bcachefs-tools/libbcachefs/buckets.c
2017-03-19 17:31:47 -08:00

751 lines
20 KiB
C

/*
* Code for manipulating bucket marks for garbage collection.
*
* Copyright 2014 Datera, Inc.
*
* Bucket states:
* - free bucket: mark == 0
* The bucket contains no data and will not be read
*
* - allocator bucket: owned_by_allocator == 1
* The bucket is on a free list, or it is an open bucket
*
* - cached bucket: owned_by_allocator == 0 &&
* dirty_sectors == 0 &&
* cached_sectors > 0
* The bucket contains data but may be safely discarded as there are
* enough replicas of the data on other cache devices, or it has been
* written back to the backing device
*
* - dirty bucket: owned_by_allocator == 0 &&
* dirty_sectors > 0
* The bucket contains data that we must not discard (either only copy,
* or one of the 'main copies' for data requiring multiple replicas)
*
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
* This is a btree node, journal or gen/prio bucket
*
* Lifecycle:
*
* bucket invalidated => bucket on freelist => open bucket =>
* [dirty bucket =>] cached bucket => bucket invalidated => ...
*
* Note that cache promotion can skip the dirty bucket step, as data
* is copied from a deeper tier to a shallower tier, onto a cached
* bucket.
* Note also that a cached bucket can spontaneously become dirty --
* see below.
*
* Only a traversal of the key space can determine whether a bucket is
* truly dirty or cached.
*
* Transitions:
*
* - free => allocator: bucket was invalidated
* - cached => allocator: bucket was invalidated
*
* - allocator => dirty: open bucket was filled up
* - allocator => cached: open bucket was filled up
* - allocator => metadata: metadata was allocated
*
* - dirty => cached: dirty sectors were copied to a deeper tier
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
* - cached => free: cached sectors were overwritten
*
* - metadata => free: metadata was freed
*
* Oddities:
* - cached => dirty: a device was removed so formerly replicated data
* is no longer sufficiently replicated
* - free => cached: cannot happen
* - free => dirty: cannot happen
* - free => metadata: cannot happen
*/
#include "bcachefs.h"
#include "alloc.h"
#include "btree_gc.h"
#include "buckets.h"
#include "error.h"
#include <linux/preempt.h>
#include <trace/events/bcachefs.h>
#ifdef DEBUG_BUCKETS
#define lg_local_lock lg_global_lock
#define lg_local_unlock lg_global_unlock
static void bch2_fs_stats_verify(struct bch_fs *c)
{
struct bch_fs_usage stats =
__bch2_fs_usage_read(c);
if ((s64) stats.sectors_dirty < 0)
panic("sectors_dirty underflow: %lli\n", stats.sectors_dirty);
if ((s64) stats.sectors_cached < 0)
panic("sectors_cached underflow: %lli\n", stats.sectors_cached);
if ((s64) stats.sectors_meta < 0)
panic("sectors_meta underflow: %lli\n", stats.sectors_meta);
if ((s64) stats.sectors_persistent_reserved < 0)
panic("sectors_persistent_reserved underflow: %lli\n", stats.sectors_persistent_reserved);
if ((s64) stats.sectors_online_reserved < 0)
panic("sectors_online_reserved underflow: %lli\n", stats.sectors_online_reserved);
}
#else
static void bch2_fs_stats_verify(struct bch_fs *c) {}
#endif
/*
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
* wraparound:
*/
void bch2_bucket_seq_cleanup(struct bch_fs *c)
{
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
struct bch_dev *ca;
struct bucket *g;
struct bucket_mark m;
unsigned i;
for_each_member_device(ca, c, i)
for_each_bucket(g, ca) {
bucket_cmpxchg(g, m, ({
if (!m.journal_seq_valid ||
bucket_needs_journal_commit(m, last_seq_ondisk))
break;
m.journal_seq_valid = 0;
}));
}
}
#define bch2_usage_add(_acc, _stats) \
do { \
typeof(_acc) _a = (_acc), _s = (_stats); \
unsigned i; \
\
for (i = 0; i < sizeof(*_a) / sizeof(u64); i++) \
((u64 *) (_a))[i] += ((u64 *) (_s))[i]; \
} while (0)
#define bch2_usage_read_raw(_stats) \
({ \
typeof(*this_cpu_ptr(_stats)) _acc = { 0 }; \
int cpu; \
\
for_each_possible_cpu(cpu) \
bch2_usage_add(&_acc, per_cpu_ptr((_stats), cpu)); \
\
_acc; \
})
#define bch2_usage_read_cached(_c, _cached, _uncached) \
({ \
typeof(_cached) _ret; \
unsigned _seq; \
\
do { \
_seq = read_seqcount_begin(&(_c)->gc_pos_lock); \
_ret = (_c)->gc_pos.phase == GC_PHASE_DONE \
? bch2_usage_read_raw(_uncached) \
: (_cached); \
} while (read_seqcount_retry(&(_c)->gc_pos_lock, _seq)); \
\
_ret; \
})
struct bch_dev_usage __bch2_dev_usage_read(struct bch_dev *ca)
{
return bch2_usage_read_raw(ca->usage_percpu);
}
struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *ca)
{
return bch2_usage_read_cached(ca->fs,
ca->usage_cached,
ca->usage_percpu);
}
struct bch_fs_usage
__bch2_fs_usage_read(struct bch_fs *c)
{
return bch2_usage_read_raw(c->usage_percpu);
}
struct bch_fs_usage
bch2_fs_usage_read(struct bch_fs *c)
{
return bch2_usage_read_cached(c,
c->usage_cached,
c->usage_percpu);
}
static inline int is_meta_bucket(struct bucket_mark m)
{
return m.data_type != BUCKET_DATA;
}
static inline int is_dirty_bucket(struct bucket_mark m)
{
return m.data_type == BUCKET_DATA && !!m.dirty_sectors;
}
static inline int is_cached_bucket(struct bucket_mark m)
{
return m.data_type == BUCKET_DATA &&
!m.dirty_sectors && !!m.cached_sectors;
}
static inline enum s_alloc bucket_type(struct bucket_mark m)
{
return is_meta_bucket(m) ? S_META : S_DIRTY;
}
static bool bucket_became_unavailable(struct bch_fs *c,
struct bucket_mark old,
struct bucket_mark new)
{
return is_available_bucket(old) &&
!is_available_bucket(new) &&
c && c->gc_pos.phase == GC_PHASE_DONE;
}
void bch2_fs_usage_apply(struct bch_fs *c,
struct bch_fs_usage *stats,
struct disk_reservation *disk_res,
struct gc_pos gc_pos)
{
s64 added =
stats->s[S_COMPRESSED][S_META] +
stats->s[S_COMPRESSED][S_DIRTY] +
stats->persistent_reserved +
stats->online_reserved;
/*
* Not allowed to reduce sectors_available except by getting a
* reservation:
*/
BUG_ON(added > (s64) (disk_res ? disk_res->sectors : 0));
if (added > 0) {
disk_res->sectors -= added;
stats->online_reserved -= added;
}
lg_local_lock(&c->usage_lock);
/* online_reserved not subject to gc: */
this_cpu_ptr(c->usage_percpu)->online_reserved +=
stats->online_reserved;
stats->online_reserved = 0;
if (!gc_will_visit(c, gc_pos))
bch2_usage_add(this_cpu_ptr(c->usage_percpu), stats);
bch2_fs_stats_verify(c);
lg_local_unlock(&c->usage_lock);
memset(stats, 0, sizeof(*stats));
}
static void bch2_fs_usage_update(struct bch_fs_usage *fs_usage,
struct bucket_mark old, struct bucket_mark new)
{
fs_usage->s[S_COMPRESSED][S_CACHED] +=
(int) new.cached_sectors - (int) old.cached_sectors;
fs_usage->s[S_COMPRESSED][bucket_type(old)] -=
old.dirty_sectors;
fs_usage->s[S_COMPRESSED][bucket_type(new)] +=
new.dirty_sectors;
}
static void bch2_dev_usage_update(struct bch_dev *ca,
struct bucket_mark old, struct bucket_mark new)
{
struct bch_fs *c = ca->fs;
struct bch_dev_usage *dev_usage;
bch2_fs_inconsistent_on(old.data_type && new.data_type &&
old.data_type != new.data_type, c,
"different types of metadata in same bucket: %u, %u",
old.data_type, new.data_type);
preempt_disable();
dev_usage = this_cpu_ptr(ca->usage_percpu);
dev_usage->sectors[S_CACHED] +=
(int) new.cached_sectors - (int) old.cached_sectors;
dev_usage->sectors[bucket_type(old)] -= old.dirty_sectors;
dev_usage->sectors[bucket_type(new)] += new.dirty_sectors;
dev_usage->buckets_alloc +=
(int) new.owned_by_allocator - (int) old.owned_by_allocator;
dev_usage->buckets_meta += is_meta_bucket(new) - is_meta_bucket(old);
dev_usage->buckets_cached += is_cached_bucket(new) - is_cached_bucket(old);
dev_usage->buckets_dirty += is_dirty_bucket(new) - is_dirty_bucket(old);
preempt_enable();
if (!is_available_bucket(old) && is_available_bucket(new))
bch2_wake_allocator(ca);
}
#define bucket_data_cmpxchg(ca, g, new, expr) \
({ \
struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \
\
bch2_dev_usage_update(ca, _old, new); \
_old; \
})
void bch2_invalidate_bucket(struct bch_dev *ca, struct bucket *g)
{
struct bch_fs_usage stats = { 0 };
struct bucket_mark old, new;
old = bucket_data_cmpxchg(ca, g, new, ({
new.owned_by_allocator = 1;
new.had_metadata = 0;
new.data_type = 0;
new.cached_sectors = 0;
new.dirty_sectors = 0;
new.copygc = 0;
new.gen++;
}));
/* XXX: we're not actually updating fs usage's cached sectors... */
bch2_fs_usage_update(&stats, old, new);
if (!old.owned_by_allocator && old.cached_sectors)
trace_invalidate(ca, g - ca->buckets,
old.cached_sectors);
}
void bch2_mark_free_bucket(struct bch_dev *ca, struct bucket *g)
{
struct bucket_mark old, new;
old = bucket_data_cmpxchg(ca, g, new, ({
new.owned_by_allocator = 0;
new.data_type = 0;
new.cached_sectors = 0;
new.dirty_sectors = 0;
}));
BUG_ON(bucket_became_unavailable(ca->fs, old, new));
}
void bch2_mark_alloc_bucket(struct bch_dev *ca, struct bucket *g,
bool owned_by_allocator)
{
struct bucket_mark new;
bucket_data_cmpxchg(ca, g, new, ({
new.owned_by_allocator = owned_by_allocator;
}));
}
void bch2_mark_metadata_bucket(struct bch_dev *ca, struct bucket *g,
enum bucket_data_type type,
bool may_make_unavailable)
{
struct bucket_mark old, new;
BUG_ON(!type);
old = bucket_data_cmpxchg(ca, g, new, ({
new.data_type = type;
new.had_metadata = 1;
}));
BUG_ON(old.cached_sectors);
BUG_ON(old.dirty_sectors);
BUG_ON(!may_make_unavailable &&
bucket_became_unavailable(ca->fs, old, new));
}
#define saturated_add(ca, dst, src, max) \
do { \
BUG_ON((int) (dst) + (src) < 0); \
if ((dst) == (max)) \
; \
else if ((dst) + (src) <= (max)) \
dst += (src); \
else { \
dst = (max); \
trace_sectors_saturated(ca); \
} \
} while (0)
#if 0
/* Reverting this until the copygc + compression issue is fixed: */
static unsigned __disk_sectors(const union bch_extent_crc *crc, unsigned sectors)
{
return crc_compression_type(crc)
? sectors * crc_compressed_size(crc) / crc_uncompressed_size(crc)
: sectors;
}
static unsigned __compressed_sectors(const union bch_extent_crc *crc, unsigned sectors)
{
return crc_compression_type(crc)
? min_t(unsigned, crc_compressed_size(crc), sectors)
: sectors;
}
#else
static unsigned __disk_sectors(const union bch_extent_crc *crc, unsigned sectors)
{
return sectors;
}
static unsigned __compressed_sectors(const union bch_extent_crc *crc, unsigned sectors)
{
return sectors;
}
#endif
/*
* Checking against gc's position has to be done here, inside the cmpxchg()
* loop, to avoid racing with the start of gc clearing all the marks - GC does
* that with the gc pos seqlock held.
*/
static void bch2_mark_pointer(struct bch_fs *c,
struct bkey_s_c_extent e,
const union bch_extent_crc *crc,
const struct bch_extent_ptr *ptr,
s64 sectors, enum s_alloc type,
bool may_make_unavailable,
struct bch_fs_usage *stats,
bool gc_will_visit, u64 journal_seq)
{
struct bucket_mark old, new;
unsigned saturated;
struct bch_dev *ca = c->devs[ptr->dev];
struct bucket *g = ca->buckets + PTR_BUCKET_NR(ca, ptr);
unsigned old_sectors, new_sectors;
int disk_sectors, compressed_sectors;
if (sectors > 0) {
old_sectors = 0;
new_sectors = sectors;
} else {
old_sectors = e.k->size;
new_sectors = e.k->size + sectors;
}
disk_sectors = -__disk_sectors(crc, old_sectors)
+ __disk_sectors(crc, new_sectors);
compressed_sectors = -__compressed_sectors(crc, old_sectors)
+ __compressed_sectors(crc, new_sectors);
if (gc_will_visit) {
if (journal_seq)
bucket_cmpxchg(g, new, new.journal_seq = journal_seq);
goto out;
}
old = bucket_data_cmpxchg(ca, g, new, ({
saturated = 0;
/*
* Check this after reading bucket mark to guard against
* the allocator invalidating a bucket after we've already
* checked the gen
*/
if (gen_after(new.gen, ptr->gen)) {
EBUG_ON(type != S_CACHED &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags));
return;
}
EBUG_ON(type != S_CACHED &&
!may_make_unavailable &&
is_available_bucket(new) &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags));
if (type != S_CACHED &&
new.dirty_sectors == GC_MAX_SECTORS_USED &&
disk_sectors < 0)
saturated = -disk_sectors;
if (type == S_CACHED)
saturated_add(ca, new.cached_sectors, disk_sectors,
GC_MAX_SECTORS_USED);
else
saturated_add(ca, new.dirty_sectors, disk_sectors,
GC_MAX_SECTORS_USED);
if (!new.dirty_sectors &&
!new.cached_sectors) {
new.data_type = 0;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
} else {
new.data_type = type == S_META
? BUCKET_BTREE : BUCKET_DATA;
}
new.had_metadata |= is_meta_bucket(new);
}));
BUG_ON(!may_make_unavailable &&
bucket_became_unavailable(c, old, new));
if (saturated &&
atomic_long_add_return(saturated,
&ca->saturated_count) >=
ca->free_inc.size << ca->bucket_bits) {
if (c->gc_thread) {
trace_gc_sectors_saturated(c);
wake_up_process(c->gc_thread);
}
}
out:
stats->s[S_COMPRESSED][type] += compressed_sectors;
stats->s[S_UNCOMPRESSED][type] += sectors;
}
static void bch2_mark_extent(struct bch_fs *c, struct bkey_s_c_extent e,
s64 sectors, bool metadata,
bool may_make_unavailable,
struct bch_fs_usage *stats,
bool gc_will_visit, u64 journal_seq)
{
const struct bch_extent_ptr *ptr;
const union bch_extent_crc *crc;
enum s_alloc type = metadata ? S_META : S_DIRTY;
BUG_ON(metadata && bkey_extent_is_cached(e.k));
BUG_ON(!sectors);
extent_for_each_ptr_crc(e, ptr, crc)
bch2_mark_pointer(c, e, crc, ptr, sectors,
ptr->cached ? S_CACHED : type,
may_make_unavailable,
stats, gc_will_visit, journal_seq);
}
static void __bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
s64 sectors, bool metadata,
bool may_make_unavailable,
struct bch_fs_usage *stats,
bool gc_will_visit, u64 journal_seq)
{
switch (k.k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
bch2_mark_extent(c, bkey_s_c_to_extent(k), sectors, metadata,
may_make_unavailable, stats,
gc_will_visit, journal_seq);
break;
case BCH_RESERVATION: {
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
stats->persistent_reserved += r.v->nr_replicas * sectors;
break;
}
}
}
void __bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k,
s64 sectors, bool metadata,
struct bch_fs_usage *stats)
{
__bch2_mark_key(c, k, sectors, metadata, true, stats, false, 0);
}
void bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k,
s64 sectors, bool metadata)
{
struct bch_fs_usage stats = { 0 };
__bch2_gc_mark_key(c, k, sectors, metadata, &stats);
preempt_disable();
bch2_usage_add(this_cpu_ptr(c->usage_percpu), &stats);
preempt_enable();
}
void bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
s64 sectors, bool metadata, struct gc_pos gc_pos,
struct bch_fs_usage *stats, u64 journal_seq)
{
/*
* synchronization w.r.t. GC:
*
* Normally, bucket sector counts/marks are updated on the fly, as
* references are added/removed from the btree, the lists of buckets the
* allocator owns, other metadata buckets, etc.
*
* When GC is in progress and going to mark this reference, we do _not_
* mark this reference here, to avoid double counting - GC will count it
* when it gets to it.
*
* To know whether we should mark a given reference (GC either isn't
* running, or has already marked references at this position) we
* construct a total order for everything GC walks. Then, we can simply
* compare the position of the reference we're marking - @gc_pos - with
* GC's current position. If GC is going to mark this reference, GC's
* current position will be less than @gc_pos; if GC's current position
* is greater than @gc_pos GC has either already walked this position,
* or isn't running.
*
* To avoid racing with GC's position changing, we have to deal with
* - GC's position being set to GC_POS_MIN when GC starts:
* usage_lock guards against this
* - GC's position overtaking @gc_pos: we guard against this with
* whatever lock protects the data structure the reference lives in
* (e.g. the btree node lock, or the relevant allocator lock).
*/
lg_local_lock(&c->usage_lock);
__bch2_mark_key(c, k, sectors, metadata, false, stats,
gc_will_visit(c, gc_pos), journal_seq);
bch2_fs_stats_verify(c);
lg_local_unlock(&c->usage_lock);
}
static u64 __recalc_sectors_available(struct bch_fs *c)
{
return c->capacity - bch2_fs_sectors_used(c);
}
/* Used by gc when it's starting: */
void bch2_recalc_sectors_available(struct bch_fs *c)
{
int cpu;
lg_global_lock(&c->usage_lock);
for_each_possible_cpu(cpu)
per_cpu_ptr(c->usage_percpu, cpu)->available_cache = 0;
atomic64_set(&c->sectors_available,
__recalc_sectors_available(c));
lg_global_unlock(&c->usage_lock);
}
void bch2_disk_reservation_put(struct bch_fs *c,
struct disk_reservation *res)
{
if (res->sectors) {
lg_local_lock(&c->usage_lock);
this_cpu_sub(c->usage_percpu->online_reserved,
res->sectors);
bch2_fs_stats_verify(c);
lg_local_unlock(&c->usage_lock);
res->sectors = 0;
}
}
#define SECTORS_CACHE 1024
int bch2_disk_reservation_add(struct bch_fs *c,
struct disk_reservation *res,
unsigned sectors, int flags)
{
struct bch_fs_usage *stats;
u64 old, new, v;
s64 sectors_available;
int ret;
sectors *= res->nr_replicas;
lg_local_lock(&c->usage_lock);
stats = this_cpu_ptr(c->usage_percpu);
if (sectors >= stats->available_cache)
goto out;
v = atomic64_read(&c->sectors_available);
do {
old = v;
if (old < sectors) {
lg_local_unlock(&c->usage_lock);
goto recalculate;
}
new = max_t(s64, 0, old - sectors - SECTORS_CACHE);
} while ((v = atomic64_cmpxchg(&c->sectors_available,
old, new)) != old);
stats->available_cache += old - new;
out:
stats->available_cache -= sectors;
stats->online_reserved += sectors;
res->sectors += sectors;
bch2_fs_stats_verify(c);
lg_local_unlock(&c->usage_lock);
return 0;
recalculate:
/*
* GC recalculates sectors_available when it starts, so that hopefully
* we don't normally end up blocking here:
*/
/*
* Piss fuck, we can be called from extent_insert_fixup() with btree
* locks held:
*/
if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) {
if (!(flags & BCH_DISK_RESERVATION_BTREE_LOCKS_HELD))
down_read(&c->gc_lock);
else if (!down_read_trylock(&c->gc_lock))
return -EINTR;
}
lg_global_lock(&c->usage_lock);
sectors_available = __recalc_sectors_available(c);
if (sectors <= sectors_available ||
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
atomic64_set(&c->sectors_available,
max_t(s64, 0, sectors_available - sectors));
stats->online_reserved += sectors;
res->sectors += sectors;
ret = 0;
} else {
atomic64_set(&c->sectors_available, sectors_available);
ret = -ENOSPC;
}
bch2_fs_stats_verify(c);
lg_global_unlock(&c->usage_lock);
if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD))
up_read(&c->gc_lock);
return ret;
}
int bch2_disk_reservation_get(struct bch_fs *c,
struct disk_reservation *res,
unsigned sectors, int flags)
{
res->sectors = 0;
res->gen = c->capacity_gen;
res->nr_replicas = (flags & BCH_DISK_RESERVATION_METADATA)
? c->opts.metadata_replicas
: c->opts.data_replicas;
return bch2_disk_reservation_add(c, res, sectors, flags);
}