update_nodes_reachable frees the old nodes
|
|
* ondisk) - we've ensured that the very next journal write will
|
|
* have the pointer to the new root, and before the allocator
|
|
* can reuse the old nodes it'll have to do a journal commit:
|
|
*/
|
|
six_unlock_read(&b->lock);
|
|
}
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
continue_at(cl, btree_interior_update_nodes_reachable, system_wq);
|
|
}
|
|
|
|
/*
|
|
* We're updating @b with pointers to nodes that haven't finished writing yet:
|
|
* block @b from being written until @as completes
|
|
*/
|
|
static void btree_interior_update_updated_btree(struct bch_fs *c,
|
|
struct btree_interior_update *as,
|
|
struct btree *b)
|
|
{
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
|
|
BUG_ON(!btree_node_dirty(b));
|
|
|
|
as->mode = BTREE_INTERIOR_UPDATING_NODE;
|
|
as->b = b;
|
|
list_add(&as->write_blocked_list, &b->write_blocked);
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
|
|
|
|
continue_at(&as->cl, btree_interior_update_nodes_written,
|
|
system_freezable_wq);
|
|
}
|
|
|
|
static void btree_interior_update_updated_root(struct bch_fs *c,
|
|
struct btree_interior_update *as,
|
|
enum btree_id btree_id)
|
|
{
|
|
struct btree_root *r = &c->btree_roots[btree_id];
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
|
|
|
|
/*
|
|
* Old root might not be persistent yet - if so, redirect its
|
|
* btree_interior_update operation to point to us:
|
|
*/
|
|
if (r->as) {
|
|
BUG_ON(r->as->mode != BTREE_INTERIOR_UPDATING_ROOT);
|
|
|
|
r->as->b = NULL;
|
|
r->as->mode = BTREE_INTERIOR_UPDATING_AS;
|
|
r->as->parent_as = as;
|
|
closure_get(&as->cl);
|
|
}
|
|
|
|
as->mode = BTREE_INTERIOR_UPDATING_ROOT;
|
|
as->b = r->b;
|
|
r->as = as;
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
|
|
|
|
continue_at(&as->cl, btree_interior_update_nodes_written,
|
|
system_freezable_wq);
|
|
}
|
|
|
|
static void interior_update_flush(struct journal *j, struct journal_entry_pin *pin)
|
|
{
|
|
struct btree_interior_update *as =
|
|
container_of(pin, struct btree_interior_update, journal);
|
|
|
|
bch2_journal_flush_seq_async(j, as->journal_seq, NULL);
|
|
}
|
|
|
|
/*
|
|
* @b is being split/rewritten: it may have pointers to not-yet-written btree
|
|
* nodes and thus outstanding btree_interior_updates - redirect @b's
|
|
* btree_interior_updates to point to this btree_interior_update:
|
|
*/
|
|
void bch2_btree_interior_update_will_free_node(struct bch_fs *c,
|
|
struct btree_interior_update *as,
|
|
struct btree *b)
|
|
{
|
|
struct btree_interior_update *p, *n;
|
|
struct pending_btree_node_free *d;
|
|
struct bset_tree *t;
|
|
|
|
/*
|
|
* Does this node have data that hasn't been written in the journal?
|
|
*
|
|
* If so, we have to wait for the corresponding journal entry to be
|
|
* written before making the new nodes reachable - we can't just carry
|
|
* over the bset->journal_seq tracking, since we'll be mixing those keys
|
|
* in with keys that aren't in the journal anymore:
|
|
*/
|
|
for_each_bset(b, t)
|
|
as->journal_seq = max(as->journal_seq, bset(b, t)->journal_seq);
|
|
|
|
/*
|
|
* Does this node have unwritten data that has a pin on the journal?
|
|
*
|
|
* If so, transfer that pin to the btree_interior_update operation -
|
|
* note that if we're freeing multiple nodes, we only need to keep the
|
|
* oldest pin of any of the nodes we're freeing. We'll release the pin
|
|
* when the new nodes are persistent and reachable on disk:
|
|
*/
|
|
bch2_journal_pin_add_if_older(&c->journal,
|
|
&b->writes[0].journal,
|
|
&as->journal, interior_update_flush);
|
|
bch2_journal_pin_add_if_older(&c->journal,
|
|
&b->writes[1].journal,
|
|
&as->journal, interior_update_flush);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
/*
|
|
* Does this node have any btree_interior_update operations preventing
|
|
* it from being written?
|
|
*
|
|
* If so, redirect them to point to this btree_interior_update: we can
|
|
* write out our new nodes, but we won't make them visible until those
|
|
* operations complete
|
|
*/
|
|
list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
|
|
BUG_ON(p->mode != BTREE_INTERIOR_UPDATING_NODE);
|
|
|
|
p->mode = BTREE_INTERIOR_UPDATING_AS;
|
|
list_del(&p->write_blocked_list);
|
|
p->b = NULL;
|
|
p->parent_as = as;
|
|
closure_get(&as->cl);
|
|
}
|
|
|
|
/* Add this node to the list of nodes being freed: */
|
|
BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending));
|
|
|
|
d = &as->pending[as->nr_pending++];
|
|
d->index_update_done = false;
|
|
d->seq = b->data->keys.seq;
|
|
d->btree_id = b->btree_id;
|
|
d->level = b->level;
|
|
bkey_copy(&d->key, &b->key);
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
static void btree_node_interior_verify(struct btree *b)
|
|
{
|
|
struct btree_node_iter iter;
|
|
struct bkey_packed *k;
|
|
|
|
BUG_ON(!b->level);
|
|
|
|
bch2_btree_node_iter_init(&iter, b, b->key.k.p, false, false);
|
|
#if 1
|
|
BUG_ON(!(k = bch2_btree_node_iter_peek(&iter, b)) ||
|
|
bkey_cmp_left_packed(b, k, &b->key.k.p));
|
|
|
|
BUG_ON((bch2_btree_node_iter_advance(&iter, b),
|
|
!bch2_btree_node_iter_end(&iter)));
|
|
#else
|
|
const char *msg;
|
|
|
|
msg = "not found";
|
|
k = bch2_btree_node_iter_peek(&iter, b);
|
|
if (!k)
|
|
goto err;
|
|
|
|
msg = "isn't what it should be";
|
|
if (bkey_cmp_left_packed(b, k, &b->key.k.p))
|
|
goto err;
|
|
|
|
bch2_btree_node_iter_advance(&iter, b);
|
|
|
|
msg = "isn't last key";
|
|
if (!bch2_btree_node_iter_end(&iter))
|
|
goto err;
|
|
return;
|
|
err:
|
|
bch2_dump_btree_node(b);
|
|
printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode,
|
|
b->key.k.p.offset, msg);
|
|
BUG();
|
|
#endif
|
|
}
|
|
|
|
static enum btree_insert_ret
|
|
bch2_btree_insert_keys_interior(struct btree *b,
|
|
struct btree_iter *iter,
|
|
struct keylist *insert_keys,
|
|
struct btree_interior_update *as,
|
|
struct btree_reserve *res)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree_iter *linked;
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_i *insert = bch2_keylist_front(insert_keys);
|
|
struct bkey_packed *k;
|
|
|
|
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
|
|
BUG_ON(!b->level);
|
|
BUG_ON(!as || as->b);
|
|
verify_keys_sorted(insert_keys);
|
|
|
|
btree_node_lock_for_insert(b, iter);
|
|
|
|
if (bch_keylist_u64s(insert_keys) >
|
|
bch_btree_keys_u64s_remaining(c, b)) {
|
|
bch2_btree_node_unlock_write(b, iter);
|
|
return BTREE_INSERT_BTREE_NODE_FULL;
|
|
}
|
|
|
|
/* Don't screw up @iter's position: */
|
|
node_iter = iter->node_iters[b->level];
|
|
|
|
/*
|
|
* btree_split(), btree_gc_coalesce() will insert keys before
|
|
* the iterator's current position - they know the keys go in
|
|
* the node the iterator points to:
|
|
*/
|
|
while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
|
|
(bkey_cmp_packed(b, k, &insert->k) >= 0))
|
|
;
|
|
|
|
while (!bch2_keylist_empty(insert_keys)) {
|
|
insert = bch2_keylist_front(insert_keys);
|
|
|
|
bch2_insert_fixup_btree_ptr(iter, b, insert,
|
|
&node_iter, &res->disk_res);
|
|
bch2_keylist_pop_front(insert_keys);
|
|
}
|
|
|
|
btree_interior_update_updated_btree(c, as, b);
|
|
|
|
for_each_linked_btree_node(iter, b, linked)
|
|
bch2_btree_node_iter_peek(&linked->node_iters[b->level],
|
|
b);
|
|
bch2_btree_node_iter_peek(&iter->node_iters[b->level], b);
|
|
|
|
bch2_btree_iter_verify(iter, b);
|
|
|
|
if (bch2_maybe_compact_whiteouts(c, b))
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
|
|
bch2_btree_node_unlock_write(b, iter);
|
|
|
|
btree_node_interior_verify(b);
|
|
return BTREE_INSERT_OK;
|
|
}
|
|
|
|
/*
|
|
* Move keys from n1 (original replacement node, now lower node) to n2 (higher
|
|
* node)
|
|
*/
|
|
static struct btree *__btree_split_node(struct btree_iter *iter, struct btree *n1,
|
|
struct btree_reserve *reserve)
|
|
{
|
|
size_t nr_packed = 0, nr_unpacked = 0;
|
|
struct btree *n2;
|
|
struct bset *set1, *set2;
|
|
struct bkey_packed *k, *prev = NULL;
|
|
|
|
n2 = bch2_btree_node_alloc(iter->c, n1->level, iter->btree_id, reserve);
|
|
n2->data->max_key = n1->data->max_key;
|
|
n2->data->format = n1->format;
|
|
n2->key.k.p = n1->key.k.p;
|
|
|
|
btree_node_set_format(n2, n2->data->format);
|
|
|
|
set1 = btree_bset_first(n1);
|
|
set2 = btree_bset_first(n2);
|
|
|
|
/*
|
|
* Has to be a linear search because we don't have an auxiliary
|
|
* search tree yet
|
|
*/
|
|
k = set1->start;
|
|
while (1) {
|
|
if (bkey_next(k) == vstruct_last(set1))
|
|
break;
|
|
if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
|
|
break;
|
|
|
|
if (bkey_packed(k))
|
|
nr_packed++;
|
|
else
|
|
nr_unpacked++;
|
|
|
|
prev = k;
|
|
k = bkey_next(k);
|
|
}
|
|
|
|
BUG_ON(!prev);
|
|
|
|
n1->key.k.p = bkey_unpack_pos(n1, prev);
|
|
n1->data->max_key = n1->key.k.p;
|
|
n2->data->min_key =
|
|
btree_type_successor(n1->btree_id, n1->key.k.p);
|
|
|
|
set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k);
|
|
set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
|
|
|
|
set_btree_bset_end(n1, n1->set);
|
|
set_btree_bset_end(n2, n2->set);
|
|
|
|
n2->nr.live_u64s = le16_to_cpu(set2->u64s);
|
|
n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s);
|
|
n2->nr.packed_keys = n1->nr.packed_keys - nr_packed;
|
|
n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked;
|
|
|
|
n1->nr.live_u64s = le16_to_cpu(set1->u64s);
|
|
n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
|
|
n1->nr.packed_keys = nr_packed;
|
|
n1->nr.unpacked_keys = nr_unpacked;
|
|
|
|
BUG_ON(!set1->u64s);
|
|
BUG_ON(!set2->u64s);
|
|
|
|
memcpy_u64s(set2->start,
|
|
vstruct_end(set1),
|
|
le16_to_cpu(set2->u64s));
|
|
|
|
btree_node_reset_sib_u64s(n1);
|
|
btree_node_reset_sib_u64s(n2);
|
|
|
|
bch2_verify_btree_nr_keys(n1);
|
|
bch2_verify_btree_nr_keys(n2);
|
|
|
|
if (n1->level) {
|
|
btree_node_interior_verify(n1);
|
|
btree_node_interior_verify(n2);
|
|
}
|
|
|
|
return n2;
|
|
}
|
|
|
|
/*
|
|
* For updates to interior nodes, we've got to do the insert before we split
|
|
* because the stuff we're inserting has to be inserted atomically. Post split,
|
|
* the keys might have to go in different nodes and the split would no longer be
|
|
* atomic.
|
|
*
|
|
* Worse, if the insert is from btree node coalescing, if we do the insert after
|
|
* we do the split (and pick the pivot) - the pivot we pick might be between
|
|
* nodes that were coalesced, and thus in the middle of a child node post
|
|
* coalescing:
|
|
*/
|
|
static void btree_split_insert_keys(struct btree_iter *iter, struct btree *b,
|
|
struct keylist *keys,
|
|
struct btree_reserve *res)
|
|
{
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_i *k = bch2_keylist_front(keys);
|
|
struct bkey_packed *p;
|
|
struct bset *i;
|
|
|
|
BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
|
|
|
|
bch2_btree_node_iter_init(&node_iter, b, k->k.p, false, false);
|
|
|
|
while (!bch2_keylist_empty(keys)) {
|
|
k = bch2_keylist_front(keys);
|
|
|
|
BUG_ON(bch_keylist_u64s(keys) >
|
|
bch_btree_keys_u64s_remaining(iter->c, b));
|
|
BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0);
|
|
BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0);
|
|
|
|
bch2_insert_fixup_btree_ptr(iter, b, k, &node_iter, &res->disk_res);
|
|
bch2_keylist_pop_front(keys);
|
|
}
|
|
|
|
/*
|
|
* We can't tolerate whiteouts here - with whiteouts there can be
|
|
* duplicate keys, and it would be rather bad if we picked a duplicate
|
|
* for the pivot:
|
|
*/
|
|
i = btree_bset_first(b);
|
|
p = i->start;
|
|
while (p != vstruct_last(i))
|
|
if (bkey_deleted(p)) {
|
|
le16_add_cpu(&i->u64s, -p->u64s);
|
|
set_btree_bset_end(b, b->set);
|
|
memmove_u64s_down(p, bkey_next(p),
|
|
(u64 *) vstruct_last(i) -
|
|
(u64 *) p);
|
|
} else
|
|
p = bkey_next(p);
|
|
|
|
BUG_ON(b->nsets != 1 ||
|
|
b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
|
|
|
|
btree_node_interior_verify(b);
|
|
}
|
|
|
|
static void btree_split(struct btree *b, struct btree_iter *iter,
|
|
struct keylist *insert_keys,
|
|
struct btree_reserve *reserve,
|
|
struct btree_interior_update *as)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree *parent = iter->nodes[b->level + 1];
|
|
struct btree *n1, *n2 = NULL, *n3 = NULL;
|
|
u64 start_time = local_clock();
|
|
|
|
BUG_ON(!parent && (b != btree_node_root(c, b)));
|
|
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
|
|
|
|
bch2_btree_interior_update_will_free_node(c, as, b);
|
|
|
|
n1 = bch2_btree_node_alloc_replacement(c, b, reserve);
|
|
if (b->level)
|
|
btree_split_insert_keys(iter, n1, insert_keys, reserve);
|
|
|
|
if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) {
|
|
trace_btree_node_split(c, b, b->nr.live_u64s);
|
|
|
|
n2 = __btree_split_node(iter, n1, reserve);
|
|
|
|
bch2_btree_build_aux_trees(n2);
|
|
bch2_btree_build_aux_trees(n1);
|
|
six_unlock_write(&n2->lock);
|
|
six_unlock_write(&n1->lock);
|
|
|
|
bch2_btree_node_write(c, n2, &as->cl, SIX_LOCK_intent, -1);
|
|
|
|
/*
|
|
* Note that on recursive parent_keys == insert_keys, so we
|
|
* can't start adding new keys to parent_keys before emptying it
|
|
* out (which we did with btree_split_insert_keys() above)
|
|
*/
|
|
bch2_keylist_add(&as->parent_keys, &n1->key);
|
|
bch2_keylist_add(&as->parent_keys, &n2->key);
|
|
|
|
if (!parent) {
|
|
/* Depth increases, make a new root */
|
|
n3 = __btree_root_alloc(c, b->level + 1,
|
|
iter->btree_id,
|
|
reserve);
|
|
n3->sib_u64s[0] = U16_MAX;
|
|
n3->sib_u64s[1] = U16_MAX;
|
|
|
|
btree_split_insert_keys(iter, n3, &as->parent_keys,
|
|
reserve);
|
|
bch2_btree_node_write(c, n3, &as->cl, SIX_LOCK_intent, -1);
|
|
}
|
|
} else {
|
|
trace_btree_node_compact(c, b, b->nr.live_u64s);
|
|
|
|
bch2_btree_build_aux_trees(n1);
|
|
six_unlock_write(&n1->lock);
|
|
|
|
bch2_keylist_add(&as->parent_keys, &n1->key);
|
|
}
|
|
|
|
bch2_btree_node_write(c, n1, &as->cl, SIX_LOCK_intent, -1);
|
|
|
|
/* New nodes all written, now make them visible: */
|
|
|
|
if (parent) {
|
|
/* Split a non root node */
|
|
bch2_btree_insert_node(parent, iter, &as->parent_keys,
|
|
reserve, as);
|
|
} else if (n3) {
|
|
bch2_btree_set_root(iter, n3, as, reserve);
|
|
} else {
|
|
/* Root filled up but didn't need to be split */
|
|
bch2_btree_set_root(iter, n1, as, reserve);
|
|
}
|
|
|
|
bch2_btree_open_bucket_put(c, n1);
|
|
if (n2)
|
|
bch2_btree_open_bucket_put(c, n2);
|
|
if (n3)
|
|
bch2_btree_open_bucket_put(c, n3);
|
|
|
|
/*
|
|
* Note - at this point other linked iterators could still have @b read
|
|
* locked; we're depending on the bch2_btree_iter_node_replace() calls
|
|
* below removing all references to @b so we don't return with other
|
|
* iterators pointing to a node they have locked that's been freed.
|
|
*
|
|
* We have to free the node first because the bch2_iter_node_replace()
|
|
* calls will drop _our_ iterator's reference - and intent lock - to @b.
|
|
*/
|
|
bch2_btree_node_free_inmem(iter, b);
|
|
|
|
/* Successful split, update the iterator to point to the new nodes: */
|
|
|
|
if (n3)
|
|
bch2_btree_iter_node_replace(iter, n3);
|
|
if (n2)
|
|
bch2_btree_iter_node_replace(iter, n2);
|
|
bch2_btree_iter_node_replace(iter, n1);
|
|
|
|
bch2_time_stats_update(&c->btree_split_time, start_time);
|
|
}
|
|
|
|
/**
|
|
* bch_btree_insert_node - insert bkeys into a given btree node
|
|
*
|
|
* @iter: btree iterator
|
|
* @insert_keys: list of keys to insert
|
|
* @hook: insert callback
|
|
* @persistent: if not null, @persistent will wait on journal write
|
|
*
|
|
* Inserts as many keys as it can into a given btree node, splitting it if full.
|
|
* If a split occurred, this function will return early. This can only happen
|
|
* for leaf nodes -- inserts into interior nodes have to be atomic.
|
|
*/
|
|
void bch2_btree_insert_node(struct btree *b,
|
|
struct btree_iter *iter,
|
|
struct keylist *insert_keys,
|
|
struct btree_reserve *reserve,
|
|
struct btree_interior_update *as)
|
|
{
|
|
BUG_ON(!b->level);
|
|
BUG_ON(!reserve || !as);
|
|
|
|
switch (bch2_btree_insert_keys_interior(b, iter, insert_keys,
|
|
as, reserve)) {
|
|
case BTREE_INSERT_OK:
|
|
break;
|
|
case BTREE_INSERT_BTREE_NODE_FULL:
|
|
btree_split(b, iter, insert_keys, reserve, as);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int bch2_btree_split_leaf(struct btree_iter *iter, unsigned flags)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree *b = iter->nodes[0];
|
|
struct btree_reserve *reserve;
|
|
struct btree_interior_update *as;
|
|
struct closure cl;
|
|
int ret = 0;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
/* Hack, because gc and splitting nodes doesn't mix yet: */
|
|
if (!down_read_trylock(&c->gc_lock)) {
|
|
bch2_btree_iter_unlock(iter);
|
|
down_read(&c->gc_lock);
|
|
}
|
|
|
|
/*
|
|
* XXX: figure out how far we might need to split,
|
|
* instead of locking/reserving all the way to the root:
|
|
*/
|
|
if (!bch2_btree_iter_set_locks_want(iter, U8_MAX)) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
|
|
reserve = bch2_btree_reserve_get(c, b, 0, flags, &cl);
|
|
if (IS_ERR(reserve)) {
|
|
ret = PTR_ERR(reserve);
|
|
if (ret == -EAGAIN) {
|
|
bch2_btree_iter_unlock(iter);
|
|
up_read(&c->gc_lock);
|
|
closure_sync(&cl);
|
|
return -EINTR;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
as = bch2_btree_interior_update_alloc(c);
|
|
|
|
btree_split(b, iter, NULL, reserve, as);
|
|
bch2_btree_reserve_put(c, reserve);
|
|
|
|
bch2_btree_iter_set_locks_want(iter, 1);
|
|
out:
|
|
up_read(&c->gc_lock);
|
|
return ret;
|
|
}
|
|
|
|
enum btree_node_sibling {
|
|
btree_prev_sib,
|
|
btree_next_sib,
|
|
};
|
|
|
|
static struct btree *btree_node_get_sibling(struct btree_iter *iter,
|
|
struct btree *b,
|
|
enum btree_node_sibling sib)
|
|
{
|
|
struct btree *parent;
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_packed *k;
|
|
BKEY_PADDED(k) tmp;
|
|
struct btree *ret;
|
|
unsigned level = b->level;
|
|
|
|
parent = iter->nodes[level + 1];
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
if (!bch2_btree_node_relock(iter, level + 1)) {
|
|
bch2_btree_iter_set_locks_want(iter, level + 2);
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
|
|
node_iter = iter->node_iters[parent->level];
|
|
|
|
k = bch2_btree_node_iter_peek_all(&node_iter, parent);
|
|
BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p));
|
|
|
|
do {
|
|
k = sib == btree_prev_sib
|
|
? bch2_btree_node_iter_prev_all(&node_iter, parent)
|
|
: (bch2_btree_node_iter_advance(&node_iter, parent),
|
|
bch2_btree_node_iter_peek_all(&node_iter, parent));
|
|
if (!k)
|
|
return NULL;
|
|
} while (bkey_deleted(k));
|
|
|
|
bch2_bkey_unpack(parent, &tmp.k, k);
|
|
|
|
ret = bch2_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent);
|
|
|
|
if (IS_ERR(ret) && PTR_ERR(ret) == -EINTR) {
|
|
btree_node_unlock(iter, level);
|
|
ret = bch2_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent);
|
|
}
|
|
|
|
if (!IS_ERR(ret) && !bch2_btree_node_relock(iter, level)) {
|
|
six_unlock_intent(&ret->lock);
|
|
ret = ERR_PTR(-EINTR);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __foreground_maybe_merge(struct btree_iter *iter,
|
|
enum btree_node_sibling sib)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree_reserve *reserve;
|
|
struct btree_interior_update *as;
|
|
struct bkey_format_state new_s;
|
|
struct bkey_format new_f;
|
|
struct bkey_i delete;
|
|
struct btree *b, *m, *n, *prev, *next, *parent;
|
|
struct closure cl;
|
|
size_t sib_u64s;
|
|
int ret = 0;
|
|
|
|
closure_init_stack(&cl);
|
|
retry:
|
|
if (!bch2_btree_node_relock(iter, iter->level))
|
|
return 0;
|
|
|
|
b = iter->nodes[iter->level];
|
|
|
|
parent = iter->nodes[b->level + 1];
|
|
if (!parent)
|
|
return 0;
|
|
|
|
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
|
|
return 0;
|
|
|
|
/* XXX: can't be holding read locks */
|
|
m = btree_node_get_sibling(iter, b, sib);
|
|
if (IS_ERR(m)) {
|
|
ret = PTR_ERR(m);
|
|
goto out;
|
|
}
|
|
|
|
/* NULL means no sibling: */
|
|
if (!m) {
|
|
b->sib_u64s[sib] = U16_MAX;
|
|
return 0;
|
|
}
|
|
|
|
if (sib == btree_prev_sib) {
|
|
prev = m;
|
|
next = b;
|
|
} else {
|
|
prev = b;
|
|
next = m;
|
|
}
|
|
|
|
bch2_bkey_format_init(&new_s);
|
|
__bch2_btree_calc_format(&new_s, b);
|
|
__bch2_btree_calc_format(&new_s, m);
|
|
new_f = bch2_bkey_format_done(&new_s);
|
|
|
|
sib_u64s = btree_node_u64s_with_format(b, &new_f) +
|
|
btree_node_u64s_with_format(m, &new_f);
|
|
|
|
if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
|
|
sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
|
|
sib_u64s /= 2;
|
|
sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
|
|
}
|
|
|
|
sib_u64s = min(sib_u64s, btree_max_u64s(c));
|
|
b->sib_u64s[sib] = sib_u64s;
|
|
|
|
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
|
|
six_unlock_intent(&m->lock);
|
|
return 0;
|
|
}
|
|
|
|
/* We're changing btree topology, doesn't mix with gc: */
|
|
if (!down_read_trylock(&c->gc_lock)) {
|
|
six_unlock_intent(&m->lock);
|
|
bch2_btree_iter_unlock(iter);
|
|
|
|
down_read(&c->gc_lock);
|
|
up_read(&c->gc_lock);
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
|
|
if (!bch2_btree_iter_set_locks_want(iter, U8_MAX)) {
|
|
ret = -EINTR;
|
|
goto out_unlock;
|
|
}
|
|
|
|
reserve = bch2_btree_reserve_get(c, b, 0,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE,
|
|
&cl);
|
|
if (IS_ERR(reserve)) {
|
|
ret = PTR_ERR(reserve);
|
|
goto out_unlock;
|
|
}
|
|
|
|
as = bch2_btree_interior_update_alloc(c);
|
|
|
|
bch2_btree_interior_update_will_free_node(c, as, b);
|
|
bch2_btree_interior_update_will_free_node(c, as, m);
|
|
|
|
n = bch2_btree_node_alloc(c, b->level, b->btree_id, reserve);
|
|
n->data->min_key = prev->data->min_key;
|
|
n->data->max_key = next->data->max_key;
|
|
n->data->format = new_f;
|
|
n->key.k.p = next->key.k.p;
|
|
|
|
btree_node_set_format(n, new_f);
|
|
|
|
bch2_btree_sort_into(c, n, prev);
|
|
bch2_btree_sort_into(c, n, next);
|
|
|
|
bch2_btree_build_aux_trees(n);
|
|
six_unlock_write(&n->lock);
|
|
|
|
bkey_init(&delete.k);
|
|
delete.k.p = prev->key.k.p;
|
|
bch2_keylist_add(&as->parent_keys, &delete);
|
|
bch2_keylist_add(&as->parent_keys, &n->key);
|
|
|
|
bch2_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
|
|
|
|
bch2_btree_insert_node(parent, iter, &as->parent_keys, reserve, as);
|
|
|
|
bch2_btree_open_bucket_put(c, n);
|
|
bch2_btree_node_free_inmem(iter, b);
|
|
bch2_btree_node_free_inmem(iter, m);
|
|
bch2_btree_iter_node_replace(iter, n);
|
|
|
|
bch2_btree_iter_verify(iter, n);
|
|
|
|
bch2_btree_reserve_put(c, reserve);
|
|
out_unlock:
|
|
if (ret != -EINTR && ret != -EAGAIN)
|
|
bch2_btree_iter_set_locks_want(iter, 1);
|
|
six_unlock_intent(&m->lock);
|
|
up_read(&c->gc_lock);
|
|
out:
|
|
if (ret == -EAGAIN || ret == -EINTR) {
|
|
bch2_btree_iter_unlock(iter);
|
|
ret = -EINTR;
|
|
}
|
|
|
|
closure_sync(&cl);
|
|
|
|
if (ret == -EINTR) {
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (!ret)
|
|
goto retry;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int inline foreground_maybe_merge(struct btree_iter *iter,
|
|
enum btree_node_sibling sib)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree *b;
|
|
|
|
if (!btree_node_locked(iter, iter->level))
|
|
return 0;
|
|
|
|
b = iter->nodes[iter->level];
|
|
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
|
|
return 0;
|
|
|
|
return __foreground_maybe_merge(iter, sib);
|
|
}
|
|
|
|
/**
|
|
* btree_insert_key - insert a key one key into a leaf node
|
|
*/
|
|
static enum btree_insert_ret
|
|
btree_insert_key(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter *iter = insert->iter;
|
|
struct btree *b = iter->nodes[0];
|
|
enum btree_insert_ret ret;
|
|
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
|
|
int old_live_u64s = b->nr.live_u64s;
|
|
int live_u64s_added, u64s_added;
|
|
|
|
ret = !btree_node_is_extents(b)
|
|
? bch2_insert_fixup_key(trans, insert)
|
|
: bch2_insert_fixup_extent(trans, insert);
|
|
|
|
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
|
|
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
|
|
|
|
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
|
|
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
|
|
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
|
|
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
|
|
|
|
if (u64s_added > live_u64s_added &&
|
|
bch2_maybe_compact_whiteouts(iter->c, b))
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
|
|
trace_btree_insert_key(c, b, insert->k);
|
|
return ret;
|
|
}
|
|
|
|
static bool same_leaf_as_prev(struct btree_insert *trans,
|
|
struct btree_insert_entry *i)
|
|
{
|
|
/*
|
|
* Because we sorted the transaction entries, if multiple iterators
|
|
* point to the same leaf node they'll always be adjacent now:
|
|
*/
|
|
return i != trans->entries &&
|
|
i[0].iter->nodes[0] == i[-1].iter->nodes[0];
|
|
}
|
|
|
|
#define trans_for_each_entry(trans, i) \
|
|
for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
|
|
|
|
static void multi_lock_write(struct btree_insert *trans)
|
|
{
|
|
struct btree_insert_entry *i;
|
|
|
|
trans_for_each_entry(trans, i)
|
|
if (!same_leaf_as_prev(trans, i))
|
|
btree_node_lock_for_insert(i->iter->nodes[0], i->iter);
|
|
}
|
|
|
|
static void multi_unlock_write(struct btree_insert *trans)
|
|
{
|
|
struct btree_insert_entry *i;
|
|
|
|
trans_for_each_entry(trans, i)
|
|
if (!same_leaf_as_prev(trans, i))
|
|
bch2_btree_node_unlock_write(i->iter->nodes[0], i->iter);
|
|
}
|
|
|
|
static int btree_trans_entry_cmp(const void *_l, const void *_r)
|
|
{
|
|
const struct btree_insert_entry *l = _l;
|
|
const struct btree_insert_entry *r = _r;
|
|
|
|
return btree_iter_cmp(l->iter, r->iter);
|
|
}
|
|
|
|
/* Normal update interface: */
|
|
|
|
/**
|
|
* __bch_btree_insert_at - insert keys at given iterator positions
|
|
*
|
|
* This is main entry point for btree updates.
|
|
*
|
|
* Return values:
|
|
* -EINTR: locking changed, this function should be called again. Only returned
|
|
* if passed BTREE_INSERT_ATOMIC.
|
|
* -EROFS: filesystem read only
|
|
* -EIO: journal or btree node IO error
|
|
*/
|
|
int __bch2_btree_insert_at(struct btree_insert *trans)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_insert_entry *i;
|
|
struct btree_iter *split = NULL;
|
|
bool cycle_gc_lock = false;
|
|
unsigned u64s;
|
|
int ret;
|
|
|
|
trans_for_each_entry(trans, i) {
|
|
EBUG_ON(i->iter->level);
|
|
EBUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
|
|
}
|
|
|
|
sort(trans->entries, trans->nr, sizeof(trans->entries[0]),
|
|
btree_trans_entry_cmp, NULL);
|
|
|
|
if (unlikely(!percpu_ref_tryget(&c->writes)))
|
|
return -EROFS;
|
|
retry_locks:
|
|
ret = -EINTR;
|
|
trans_for_each_entry(trans, i)
|
|
if (!bch2_btree_iter_set_locks_want(i->iter, 1))
|
|
goto err;
|
|
retry:
|
|
trans->did_work = false;
|
|
u64s = 0;
|
|
trans_for_each_entry(trans, i)
|
|
if (!i->done)
|
|
u64s += jset_u64s(i->k->k.u64s + i->extra_res);
|
|
|
|
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
|
|
|
|
ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
|
|
? bch2_journal_res_get(&c->journal,
|
|
&trans->journal_res,
|
|
u64s, u64s)
|
|
: 0;
|
|
if (ret)
|
|
goto err;
|
|
|
|
multi_lock_write(trans);
|
|
|
|
u64s = 0;
|
|
trans_for_each_entry(trans, i) {
|
|
/* Multiple inserts might go to same leaf: */
|
|
if (!same_leaf_as_prev(trans, i))
|
|
u64s = 0;
|
|
|
|
/*
|
|
* bch2_btree_node_insert_fits() must be called under write lock:
|
|
* with only an intent lock, another thread can still call
|
|
* bch2_btree_node_write(), converting an unwritten bset to a
|
|
* written one
|
|
*/
|
|
if (!i->done) {
|
|
u64s += i->k->k.u64s + i->extra_res;
|
|
if (!bch2_btree_node_insert_fits(c,
|
|
i->iter->nodes[0], u64s)) {
|
|
split = i->iter;
|
|
goto unlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
split = NULL;
|
|
cycle_gc_lock = false;
|
|
|
|
trans_for_each_entry(trans, i) {
|
|
if (i->done)
|
|
continue;
|
|
|
|
switch (btree_insert_key(trans, i)) {
|
|
case BTREE_INSERT_OK:
|
|
i->done = true;
|
|
break;
|
|
case BTREE_INSERT_JOURNAL_RES_FULL:
|
|
case BTREE_INSERT_NEED_TRAVERSE:
|
|
ret = -EINTR;
|
|
break;
|
|
case BTREE_INSERT_NEED_RESCHED:
|
|
ret = -EAGAIN;
|
|
break;
|
|
case BTREE_INSERT_BTREE_NODE_FULL:
|
|
split = i->iter;
|
|
break;
|
|
case BTREE_INSERT_ENOSPC:
|
|
ret = -ENOSPC;
|
|
break;
|
|
case BTREE_INSERT_NEED_GC_LOCK:
|
|
cycle_gc_lock = true;
|
|
ret = -EINTR;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (!trans->did_work && (ret || split))
|
|
break;
|
|
}
|
|
unlock:
|
|
multi_unlock_write(trans);
|
|
bch2_journal_res_put(&c->journal, &trans->journal_res);
|
|
|
|
if (split)
|
|
goto split;
|
|
if (ret)
|
|
goto err;
|
|
|
|
/*
|
|
* hack: iterators are inconsistent when they hit end of leaf, until
|
|
* traversed again
|
|
*/
|
|
trans_for_each_entry(trans, i)
|
|
if (i->iter->at_end_of_leaf)
|
|
goto out;
|
|
|
|
trans_for_each_entry(trans, i)
|
|
if (!same_leaf_as_prev(trans, i)) {
|
|
foreground_maybe_merge(i->iter, btree_prev_sib);
|
|
foreground_maybe_merge(i->iter, btree_next_sib);
|
|
}
|
|
out:
|
|
/* make sure we didn't lose an error: */
|
|
if (!ret && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
|
|
trans_for_each_entry(trans, i)
|
|
BUG_ON(!i->done);
|
|
|
|
percpu_ref_put(&c->writes);
|
|
return ret;
|
|
split:
|
|
/*
|
|
* have to drop journal res before splitting, because splitting means
|
|
* allocating new btree nodes, and holding a journal reservation
|
|
* potentially blocks the allocator:
|
|
*/
|
|
ret = bch2_btree_split_leaf(split, trans->flags);
|
|
if (ret)
|
|
goto err;
|
|
/*
|
|
* if the split didn't have to drop locks the insert will still be
|
|
* atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked()
|
|
* and is overwriting won't have changed)
|
|
*/
|
|
goto retry_locks;
|
|
err:
|
|
if (cycle_gc_lock) {
|
|
down_read(&c->gc_lock);
|
|
up_read(&c->gc_lock);
|
|
}
|
|
|
|
if (ret == -EINTR) {
|
|
trans_for_each_entry(trans, i) {
|
|
int ret2 = bch2_btree_iter_traverse(i->iter);
|
|
if (ret2) {
|
|
ret = ret2;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BTREE_ITER_ATOMIC means we have to return -EINTR if we
|
|
* dropped locks:
|
|
*/
|
|
if (!(trans->flags & BTREE_INSERT_ATOMIC))
|
|
goto retry;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
int bch2_btree_insert_list_at(struct btree_iter *iter,
|
|
struct keylist *keys,
|
|
struct disk_reservation *disk_res,
|
|
struct extent_insert_hook *hook,
|
|
u64 *journal_seq, unsigned flags)
|
|
{
|
|
BUG_ON(flags & BTREE_INSERT_ATOMIC);
|
|
BUG_ON(bch2_keylist_empty(keys));
|
|
verify_keys_sorted(keys);
|
|
|
|
while (!bch2_keylist_empty(keys)) {
|
|
/* need to traverse between each insert */
|
|
int ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bch2_btree_insert_at(iter->c, disk_res, hook,
|
|
journal_seq, flags,
|
|
BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys)));
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_keylist_pop_front(keys);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_insert_check_key - insert dummy key into btree
|
|
*
|
|
* We insert a random key on a cache miss, then compare exchange on it
|
|
* once the cache promotion or backing device read completes. This
|
|
* ensures that if this key is written to after the read, the read will
|
|
* lose and not overwrite the key with stale data.
|
|
*
|
|
* Return values:
|
|
* -EAGAIN: @iter->cl was put on a waitlist waiting for btree node allocation
|
|
* -EINTR: btree node was changed while upgrading to write lock
|
|
*/
|
|
int bch2_btree_insert_check_key(struct btree_iter *iter,
|
|
struct bkey_i *check_key)
|
|
{
|
|
struct bpos saved_pos = iter->pos;
|
|
struct bkey_i_cookie *cookie;
|
|
BKEY_PADDED(key) tmp;
|
|
int ret;
|
|
|
|
BUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&check_key->k)));
|
|
|
|
check_key->k.type = KEY_TYPE_COOKIE;
|
|
set_bkey_val_bytes(&check_key->k, sizeof(struct bch_cookie));
|
|
|
|
cookie = bkey_i_to_cookie(check_key);
|
|
get_random_bytes(&cookie->v, sizeof(cookie->v));
|
|
|
|
bkey_copy(&tmp.key, check_key);
|
|
|
|
ret = bch2_btree_insert_at(iter->c, NULL, NULL, NULL,
|
|
BTREE_INSERT_ATOMIC,
|
|
BTREE_INSERT_ENTRY(iter, &tmp.key));
|
|
|
|
bch2_btree_iter_rewind(iter, saved_pos);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_insert - insert keys into the extent btree
|
|
* @c: pointer to struct bch_fs
|
|
* @id: btree to insert into
|
|
* @insert_keys: list of keys to insert
|
|
* @hook: insert callback
|
|
*/
|
|
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
|
|
struct bkey_i *k,
|
|
struct disk_reservation *disk_res,
|
|
struct extent_insert_hook *hook,
|
|
u64 *journal_seq, int flags)
|
|
{
|
|
struct btree_iter iter;
|
|
int ret, ret2;
|
|
|
|
bch2_btree_iter_init_intent(&iter, c, id, bkey_start_pos(&k->k));
|
|
|
|
ret = bch2_btree_iter_traverse(&iter);
|
|
if (unlikely(ret))
|
|
goto out;
|
|
|
|
ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags,
|
|
BTREE_INSERT_ENTRY(&iter, k));
|
|
out: ret2 = bch2_btree_iter_unlock(&iter);
|
|
|
|
return ret ?: ret2;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_update - like bch2_btree_insert(), but asserts that we're
|
|
* overwriting an existing key
|
|
*/
|
|
int bch2_btree_update(struct bch_fs *c, enum btree_id id,
|
|
struct bkey_i *k, u64 *journal_seq)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_s_c u;
|
|
int ret;
|
|
|
|
EBUG_ON(id == BTREE_ID_EXTENTS);
|
|
|
|
bch2_btree_iter_init_intent(&iter, c, id, k->k.p);
|
|
|
|
u = bch2_btree_iter_peek_with_holes(&iter);
|
|
ret = btree_iter_err(u);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (bkey_deleted(u.k)) {
|
|
bch2_btree_iter_unlock(&iter);
|
|
return -ENOENT;
|
|
}
|
|
|
|
ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, 0,
|
|
BTREE_INSERT_ENTRY(&iter, k));
|
|
bch2_btree_iter_unlock(&iter);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* bch_btree_delete_range - delete everything within a given range
|
|
*
|
|
* Range is a half open interval - [start, end)
|
|
*/
|
|
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
|
|
struct bpos start,
|
|
struct bpos end,
|
|
struct bversion version,
|
|
struct disk_reservation *disk_res,
|
|
struct extent_insert_hook *hook,
|
|
u64 *journal_seq)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
int ret = 0;
|
|
|
|
bch2_btree_iter_init_intent(&iter, c, id, start);
|
|
|
|
while ((k = bch2_btree_iter_peek(&iter)).k &&
|
|
!(ret = btree_iter_err(k))) {
|
|
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
|
|
/* really shouldn't be using a bare, unpadded bkey_i */
|
|
struct bkey_i delete;
|
|
|
|
if (bkey_cmp(iter.pos, end) >= 0)
|
|
break;
|
|
|
|
bkey_init(&delete.k);
|
|
|
|
/*
|
|
* For extents, iter.pos won't necessarily be the same as
|
|
* bkey_start_pos(k.k) (for non extents they always will be the
|
|
* same). It's important that we delete starting from iter.pos
|
|
* because the range we want to delete could start in the middle
|
|
* of k.
|
|
*
|
|
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
|
|
* bkey_start_pos(k.k)).
|
|
*/
|
|
delete.k.p = iter.pos;
|
|
delete.k.version = version;
|
|
|
|
if (iter.is_extents) {
|
|
/*
|
|
* The extents btree is special - KEY_TYPE_DISCARD is
|
|
* used for deletions, not KEY_TYPE_DELETED. This is an
|
|
* internal implementation detail that probably
|
|
* shouldn't be exposed (internally, KEY_TYPE_DELETED is
|
|
* used as a proxy for k->size == 0):
|
|
*/
|
|
delete.k.type = KEY_TYPE_DISCARD;
|
|
|
|
/* create the biggest key we can */
|
|
bch2_key_resize(&delete.k, max_sectors);
|
|
bch2_cut_back(end, &delete.k);
|
|
}
|
|
|
|
ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq,
|
|
BTREE_INSERT_NOFAIL,
|
|
BTREE_INSERT_ENTRY(&iter, &delete));
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_btree_iter_cond_resched(&iter);
|
|
}
|
|
|
|
bch2_btree_iter_unlock(&iter);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_node_rewrite - Rewrite/move a btree node
|
|
*
|
|
* Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
|
|
* btree_check_reserve() has to wait)
|
|
*/
|
|
int bch2_btree_node_rewrite(struct btree_iter *iter, struct btree *b,
|
|
struct closure *cl)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree *n, *parent = iter->nodes[b->level + 1];
|
|
struct btree_reserve *reserve;
|
|
struct btree_interior_update *as;
|
|
unsigned flags = BTREE_INSERT_NOFAIL;
|
|
|
|
/*
|
|
* if caller is going to wait if allocating reserve fails, then this is
|
|
* a rewrite that must succeed:
|
|
*/
|
|
if (cl)
|
|
flags |= BTREE_INSERT_USE_RESERVE;
|
|
|
|
if (!bch2_btree_iter_set_locks_want(iter, U8_MAX))
|
|
return -EINTR;
|
|
|
|
reserve = bch2_btree_reserve_get(c, b, 0, flags, cl);
|
|
if (IS_ERR(reserve)) {
|
|
trace_btree_gc_rewrite_node_fail(c, b);
|
|
return PTR_ERR(reserve);
|
|
}
|
|
|
|
as = bch2_btree_interior_update_alloc(c);
|
|
|
|
bch2_btree_interior_update_will_free_node(c, as, b);
|
|
|
|
n = bch2_btree_node_alloc_replacement(c, b, reserve);
|
|
|
|
bch2_btree_build_aux_trees(n);
|
|
six_unlock_write(&n->lock);
|
|
|
|
trace_btree_gc_rewrite_node(c, b);
|
|
|
|
bch2_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
|
|
|
|
if (parent) {
|
|
bch2_btree_insert_node(parent, iter,
|
|
&keylist_single(&n->key),
|
|
reserve, as);
|
|
} else {
|
|
bch2_btree_set_root(iter, n, as, reserve);
|
|
}
|
|
|
|
bch2_btree_open_bucket_put(c, n);
|
|
|
|
bch2_btree_node_free_inmem(iter, b);
|
|
|
|
BUG_ON(!bch2_btree_iter_node_replace(iter, n));
|
|
|
|
bch2_btree_reserve_put(c, reserve);
|
|
return 0;
|
|
}
|