bcachefs-tools/libbcachefs/fs-io.c
2017-03-19 17:31:47 -08:00

2573 lines
61 KiB
C

#include "bcachefs.h"
#include "btree_update.h"
#include "buckets.h"
#include "clock.h"
#include "error.h"
#include "fs.h"
#include "fs-gc.h"
#include "fs-io.h"
#include "inode.h"
#include "journal.h"
#include "io.h"
#include "keylist.h"
#include <linux/aio.h>
#include <linux/backing-dev.h>
#include <linux/falloc.h>
#include <linux/migrate.h>
#include <linux/mmu_context.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/uio.h>
#include <linux/writeback.h>
#include <trace/events/writeback.h>
struct bio_set *bch2_writepage_bioset;
struct bio_set *bch2_dio_read_bioset;
struct bio_set *bch2_dio_write_bioset;
/* pagecache_block must be held */
static int write_invalidate_inode_pages_range(struct address_space *mapping,
loff_t start, loff_t end)
{
int ret;
/*
* XXX: the way this is currently implemented, we can spin if a process
* is continually redirtying a specific page
*/
do {
if (!mapping->nrpages &&
!mapping->nrexceptional)
return 0;
ret = filemap_write_and_wait_range(mapping, start, end);
if (ret)
break;
if (!mapping->nrpages)
return 0;
ret = invalidate_inode_pages2_range(mapping,
start >> PAGE_SHIFT,
end >> PAGE_SHIFT);
} while (ret == -EBUSY);
return ret;
}
/* i_size updates: */
static int inode_set_size(struct bch_inode_info *ei,
struct bch_inode_unpacked *bi,
void *p)
{
loff_t *new_i_size = p;
lockdep_assert_held(&ei->update_lock);
bi->i_size = *new_i_size;
if (atomic_long_read(&ei->i_size_dirty_count))
bi->i_flags |= BCH_INODE_I_SIZE_DIRTY;
else
bi->i_flags &= ~BCH_INODE_I_SIZE_DIRTY;
return 0;
}
static int __must_check bch2_write_inode_size(struct bch_fs *c,
struct bch_inode_info *ei,
loff_t new_size)
{
return __bch2_write_inode(c, ei, inode_set_size, &new_size);
}
static inline void i_size_dirty_put(struct bch_inode_info *ei)
{
atomic_long_dec_bug(&ei->i_size_dirty_count);
}
static inline void i_size_dirty_get(struct bch_inode_info *ei)
{
lockdep_assert_held(&ei->vfs_inode.i_rwsem);
atomic_long_inc(&ei->i_size_dirty_count);
}
/* i_sectors accounting: */
static enum extent_insert_hook_ret
i_sectors_hook_fn(struct extent_insert_hook *hook,
struct bpos committed_pos,
struct bpos next_pos,
struct bkey_s_c k,
const struct bkey_i *insert)
{
struct i_sectors_hook *h = container_of(hook,
struct i_sectors_hook, hook);
s64 sectors = next_pos.offset - committed_pos.offset;
int sign = bkey_extent_is_allocation(&insert->k) -
(k.k && bkey_extent_is_allocation(k.k));
EBUG_ON(!(h->ei->i_flags & BCH_INODE_I_SECTORS_DIRTY));
EBUG_ON(!atomic_long_read(&h->ei->i_sectors_dirty_count));
h->sectors += sectors * sign;
return BTREE_HOOK_DO_INSERT;
}
static int inode_set_i_sectors_dirty(struct bch_inode_info *ei,
struct bch_inode_unpacked *bi, void *p)
{
BUG_ON(bi->i_flags & BCH_INODE_I_SECTORS_DIRTY);
bi->i_flags |= BCH_INODE_I_SECTORS_DIRTY;
return 0;
}
static int inode_clear_i_sectors_dirty(struct bch_inode_info *ei,
struct bch_inode_unpacked *bi,
void *p)
{
BUG_ON(!(bi->i_flags & BCH_INODE_I_SECTORS_DIRTY));
bi->i_sectors = atomic64_read(&ei->i_sectors);
bi->i_flags &= ~BCH_INODE_I_SECTORS_DIRTY;
return 0;
}
static void i_sectors_dirty_put(struct bch_inode_info *ei,
struct i_sectors_hook *h)
{
struct inode *inode = &ei->vfs_inode;
if (h->sectors) {
spin_lock(&inode->i_lock);
inode->i_blocks += h->sectors;
spin_unlock(&inode->i_lock);
atomic64_add(h->sectors, &ei->i_sectors);
EBUG_ON(atomic64_read(&ei->i_sectors) < 0);
}
EBUG_ON(atomic_long_read(&ei->i_sectors_dirty_count) <= 0);
mutex_lock(&ei->update_lock);
if (atomic_long_dec_and_test(&ei->i_sectors_dirty_count)) {
struct bch_fs *c = ei->vfs_inode.i_sb->s_fs_info;
int ret = __bch2_write_inode(c, ei, inode_clear_i_sectors_dirty, NULL);
ret = ret;
}
mutex_unlock(&ei->update_lock);
}
static int __must_check i_sectors_dirty_get(struct bch_inode_info *ei,
struct i_sectors_hook *h)
{
int ret = 0;
h->hook.fn = i_sectors_hook_fn;
h->sectors = 0;
#ifdef CONFIG_BCACHEFS_DEBUG
h->ei = ei;
#endif
if (atomic_long_inc_not_zero(&ei->i_sectors_dirty_count))
return 0;
mutex_lock(&ei->update_lock);
if (!(ei->i_flags & BCH_INODE_I_SECTORS_DIRTY)) {
struct bch_fs *c = ei->vfs_inode.i_sb->s_fs_info;
ret = __bch2_write_inode(c, ei, inode_set_i_sectors_dirty, NULL);
}
if (!ret)
atomic_long_inc(&ei->i_sectors_dirty_count);
mutex_unlock(&ei->update_lock);
return ret;
}
struct bchfs_extent_trans_hook {
struct bchfs_write_op *op;
struct extent_insert_hook hook;
struct bch_inode_unpacked inode_u;
struct bkey_inode_buf inode_p;
bool need_inode_update;
};
static enum extent_insert_hook_ret
bchfs_extent_update_hook(struct extent_insert_hook *hook,
struct bpos committed_pos,
struct bpos next_pos,
struct bkey_s_c k,
const struct bkey_i *insert)
{
struct bchfs_extent_trans_hook *h = container_of(hook,
struct bchfs_extent_trans_hook, hook);
struct bch_inode_info *ei = h->op->ei;
struct inode *inode = &ei->vfs_inode;
int sign = bkey_extent_is_allocation(&insert->k) -
(k.k && bkey_extent_is_allocation(k.k));
s64 sectors = (s64) (next_pos.offset - committed_pos.offset) * sign;
u64 offset = min(next_pos.offset << 9, h->op->new_i_size);
bool do_pack = false;
BUG_ON((next_pos.offset << 9) > round_up(offset, PAGE_SIZE));
/* XXX: ei->i_size locking */
if (offset > ei->i_size) {
BUG_ON(ei->i_flags & BCH_INODE_I_SIZE_DIRTY);
if (!h->need_inode_update) {
h->need_inode_update = true;
return BTREE_HOOK_RESTART_TRANS;
}
h->inode_u.i_size = offset;
do_pack = true;
ei->i_size = offset;
if (h->op->is_dio)
i_size_write(inode, offset);
}
if (sectors) {
if (!h->need_inode_update) {
h->need_inode_update = true;
return BTREE_HOOK_RESTART_TRANS;
}
h->inode_u.i_sectors += sectors;
do_pack = true;
atomic64_add(sectors, &ei->i_sectors);
h->op->sectors_added += sectors;
if (h->op->is_dio) {
spin_lock(&inode->i_lock);
inode->i_blocks += sectors;
spin_unlock(&inode->i_lock);
}
}
if (do_pack)
bch2_inode_pack(&h->inode_p, &h->inode_u);
return BTREE_HOOK_DO_INSERT;
}
static int bchfs_write_index_update(struct bch_write_op *wop)
{
struct bchfs_write_op *op = container_of(wop,
struct bchfs_write_op, op);
struct keylist *keys = &op->op.insert_keys;
struct btree_iter extent_iter, inode_iter;
struct bchfs_extent_trans_hook hook;
struct bkey_i *k = bch2_keylist_front(keys);
int ret;
BUG_ON(k->k.p.inode != op->ei->vfs_inode.i_ino);
bch2_btree_iter_init_intent(&extent_iter, wop->c, BTREE_ID_EXTENTS,
bkey_start_pos(&bch2_keylist_front(keys)->k));
bch2_btree_iter_init_intent(&inode_iter, wop->c, BTREE_ID_INODES,
POS(extent_iter.pos.inode, 0));
hook.op = op;
hook.hook.fn = bchfs_extent_update_hook;
hook.need_inode_update = false;
do {
ret = bch2_btree_iter_traverse(&extent_iter);
if (ret)
goto err;
/* XXX: ei->i_size locking */
k = bch2_keylist_front(keys);
if (min(k->k.p.offset << 9, op->new_i_size) > op->ei->i_size)
hook.need_inode_update = true;
if (hook.need_inode_update) {
struct bkey_s_c inode;
if (!btree_iter_linked(&inode_iter))
bch2_btree_iter_link(&extent_iter, &inode_iter);
inode = bch2_btree_iter_peek_with_holes(&inode_iter);
if ((ret = btree_iter_err(inode)))
goto err;
if (WARN_ONCE(inode.k->type != BCH_INODE_FS,
"inode %llu not found when updating",
extent_iter.pos.inode)) {
ret = -ENOENT;
break;
}
if (WARN_ONCE(bkey_bytes(inode.k) >
sizeof(hook.inode_p),
"inode %llu too big (%zu bytes, buf %zu)",
extent_iter.pos.inode,
bkey_bytes(inode.k),
sizeof(hook.inode_p))) {
ret = -ENOENT;
break;
}
bkey_reassemble(&hook.inode_p.inode.k_i, inode);
ret = bch2_inode_unpack(bkey_s_c_to_inode(inode),
&hook.inode_u);
if (WARN_ONCE(ret,
"error %i unpacking inode %llu",
ret, extent_iter.pos.inode)) {
ret = -ENOENT;
break;
}
ret = bch2_btree_insert_at(wop->c, &wop->res,
&hook.hook, op_journal_seq(wop),
BTREE_INSERT_NOFAIL|BTREE_INSERT_ATOMIC,
BTREE_INSERT_ENTRY(&extent_iter, k),
BTREE_INSERT_ENTRY_EXTRA_RES(&inode_iter,
&hook.inode_p.inode.k_i, 2));
} else {
ret = bch2_btree_insert_at(wop->c, &wop->res,
&hook.hook, op_journal_seq(wop),
BTREE_INSERT_NOFAIL|BTREE_INSERT_ATOMIC,
BTREE_INSERT_ENTRY(&extent_iter, k));
}
err:
if (ret == -EINTR)
continue;
if (ret)
break;
bch2_keylist_pop_front(keys);
} while (!bch2_keylist_empty(keys));
bch2_btree_iter_unlock(&extent_iter);
bch2_btree_iter_unlock(&inode_iter);
return ret;
}
/* page state: */
/* stored in page->private: */
/*
* bch_page_state has to (unfortunately) be manipulated with cmpxchg - we could
* almost protected it with the page lock, except that bch2_writepage_io_done has
* to update the sector counts (and from interrupt/bottom half context).
*/
struct bch_page_state {
union { struct {
/*
* page is _fully_ written on disk, and not compressed - which means to
* write this page we don't have to reserve space (the new write will
* never take up more space on disk than what it's overwriting)
*/
unsigned allocated:1;
/* Owns PAGE_SECTORS sized reservation: */
unsigned reserved:1;
unsigned nr_replicas:4;
/*
* Number of sectors on disk - for i_blocks
* Uncompressed size, not compressed size:
*/
u8 sectors;
u8 dirty_sectors;
};
/* for cmpxchg: */
unsigned long v;
};
};
#define page_state_cmpxchg(_ptr, _new, _expr) \
({ \
unsigned long _v = READ_ONCE((_ptr)->v); \
struct bch_page_state _old; \
\
do { \
_old.v = _new.v = _v; \
_expr; \
\
EBUG_ON(_new.sectors + _new.dirty_sectors > PAGE_SECTORS);\
} while (_old.v != _new.v && \
(_v = cmpxchg(&(_ptr)->v, _old.v, _new.v)) != _old.v); \
\
_old; \
})
static inline struct bch_page_state *page_state(struct page *page)
{
struct bch_page_state *s = (void *) &page->private;
BUILD_BUG_ON(sizeof(*s) > sizeof(page->private));
if (!PagePrivate(page))
SetPagePrivate(page);
return s;
}
static void bch2_put_page_reservation(struct bch_fs *c, struct page *page)
{
struct disk_reservation res = { .sectors = PAGE_SECTORS };
struct bch_page_state s;
s = page_state_cmpxchg(page_state(page), s, {
if (!s.reserved)
return;
s.reserved = 0;
});
bch2_disk_reservation_put(c, &res);
}
static int bch2_get_page_reservation(struct bch_fs *c, struct page *page,
bool check_enospc)
{
struct bch_page_state *s = page_state(page), new;
struct disk_reservation res;
int ret = 0;
BUG_ON(s->allocated && s->sectors != PAGE_SECTORS);
if (s->allocated || s->reserved)
return 0;
ret = bch2_disk_reservation_get(c, &res, PAGE_SECTORS, !check_enospc
? BCH_DISK_RESERVATION_NOFAIL : 0);
if (ret)
return ret;
page_state_cmpxchg(s, new, {
if (new.reserved) {
bch2_disk_reservation_put(c, &res);
return 0;
}
new.reserved = 1;
new.nr_replicas = res.nr_replicas;
});
return 0;
}
static void bch2_clear_page_bits(struct page *page)
{
struct inode *inode = page->mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct disk_reservation res = { .sectors = PAGE_SECTORS };
struct bch_page_state s;
if (!PagePrivate(page))
return;
s = xchg(page_state(page), (struct bch_page_state) { .v = 0 });
ClearPagePrivate(page);
if (s.dirty_sectors) {
spin_lock(&inode->i_lock);
inode->i_blocks -= s.dirty_sectors;
spin_unlock(&inode->i_lock);
}
if (s.reserved)
bch2_disk_reservation_put(c, &res);
}
int bch2_set_page_dirty(struct page *page)
{
struct bch_page_state old, new;
old = page_state_cmpxchg(page_state(page), new,
new.dirty_sectors = PAGE_SECTORS - new.sectors;
);
if (old.dirty_sectors != new.dirty_sectors) {
struct inode *inode = page->mapping->host;
spin_lock(&inode->i_lock);
inode->i_blocks += new.dirty_sectors - old.dirty_sectors;
spin_unlock(&inode->i_lock);
}
return __set_page_dirty_nobuffers(page);
}
/* readpages/writepages: */
static bool bio_can_add_page_contig(struct bio *bio, struct page *page)
{
sector_t offset = (sector_t) page->index << (PAGE_SHIFT - 9);
return bio->bi_vcnt < bio->bi_max_vecs &&
bio_end_sector(bio) == offset;
}
static void __bio_add_page(struct bio *bio, struct page *page)
{
bio->bi_io_vec[bio->bi_vcnt++] = (struct bio_vec) {
.bv_page = page,
.bv_len = PAGE_SIZE,
.bv_offset = 0,
};
bio->bi_iter.bi_size += PAGE_SIZE;
}
static int bio_add_page_contig(struct bio *bio, struct page *page)
{
sector_t offset = (sector_t) page->index << (PAGE_SHIFT - 9);
BUG_ON(!bio->bi_max_vecs);
if (!bio->bi_vcnt)
bio->bi_iter.bi_sector = offset;
else if (!bio_can_add_page_contig(bio, page))
return -1;
__bio_add_page(bio, page);
return 0;
}
static void bch2_readpages_end_io(struct bio *bio)
{
struct bio_vec *bv;
int i;
bio_for_each_segment_all(bv, bio, i) {
struct page *page = bv->bv_page;
if (!bio->bi_error) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
struct readpages_iter {
struct address_space *mapping;
struct list_head pages;
unsigned nr_pages;
};
static int readpage_add_page(struct readpages_iter *iter, struct page *page)
{
struct bch_page_state *s = page_state(page);
int ret;
BUG_ON(s->reserved);
s->allocated = 1;
s->sectors = 0;
prefetchw(&page->flags);
ret = add_to_page_cache_lru(page, iter->mapping,
page->index, GFP_NOFS);
put_page(page);
return ret;
}
static inline struct page *readpage_iter_next(struct readpages_iter *iter)
{
while (iter->nr_pages) {
struct page *page =
list_last_entry(&iter->pages, struct page, lru);
prefetchw(&page->flags);
list_del(&page->lru);
iter->nr_pages--;
if (!readpage_add_page(iter, page))
return page;
}
return NULL;
}
#define for_each_readpage_page(_iter, _page) \
for (; \
((_page) = __readpage_next_page(&(_iter)));) \
static void bch2_mark_pages_unalloc(struct bio *bio)
{
struct bvec_iter iter;
struct bio_vec bv;
bio_for_each_segment(bv, bio, iter)
page_state(bv.bv_page)->allocated = 0;
}
static void bch2_add_page_sectors(struct bio *bio, struct bkey_s_c k)
{
struct bvec_iter iter;
struct bio_vec bv;
bio_for_each_segment(bv, bio, iter) {
struct bch_page_state *s = page_state(bv.bv_page);
/* sectors in @k from the start of this page: */
unsigned k_sectors = k.k->size - (iter.bi_sector - k.k->p.offset);
unsigned page_sectors = min(bv.bv_len >> 9, k_sectors);
if (!s->sectors)
s->nr_replicas = bch2_extent_nr_dirty_ptrs(k);
else
s->nr_replicas = min_t(unsigned, s->nr_replicas,
bch2_extent_nr_dirty_ptrs(k));
BUG_ON(s->sectors + page_sectors > PAGE_SECTORS);
s->sectors += page_sectors;
}
}
static void readpage_bio_extend(struct readpages_iter *iter,
struct bio *bio, u64 offset,
bool get_more)
{
struct page *page;
pgoff_t page_offset;
int ret;
while (bio_end_sector(bio) < offset &&
bio->bi_vcnt < bio->bi_max_vecs) {
page_offset = bio_end_sector(bio) >> PAGE_SECTOR_SHIFT;
if (iter->nr_pages) {
page = list_last_entry(&iter->pages, struct page, lru);
if (page->index != page_offset)
break;
list_del(&page->lru);
iter->nr_pages--;
} else if (get_more) {
rcu_read_lock();
page = radix_tree_lookup(&iter->mapping->page_tree, page_offset);
rcu_read_unlock();
if (page && !radix_tree_exceptional_entry(page))
break;
page = __page_cache_alloc(readahead_gfp_mask(iter->mapping));
if (!page)
break;
page->index = page_offset;
ClearPageReadahead(bio->bi_io_vec[bio->bi_vcnt - 1].bv_page);
} else {
break;
}
ret = readpage_add_page(iter, page);
if (ret)
break;
__bio_add_page(bio, page);
}
if (!iter->nr_pages)
SetPageReadahead(bio->bi_io_vec[bio->bi_vcnt - 1].bv_page);
}
static void bchfs_read(struct bch_fs *c, struct btree_iter *iter,
struct bch_read_bio *rbio, u64 inode,
struct readpages_iter *readpages_iter)
{
struct bio *bio = &rbio->bio;
int flags = BCH_READ_RETRY_IF_STALE|
BCH_READ_PROMOTE|
BCH_READ_MAY_REUSE_BIO;
while (1) {
struct extent_pick_ptr pick;
BKEY_PADDED(k) tmp;
struct bkey_s_c k;
unsigned bytes;
bool is_last;
bch2_btree_iter_set_pos(iter, POS(inode, bio->bi_iter.bi_sector));
k = bch2_btree_iter_peek_with_holes(iter);
BUG_ON(!k.k);
if (IS_ERR(k.k)) {
int ret = bch2_btree_iter_unlock(iter);
BUG_ON(!ret);
bcache_io_error(c, bio, "btree IO error %i", ret);
bio_endio(bio);
return;
}
bkey_reassemble(&tmp.k, k);
bch2_btree_iter_unlock(iter);
k = bkey_i_to_s_c(&tmp.k);
bch2_extent_pick_ptr(c, k, &pick);
if (IS_ERR(pick.ca)) {
bcache_io_error(c, bio, "no device to read from");
bio_endio(bio);
return;
}
if (readpages_iter)
readpage_bio_extend(readpages_iter,
bio, k.k->p.offset,
pick.ca &&
(pick.crc.csum_type ||
pick.crc.compression_type));
bytes = (min_t(u64, k.k->p.offset, bio_end_sector(bio)) -
bio->bi_iter.bi_sector) << 9;
is_last = bytes == bio->bi_iter.bi_size;
swap(bio->bi_iter.bi_size, bytes);
if (bkey_extent_is_allocation(k.k))
bch2_add_page_sectors(bio, k);
if (!bkey_extent_is_allocation(k.k) ||
bkey_extent_is_compressed(k))
bch2_mark_pages_unalloc(bio);
if (is_last)
flags |= BCH_READ_IS_LAST;
if (pick.ca) {
PTR_BUCKET(pick.ca, &pick.ptr)->read_prio =
c->prio_clock[READ].hand;
bch2_read_extent(c, rbio, k, &pick, flags);
flags &= ~BCH_READ_MAY_REUSE_BIO;
} else {
zero_fill_bio(bio);
if (is_last)
bio_endio(bio);
}
if (is_last)
return;
swap(bio->bi_iter.bi_size, bytes);
bio_advance(bio, bytes);
}
}
int bch2_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct btree_iter iter;
struct page *page;
struct readpages_iter readpages_iter = {
.mapping = mapping, .nr_pages = nr_pages
};
bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN);
INIT_LIST_HEAD(&readpages_iter.pages);
list_add(&readpages_iter.pages, pages);
list_del_init(pages);
if (current->pagecache_lock != &mapping->add_lock)
pagecache_add_get(&mapping->add_lock);
while ((page = readpage_iter_next(&readpages_iter))) {
unsigned n = max(min_t(unsigned, readpages_iter.nr_pages + 1,
BIO_MAX_PAGES),
BCH_ENCODED_EXTENT_MAX >> PAGE_SECTOR_SHIFT);
struct bch_read_bio *rbio =
container_of(bio_alloc_bioset(GFP_NOFS, n,
&c->bio_read),
struct bch_read_bio, bio);
rbio->bio.bi_end_io = bch2_readpages_end_io;
bio_add_page_contig(&rbio->bio, page);
bchfs_read(c, &iter, rbio, inode->i_ino, &readpages_iter);
}
if (current->pagecache_lock != &mapping->add_lock)
pagecache_add_put(&mapping->add_lock);
return 0;
}
static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio,
u64 inode, struct page *page)
{
struct btree_iter iter;
/*
* Initialize page state:
* If a page is partly allocated and partly a hole, we want it to be
* marked BCH_PAGE_UNALLOCATED - so we initially mark all pages
* allocated and then mark them unallocated as we find holes:
*
* Note that the bio hasn't been split yet - it's the only bio that
* points to these pages. As we walk extents and split @bio, that
* necessarily be true, the splits won't necessarily be on page
* boundaries:
*/
struct bch_page_state *s = page_state(page);
EBUG_ON(s->reserved);
s->allocated = 1;
s->sectors = 0;
bio_set_op_attrs(&rbio->bio, REQ_OP_READ, REQ_SYNC);
bio_add_page_contig(&rbio->bio, page);
bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN);
bchfs_read(c, &iter, rbio, inode, NULL);
}
int bch2_readpage(struct file *file, struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct bch_read_bio *rbio;
rbio = container_of(bio_alloc_bioset(GFP_NOFS, 1,
&c->bio_read),
struct bch_read_bio, bio);
rbio->bio.bi_end_io = bch2_readpages_end_io;
__bchfs_readpage(c, rbio, inode->i_ino, page);
return 0;
}
struct bch_writepage_state {
struct bch_writepage_io *io;
};
static void bch2_writepage_io_free(struct closure *cl)
{
struct bch_writepage_io *io = container_of(cl,
struct bch_writepage_io, cl);
struct bio *bio = &io->bio.bio;
bio_put(bio);
}
static void bch2_writepage_io_done(struct closure *cl)
{
struct bch_writepage_io *io = container_of(cl,
struct bch_writepage_io, cl);
struct bch_fs *c = io->op.op.c;
struct bio *bio = &io->bio.bio;
struct bio_vec *bvec;
unsigned i;
atomic_sub(bio->bi_vcnt, &c->writeback_pages);
wake_up(&c->writeback_wait);
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (io->op.op.error) {
SetPageError(page);
if (page->mapping)
set_bit(AS_EIO, &page->mapping->flags);
}
if (io->op.op.written >= PAGE_SECTORS) {
struct bch_page_state old, new;
old = page_state_cmpxchg(page_state(page), new, {
new.sectors = PAGE_SECTORS;
new.dirty_sectors = 0;
});
io->op.sectors_added -= old.dirty_sectors;
io->op.op.written -= PAGE_SECTORS;
}
}
/*
* racing with fallocate can cause us to add fewer sectors than
* expected - but we shouldn't add more sectors than expected:
*
* (error (due to going RO) halfway through a page can screw that up
* slightly)
*/
BUG_ON(io->op.sectors_added >= (s64) PAGE_SECTORS);
/*
* PageWriteback is effectively our ref on the inode - fixup i_blocks
* before calling end_page_writeback:
*/
if (io->op.sectors_added) {
struct inode *inode = &io->op.ei->vfs_inode;
spin_lock(&inode->i_lock);
inode->i_blocks += io->op.sectors_added;
spin_unlock(&inode->i_lock);
}
bio_for_each_segment_all(bvec, bio, i)
end_page_writeback(bvec->bv_page);
closure_return_with_destructor(&io->cl, bch2_writepage_io_free);
}
static void bch2_writepage_do_io(struct bch_writepage_state *w)
{
struct bch_writepage_io *io = w->io;
w->io = NULL;
atomic_add(io->bio.bio.bi_vcnt, &io->op.op.c->writeback_pages);
io->op.op.pos.offset = io->bio.bio.bi_iter.bi_sector;
closure_call(&io->op.op.cl, bch2_write, NULL, &io->cl);
continue_at(&io->cl, bch2_writepage_io_done, NULL);
}
/*
* Get a bch_writepage_io and add @page to it - appending to an existing one if
* possible, else allocating a new one:
*/
static void bch2_writepage_io_alloc(struct bch_fs *c,
struct bch_writepage_state *w,
struct bch_inode_info *ei,
struct page *page)
{
u64 inum = ei->vfs_inode.i_ino;
unsigned nr_replicas = page_state(page)->nr_replicas;
EBUG_ON(!nr_replicas);
/* XXX: disk_reservation->gen isn't plumbed through */
if (!w->io) {
alloc_io:
w->io = container_of(bio_alloc_bioset(GFP_NOFS,
BIO_MAX_PAGES,
bch2_writepage_bioset),
struct bch_writepage_io, bio.bio);
closure_init(&w->io->cl, NULL);
w->io->op.ei = ei;
w->io->op.sectors_added = 0;
w->io->op.is_dio = false;
bch2_write_op_init(&w->io->op.op, c, &w->io->bio,
(struct disk_reservation) {
.nr_replicas = c->opts.data_replicas,
},
foreground_write_point(c, inum),
POS(inum, 0),
&ei->journal_seq, 0);
w->io->op.op.index_update_fn = bchfs_write_index_update;
}
if (w->io->op.op.res.nr_replicas != nr_replicas ||
bio_add_page_contig(&w->io->bio.bio, page)) {
bch2_writepage_do_io(w);
goto alloc_io;
}
/*
* We shouldn't ever be handed pages for multiple inodes in a single
* pass - right?
*/
BUG_ON(ei != w->io->op.ei);
}
static int __bch2_writepage(struct bch_fs *c, struct page *page,
struct writeback_control *wbc,
struct bch_writepage_state *w)
{
struct inode *inode = page->mapping->host;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_page_state new, old;
unsigned offset;
loff_t i_size = i_size_read(inode);
pgoff_t end_index = i_size >> PAGE_SHIFT;
EBUG_ON(!PageUptodate(page));
/* Is the page fully inside i_size? */
if (page->index < end_index)
goto do_io;
/* Is the page fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_SIZE - 1);
if (page->index > end_index || !offset) {
unlock_page(page);
return 0;
}
/*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
zero_user_segment(page, offset, PAGE_SIZE);
do_io:
bch2_writepage_io_alloc(c, w, ei, page);
/* while page is locked: */
w->io->op.new_i_size = i_size;
if (wbc->sync_mode == WB_SYNC_ALL)
w->io->bio.bio.bi_opf |= WRITE_SYNC;
/* Before unlocking the page, transfer reservation to w->io: */
old = page_state_cmpxchg(page_state(page), new, {
EBUG_ON(!new.reserved &&
(new.sectors != PAGE_SECTORS ||
!new.allocated));
if (new.allocated &&
w->io->op.op.compression_type != BCH_COMPRESSION_NONE)
new.allocated = 0;
else if (!new.reserved)
goto out;
new.reserved = 0;
});
w->io->op.op.res.sectors += PAGE_SECTORS *
(old.reserved - new.reserved) *
old.nr_replicas;
out:
BUG_ON(PageWriteback(page));
set_page_writeback(page);
unlock_page(page);
return 0;
}
int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
struct bch_fs *c = mapping->host->i_sb->s_fs_info;
struct bch_writepage_state w = { NULL };
struct pagecache_iter iter;
struct page *page;
int ret = 0;
int done = 0;
pgoff_t uninitialized_var(writeback_index);
pgoff_t index;
pgoff_t end; /* Inclusive */
pgoff_t done_index;
int cycled;
int range_whole = 0;
int tag;
if (wbc->range_cyclic) {
writeback_index = mapping->writeback_index; /* prev offset */
index = writeback_index;
if (index == 0)
cycled = 1;
else
cycled = 0;
end = -1;
} else {
index = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
cycled = 1; /* ignore range_cyclic tests */
}
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
retry:
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, index, end);
done_index = index;
get_pages:
for_each_pagecache_tag(&iter, mapping, tag, index, end, page) {
done_index = page->index;
if (w.io &&
!bio_can_add_page_contig(&w.io->bio.bio, page))
bch2_writepage_do_io(&w);
if (!w.io &&
atomic_read(&c->writeback_pages) >=
c->writeback_pages_max) {
/* don't sleep with pages pinned: */
pagecache_iter_release(&iter);
__wait_event(c->writeback_wait,
atomic_read(&c->writeback_pages) <
c->writeback_pages_max);
goto get_pages;
}
lock_page(page);
/*
* Page truncated or invalidated. We can freely skip it
* then, even for data integrity operations: the page
* has disappeared concurrently, so there could be no
* real expectation of this data interity operation
* even if there is now a new, dirty page at the same
* pagecache address.
*/
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (PageWriteback(page)) {
if (wbc->sync_mode != WB_SYNC_NONE)
wait_on_page_writeback(page);
else
goto continue_unlock;
}
BUG_ON(PageWriteback(page));
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
ret = __bch2_writepage(c, page, wbc, &w);
if (unlikely(ret)) {
if (ret == AOP_WRITEPAGE_ACTIVATE) {
unlock_page(page);
ret = 0;
} else {
/*
* done_index is set past this page,
* so media errors will not choke
* background writeout for the entire
* file. This has consequences for
* range_cyclic semantics (ie. it may
* not be suitable for data integrity
* writeout).
*/
done_index = page->index + 1;
done = 1;
break;
}
}
/*
* We stop writing back only if we are not doing
* integrity sync. In case of integrity sync we have to
* keep going until we have written all the pages
* we tagged for writeback prior to entering this loop.
*/
if (--wbc->nr_to_write <= 0 &&
wbc->sync_mode == WB_SYNC_NONE) {
done = 1;
break;
}
}
pagecache_iter_release(&iter);
if (w.io)
bch2_writepage_do_io(&w);
if (!cycled && !done) {
/*
* range_cyclic:
* We hit the last page and there is more work to be done: wrap
* back to the start of the file
*/
cycled = 1;
index = 0;
end = writeback_index - 1;
goto retry;
}
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
mapping->writeback_index = done_index;
return ret;
}
int bch2_writepage(struct page *page, struct writeback_control *wbc)
{
struct bch_fs *c = page->mapping->host->i_sb->s_fs_info;
struct bch_writepage_state w = { NULL };
int ret;
ret = __bch2_writepage(c, page, wbc, &w);
if (w.io)
bch2_writepage_do_io(&w);
return ret;
}
static void bch2_read_single_page_end_io(struct bio *bio)
{
complete(bio->bi_private);
}
static int bch2_read_single_page(struct page *page,
struct address_space *mapping)
{
struct inode *inode = mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct bch_read_bio *rbio;
int ret;
DECLARE_COMPLETION_ONSTACK(done);
rbio = container_of(bio_alloc_bioset(GFP_NOFS, 1,
&c->bio_read),
struct bch_read_bio, bio);
rbio->bio.bi_private = &done;
rbio->bio.bi_end_io = bch2_read_single_page_end_io;
__bchfs_readpage(c, rbio, inode->i_ino, page);
wait_for_completion(&done);
ret = rbio->bio.bi_error;
bio_put(&rbio->bio);
if (ret < 0)
return ret;
SetPageUptodate(page);
return 0;
}
int bch2_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
pgoff_t index = pos >> PAGE_SHIFT;
unsigned offset = pos & (PAGE_SIZE - 1);
struct page *page;
int ret = -ENOMEM;
BUG_ON(inode_unhashed(mapping->host));
/* Not strictly necessary - same reason as mkwrite(): */
pagecache_add_get(&mapping->add_lock);
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
goto err_unlock;
if (PageUptodate(page))
goto out;
/* If we're writing entire page, don't need to read it in first: */
if (len == PAGE_SIZE)
goto out;
if (!offset && pos + len >= inode->i_size) {
zero_user_segment(page, len, PAGE_SIZE);
flush_dcache_page(page);
goto out;
}
if (index > inode->i_size >> PAGE_SHIFT) {
zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE);
flush_dcache_page(page);
goto out;
}
readpage:
ret = bch2_read_single_page(page, mapping);
if (ret)
goto err;
out:
ret = bch2_get_page_reservation(c, page, true);
if (ret) {
if (!PageUptodate(page)) {
/*
* If the page hasn't been read in, we won't know if we
* actually need a reservation - we don't actually need
* to read here, we just need to check if the page is
* fully backed by uncompressed data:
*/
goto readpage;
}
goto err;
}
*pagep = page;
return 0;
err:
unlock_page(page);
put_page(page);
*pagep = NULL;
err_unlock:
pagecache_add_put(&mapping->add_lock);
return ret;
}
int bch2_write_end(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
lockdep_assert_held(&inode->i_rwsem);
if (unlikely(copied < len && !PageUptodate(page))) {
/*
* The page needs to be read in, but that would destroy
* our partial write - simplest thing is to just force
* userspace to redo the write:
*/
zero_user(page, 0, PAGE_SIZE);
flush_dcache_page(page);
copied = 0;
}
if (pos + copied > inode->i_size)
i_size_write(inode, pos + copied);
if (copied) {
if (!PageUptodate(page))
SetPageUptodate(page);
if (!PageDirty(page))
set_page_dirty(page);
} else {
bch2_put_page_reservation(c, page);
}
unlock_page(page);
put_page(page);
pagecache_add_put(&mapping->add_lock);
return copied;
}
/* O_DIRECT */
static void bch2_dio_read_complete(struct closure *cl)
{
struct dio_read *dio = container_of(cl, struct dio_read, cl);
dio->req->ki_complete(dio->req, dio->ret, 0);
bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */
}
static void bch2_direct_IO_read_endio(struct bio *bio)
{
struct dio_read *dio = bio->bi_private;
if (bio->bi_error)
dio->ret = bio->bi_error;
closure_put(&dio->cl);
}
static void bch2_direct_IO_read_split_endio(struct bio *bio)
{
bch2_direct_IO_read_endio(bio);
bio_check_pages_dirty(bio); /* transfers ownership */
}
static int bch2_direct_IO_read(struct bch_fs *c, struct kiocb *req,
struct file *file, struct inode *inode,
struct iov_iter *iter, loff_t offset)
{
struct dio_read *dio;
struct bio *bio;
bool sync = is_sync_kiocb(req);
ssize_t ret;
if ((offset|iter->count) & (block_bytes(c) - 1))
return -EINVAL;
ret = min_t(loff_t, iter->count,
max_t(loff_t, 0, i_size_read(inode) - offset));
iov_iter_truncate(iter, round_up(ret, block_bytes(c)));
if (!ret)
return ret;
bio = bio_alloc_bioset(GFP_KERNEL,
iov_iter_npages(iter, BIO_MAX_PAGES),
bch2_dio_read_bioset);
bio->bi_end_io = bch2_direct_IO_read_endio;
dio = container_of(bio, struct dio_read, rbio.bio);
closure_init(&dio->cl, NULL);
/*
* this is a _really_ horrible hack just to avoid an atomic sub at the
* end:
*/
if (!sync) {
set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL);
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER -
CLOSURE_RUNNING +
CLOSURE_DESTRUCTOR);
} else {
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER + 1);
}
dio->req = req;
dio->ret = ret;
goto start;
while (iter->count) {
bio = bio_alloc_bioset(GFP_KERNEL,
iov_iter_npages(iter, BIO_MAX_PAGES),
&c->bio_read);
bio->bi_end_io = bch2_direct_IO_read_split_endio;
start:
bio_set_op_attrs(bio, REQ_OP_READ, REQ_SYNC);
bio->bi_iter.bi_sector = offset >> 9;
bio->bi_private = dio;
ret = bio_get_user_pages(bio, iter, 1);
if (ret < 0) {
/* XXX: fault inject this path */
bio->bi_error = ret;
bio_endio(bio);
break;
}
offset += bio->bi_iter.bi_size;
bio_set_pages_dirty(bio);
if (iter->count)
closure_get(&dio->cl);
bch2_read(c, container_of(bio,
struct bch_read_bio, bio),
inode->i_ino);
}
if (sync) {
closure_sync(&dio->cl);
closure_debug_destroy(&dio->cl);
ret = dio->ret;
bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */
return ret;
} else {
return -EIOCBQUEUED;
}
}
static long __bch2_dio_write_complete(struct dio_write *dio)
{
struct file *file = dio->req->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = file->f_inode;
long ret = dio->error ?: dio->written;
bch2_disk_reservation_put(dio->c, &dio->res);
__pagecache_block_put(&mapping->add_lock);
inode_dio_end(inode);
if (dio->iovec && dio->iovec != dio->inline_vecs)
kfree(dio->iovec);
bio_put(&dio->bio.bio);
return ret;
}
static void bch2_dio_write_complete(struct closure *cl)
{
struct dio_write *dio = container_of(cl, struct dio_write, cl);
struct kiocb *req = dio->req;
req->ki_complete(req, __bch2_dio_write_complete(dio), 0);
}
static void bch2_dio_write_done(struct dio_write *dio)
{
struct bio_vec *bv;
int i;
dio->written += dio->iop.op.written << 9;
if (dio->iop.op.error)
dio->error = dio->iop.op.error;
bio_for_each_segment_all(bv, &dio->bio.bio, i)
put_page(bv->bv_page);
if (dio->iter.count)
bio_reset(&dio->bio.bio);
}
static void bch2_do_direct_IO_write(struct dio_write *dio)
{
struct file *file = dio->req->ki_filp;
struct inode *inode = file->f_inode;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bio *bio = &dio->bio.bio;
unsigned flags = 0;
int ret;
if ((dio->req->ki_flags & IOCB_DSYNC) &&
!dio->c->opts.journal_flush_disabled)
flags |= BCH_WRITE_FLUSH;
bio->bi_iter.bi_sector = (dio->offset + dio->written) >> 9;
ret = bio_get_user_pages(bio, &dio->iter, 0);
if (ret < 0) {
/*
* these didn't get initialized, but bch2_dio_write_done() will
* look at them:
*/
dio->iop.op.error = 0;
dio->iop.op.written = 0;
dio->error = ret;
return;
}
dio->iop.ei = ei;
dio->iop.sectors_added = 0;
dio->iop.is_dio = true;
dio->iop.new_i_size = U64_MAX;
bch2_write_op_init(&dio->iop.op, dio->c, &dio->bio,
dio->res,
foreground_write_point(dio->c, inode->i_ino),
POS(inode->i_ino, bio->bi_iter.bi_sector),
&ei->journal_seq, flags);
dio->iop.op.index_update_fn = bchfs_write_index_update;
dio->res.sectors -= bio_sectors(bio);
dio->iop.op.res.sectors = bio_sectors(bio);
task_io_account_write(bio->bi_iter.bi_size);
closure_call(&dio->iop.op.cl, bch2_write, NULL, &dio->cl);
}
static void bch2_dio_write_loop_async(struct closure *cl)
{
struct dio_write *dio =
container_of(cl, struct dio_write, cl);
struct address_space *mapping = dio->req->ki_filp->f_mapping;
bch2_dio_write_done(dio);
if (dio->iter.count && !dio->error) {
use_mm(dio->mm);
pagecache_block_get(&mapping->add_lock);
bch2_do_direct_IO_write(dio);
pagecache_block_put(&mapping->add_lock);
unuse_mm(dio->mm);
continue_at(&dio->cl, bch2_dio_write_loop_async, NULL);
} else {
#if 0
closure_return_with_destructor(cl, bch2_dio_write_complete);
#else
closure_debug_destroy(cl);
bch2_dio_write_complete(cl);
#endif
}
}
static int bch2_direct_IO_write(struct bch_fs *c, struct kiocb *req,
struct file *file, struct inode *inode,
struct iov_iter *iter, loff_t offset)
{
struct address_space *mapping = file->f_mapping;
struct dio_write *dio;
struct bio *bio;
ssize_t ret;
bool sync = is_sync_kiocb(req);
lockdep_assert_held(&inode->i_rwsem);
if (unlikely(!iter->count))
return 0;
if (unlikely((offset|iter->count) & (block_bytes(c) - 1)))
return -EINVAL;
bio = bio_alloc_bioset(GFP_KERNEL,
iov_iter_npages(iter, BIO_MAX_PAGES),
bch2_dio_write_bioset);
dio = container_of(bio, struct dio_write, bio.bio);
dio->req = req;
dio->c = c;
dio->written = 0;
dio->error = 0;
dio->offset = offset;
dio->iovec = NULL;
dio->iter = *iter;
dio->mm = current->mm;
closure_init(&dio->cl, NULL);
if (offset + iter->count > inode->i_size)
sync = true;
/*
* XXX: we shouldn't return -ENOSPC if we're overwriting existing data -
* if getting a reservation fails we should check if we are doing an
* overwrite.
*
* Have to then guard against racing with truncate (deleting data that
* we would have been overwriting)
*/
ret = bch2_disk_reservation_get(c, &dio->res, iter->count >> 9, 0);
if (unlikely(ret)) {
closure_debug_destroy(&dio->cl);
bio_put(bio);
return ret;
}
inode_dio_begin(inode);
__pagecache_block_get(&mapping->add_lock);
if (sync) {
do {
bch2_do_direct_IO_write(dio);
closure_sync(&dio->cl);
bch2_dio_write_done(dio);
} while (dio->iter.count && !dio->error);
closure_debug_destroy(&dio->cl);
return __bch2_dio_write_complete(dio);
} else {
bch2_do_direct_IO_write(dio);
if (dio->iter.count && !dio->error) {
if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) {
dio->iovec = kmalloc(dio->iter.nr_segs *
sizeof(struct iovec),
GFP_KERNEL);
if (!dio->iovec)
dio->error = -ENOMEM;
} else {
dio->iovec = dio->inline_vecs;
}
memcpy(dio->iovec,
dio->iter.iov,
dio->iter.nr_segs * sizeof(struct iovec));
dio->iter.iov = dio->iovec;
}
continue_at_noreturn(&dio->cl, bch2_dio_write_loop_async, NULL);
return -EIOCBQUEUED;
}
}
ssize_t bch2_direct_IO(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct inode *inode = file->f_inode;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct blk_plug plug;
ssize_t ret;
blk_start_plug(&plug);
ret = ((iov_iter_rw(iter) == WRITE)
? bch2_direct_IO_write
: bch2_direct_IO_read)(c, req, file, inode, iter, req->ki_pos);
blk_finish_plug(&plug);
return ret;
}
static ssize_t
bch2_direct_write(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_inode;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct address_space *mapping = file->f_mapping;
loff_t pos = iocb->ki_pos;
ssize_t ret;
pagecache_block_get(&mapping->add_lock);
/* Write and invalidate pagecache range that we're writing to: */
ret = write_invalidate_inode_pages_range(file->f_mapping, pos,
pos + iov_iter_count(iter) - 1);
if (unlikely(ret))
goto err;
ret = bch2_direct_IO_write(c, iocb, file, inode, iter, pos);
err:
pagecache_block_put(&mapping->add_lock);
return ret;
}
static ssize_t __bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
ssize_t ret;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
ret = file_remove_privs(file);
if (ret)
goto out;
ret = file_update_time(file);
if (ret)
goto out;
ret = iocb->ki_flags & IOCB_DIRECT
? bch2_direct_write(iocb, from)
: generic_perform_write(file, from, iocb->ki_pos);
if (likely(ret > 0))
iocb->ki_pos += ret;
out:
current->backing_dev_info = NULL;
return ret;
}
ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
bool direct = iocb->ki_flags & IOCB_DIRECT;
ssize_t ret;
inode_lock(inode);
ret = generic_write_checks(iocb, from);
if (ret > 0)
ret = __bch2_write_iter(iocb, from);
inode_unlock(inode);
if (ret > 0 && !direct)
ret = generic_write_sync(iocb, ret);
return ret;
}
int bch2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vma->vm_file);
struct address_space *mapping = inode->i_mapping;
struct bch_fs *c = inode->i_sb->s_fs_info;
int ret = VM_FAULT_LOCKED;
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
/*
* Not strictly necessary, but helps avoid dio writes livelocking in
* write_invalidate_inode_pages_range() - can drop this if/when we get
* a write_invalidate_inode_pages_range() that works without dropping
* page lock before invalidating page
*/
if (current->pagecache_lock != &mapping->add_lock)
pagecache_add_get(&mapping->add_lock);
lock_page(page);
if (page->mapping != mapping ||
page_offset(page) > i_size_read(inode)) {
unlock_page(page);
ret = VM_FAULT_NOPAGE;
goto out;
}
if (bch2_get_page_reservation(c, page, true)) {
unlock_page(page);
ret = VM_FAULT_SIGBUS;
goto out;
}
if (!PageDirty(page))
set_page_dirty(page);
wait_for_stable_page(page);
out:
if (current->pagecache_lock != &mapping->add_lock)
pagecache_add_put(&mapping->add_lock);
sb_end_pagefault(inode->i_sb);
return ret;
}
void bch2_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
EBUG_ON(!PageLocked(page));
EBUG_ON(PageWriteback(page));
if (offset || length < PAGE_SIZE)
return;
bch2_clear_page_bits(page);
}
int bch2_releasepage(struct page *page, gfp_t gfp_mask)
{
EBUG_ON(!PageLocked(page));
EBUG_ON(PageWriteback(page));
if (PageDirty(page))
return 0;
bch2_clear_page_bits(page);
return 1;
}
#ifdef CONFIG_MIGRATION
int bch2_migrate_page(struct address_space *mapping, struct page *newpage,
struct page *page, enum migrate_mode mode)
{
int ret;
ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
if (ret != MIGRATEPAGE_SUCCESS)
return ret;
if (PagePrivate(page)) {
*page_state(newpage) = *page_state(page);
ClearPagePrivate(page);
}
migrate_page_copy(newpage, page);
return MIGRATEPAGE_SUCCESS;
}
#endif
int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_fs *c = inode->i_sb->s_fs_info;
int ret;
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (ret)
return ret;
if (c->opts.journal_flush_disabled)
return 0;
return bch2_journal_flush_seq(&c->journal, ei->journal_seq);
}
static int __bch2_truncate_page(struct address_space *mapping,
pgoff_t index, loff_t start, loff_t end)
{
struct inode *inode = mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
unsigned start_offset = start & (PAGE_SIZE - 1);
unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1;
struct page *page;
int ret = 0;
/* Page boundary? Nothing to do */
if (!((index == start >> PAGE_SHIFT && start_offset) ||
(index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE)))
return 0;
/* Above i_size? */
if (index << PAGE_SHIFT >= inode->i_size)
return 0;
page = find_lock_page(mapping, index);
if (!page) {
struct btree_iter iter;
struct bkey_s_c k = bkey_s_c_null;
/*
* XXX: we're doing two index lookups when we end up reading the
* page
*/
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS,
POS(inode->i_ino,
index << (PAGE_SHIFT - 9)), k) {
if (bkey_cmp(bkey_start_pos(k.k),
POS(inode->i_ino,
(index + 1) << (PAGE_SHIFT - 9))) >= 0)
break;
if (k.k->type != KEY_TYPE_DISCARD &&
k.k->type != BCH_RESERVATION) {
bch2_btree_iter_unlock(&iter);
goto create;
}
}
bch2_btree_iter_unlock(&iter);
return 0;
create:
page = find_or_create_page(mapping, index, GFP_KERNEL);
if (unlikely(!page)) {
ret = -ENOMEM;
goto out;
}
}
if (!PageUptodate(page)) {
ret = bch2_read_single_page(page, mapping);
if (ret)
goto unlock;
}
/*
* Bit of a hack - we don't want truncate to fail due to -ENOSPC.
*
* XXX: because we aren't currently tracking whether the page has actual
* data in it (vs. just 0s, or only partially written) this wrong. ick.
*/
ret = bch2_get_page_reservation(c, page, false);
BUG_ON(ret);
if (index == start >> PAGE_SHIFT &&
index == end >> PAGE_SHIFT)
zero_user_segment(page, start_offset, end_offset);
else if (index == start >> PAGE_SHIFT)
zero_user_segment(page, start_offset, PAGE_SIZE);
else if (index == end >> PAGE_SHIFT)
zero_user_segment(page, 0, end_offset);
if (!PageDirty(page))
set_page_dirty(page);
unlock:
unlock_page(page);
put_page(page);
out:
return ret;
}
static int bch2_truncate_page(struct address_space *mapping, loff_t from)
{
return __bch2_truncate_page(mapping, from >> PAGE_SHIFT,
from, from + PAGE_SIZE);
}
int bch2_truncate(struct inode *inode, struct iattr *iattr)
{
struct address_space *mapping = inode->i_mapping;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_fs *c = inode->i_sb->s_fs_info;
bool shrink = iattr->ia_size <= inode->i_size;
int ret = 0;
inode_dio_wait(inode);
pagecache_block_get(&mapping->add_lock);
truncate_setsize(inode, iattr->ia_size);
/* sync appends.. */
/* XXX what protects ei->i_size? */
if (iattr->ia_size > ei->i_size)
ret = filemap_write_and_wait_range(mapping, ei->i_size, S64_MAX);
if (ret)
goto err_put_pagecache;
mutex_lock(&ei->update_lock);
i_size_dirty_get(ei);
ret = bch2_write_inode_size(c, ei, inode->i_size);
mutex_unlock(&ei->update_lock);
if (unlikely(ret))
goto err;
/*
* There might be persistent reservations (from fallocate())
* above i_size, which bch2_inode_truncate() will discard - we're
* only supposed to discard them if we're doing a real truncate
* here (new i_size < current i_size):
*/
if (shrink) {
struct i_sectors_hook i_sectors_hook;
int ret;
ret = i_sectors_dirty_get(ei, &i_sectors_hook);
if (unlikely(ret))
goto err;
ret = bch2_truncate_page(inode->i_mapping, iattr->ia_size);
if (unlikely(ret)) {
i_sectors_dirty_put(ei, &i_sectors_hook);
goto err;
}
ret = bch2_inode_truncate(c, inode->i_ino,
round_up(iattr->ia_size, PAGE_SIZE) >> 9,
&i_sectors_hook.hook,
&ei->journal_seq);
i_sectors_dirty_put(ei, &i_sectors_hook);
if (unlikely(ret))
goto err;
}
mutex_lock(&ei->update_lock);
setattr_copy(inode, iattr);
inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
/* clear I_SIZE_DIRTY: */
i_size_dirty_put(ei);
ret = bch2_write_inode_size(c, ei, inode->i_size);
mutex_unlock(&ei->update_lock);
pagecache_block_put(&mapping->add_lock);
return 0;
err:
i_size_dirty_put(ei);
err_put_pagecache:
pagecache_block_put(&mapping->add_lock);
return ret;
}
static long bch2_fpunch(struct inode *inode, loff_t offset, loff_t len)
{
struct address_space *mapping = inode->i_mapping;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_fs *c = inode->i_sb->s_fs_info;
u64 ino = inode->i_ino;
u64 discard_start = round_up(offset, PAGE_SIZE) >> 9;
u64 discard_end = round_down(offset + len, PAGE_SIZE) >> 9;
int ret = 0;
inode_lock(inode);
inode_dio_wait(inode);
pagecache_block_get(&mapping->add_lock);
ret = __bch2_truncate_page(inode->i_mapping,
offset >> PAGE_SHIFT,
offset, offset + len);
if (unlikely(ret))
goto out;
if (offset >> PAGE_SHIFT !=
(offset + len) >> PAGE_SHIFT) {
ret = __bch2_truncate_page(inode->i_mapping,
(offset + len) >> PAGE_SHIFT,
offset, offset + len);
if (unlikely(ret))
goto out;
}
truncate_pagecache_range(inode, offset, offset + len - 1);
if (discard_start < discard_end) {
struct disk_reservation disk_res;
struct i_sectors_hook i_sectors_hook;
int ret;
BUG_ON(bch2_disk_reservation_get(c, &disk_res, 0, 0));
ret = i_sectors_dirty_get(ei, &i_sectors_hook);
if (unlikely(ret))
goto out;
ret = bch2_discard(c,
POS(ino, discard_start),
POS(ino, discard_end),
ZERO_VERSION,
&disk_res,
&i_sectors_hook.hook,
&ei->journal_seq);
i_sectors_dirty_put(ei, &i_sectors_hook);
bch2_disk_reservation_put(c, &disk_res);
}
out:
pagecache_block_put(&mapping->add_lock);
inode_unlock(inode);
return ret;
}
static long bch2_fcollapse(struct inode *inode, loff_t offset, loff_t len)
{
struct address_space *mapping = inode->i_mapping;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_fs *c = inode->i_sb->s_fs_info;
struct btree_iter src;
struct btree_iter dst;
BKEY_PADDED(k) copy;
struct bkey_s_c k;
struct i_sectors_hook i_sectors_hook;
loff_t new_size;
int ret;
if ((offset | len) & (PAGE_SIZE - 1))
return -EINVAL;
bch2_btree_iter_init_intent(&dst, c, BTREE_ID_EXTENTS,
POS(inode->i_ino, offset >> 9));
/* position will be set from dst iter's position: */
bch2_btree_iter_init(&src, c, BTREE_ID_EXTENTS, POS_MIN);
bch2_btree_iter_link(&src, &dst);
/*
* We need i_mutex to keep the page cache consistent with the extents
* btree, and the btree consistent with i_size - we don't need outside
* locking for the extents btree itself, because we're using linked
* iterators
*/
inode_lock(inode);
inode_dio_wait(inode);
pagecache_block_get(&mapping->add_lock);
ret = -EINVAL;
if (offset + len >= inode->i_size)
goto err;
if (inode->i_size < len)
goto err;
new_size = inode->i_size - len;
ret = write_invalidate_inode_pages_range(inode->i_mapping,
offset, LLONG_MAX);
if (ret)
goto err;
ret = i_sectors_dirty_get(ei, &i_sectors_hook);
if (ret)
goto err;
while (bkey_cmp(dst.pos,
POS(inode->i_ino,
round_up(new_size, PAGE_SIZE) >> 9)) < 0) {
struct disk_reservation disk_res;
bch2_btree_iter_set_pos(&src,
POS(dst.pos.inode, dst.pos.offset + (len >> 9)));
ret = bch2_btree_iter_traverse(&dst);
if (ret)
goto btree_iter_err;
k = bch2_btree_iter_peek_with_holes(&src);
if ((ret = btree_iter_err(k)))
goto btree_iter_err;
bkey_reassemble(&copy.k, k);
if (bkey_deleted(&copy.k.k))
copy.k.k.type = KEY_TYPE_DISCARD;
bch2_cut_front(src.pos, &copy.k);
copy.k.k.p.offset -= len >> 9;
BUG_ON(bkey_cmp(dst.pos, bkey_start_pos(&copy.k.k)));
ret = bch2_disk_reservation_get(c, &disk_res, copy.k.k.size,
BCH_DISK_RESERVATION_NOFAIL);
BUG_ON(ret);
ret = bch2_btree_insert_at(c, &disk_res, &i_sectors_hook.hook,
&ei->journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOFAIL,
BTREE_INSERT_ENTRY(&dst, &copy.k));
bch2_disk_reservation_put(c, &disk_res);
btree_iter_err:
if (ret < 0 && ret != -EINTR)
goto err_unwind;
bch2_btree_iter_cond_resched(&src);
}
bch2_btree_iter_unlock(&src);
bch2_btree_iter_unlock(&dst);
ret = bch2_inode_truncate(c, inode->i_ino,
round_up(new_size, PAGE_SIZE) >> 9,
&i_sectors_hook.hook,
&ei->journal_seq);
if (ret)
goto err_unwind;
i_sectors_dirty_put(ei, &i_sectors_hook);
mutex_lock(&ei->update_lock);
i_size_write(inode, new_size);
ret = bch2_write_inode_size(c, ei, inode->i_size);
mutex_unlock(&ei->update_lock);
pagecache_block_put(&mapping->add_lock);
inode_unlock(inode);
return ret;
err_unwind:
/*
* XXX: we've left data with multiple pointers... which isn't a _super_
* serious problem...
*/
i_sectors_dirty_put(ei, &i_sectors_hook);
err:
bch2_btree_iter_unlock(&src);
bch2_btree_iter_unlock(&dst);
pagecache_block_put(&mapping->add_lock);
inode_unlock(inode);
return ret;
}
static long bch2_fallocate(struct inode *inode, int mode,
loff_t offset, loff_t len)
{
struct address_space *mapping = inode->i_mapping;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_fs *c = inode->i_sb->s_fs_info;
struct i_sectors_hook i_sectors_hook;
struct btree_iter iter;
struct bpos end;
loff_t block_start, block_end;
loff_t new_size = offset + len;
unsigned sectors;
unsigned replicas = READ_ONCE(c->opts.data_replicas);
int ret;
bch2_btree_iter_init_intent(&iter, c, BTREE_ID_EXTENTS, POS_MIN);
inode_lock(inode);
inode_dio_wait(inode);
pagecache_block_get(&mapping->add_lock);
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
new_size > inode->i_size) {
ret = inode_newsize_ok(inode, new_size);
if (ret)
goto err;
}
if (mode & FALLOC_FL_ZERO_RANGE) {
ret = __bch2_truncate_page(inode->i_mapping,
offset >> PAGE_SHIFT,
offset, offset + len);
if (!ret &&
offset >> PAGE_SHIFT !=
(offset + len) >> PAGE_SHIFT)
ret = __bch2_truncate_page(inode->i_mapping,
(offset + len) >> PAGE_SHIFT,
offset, offset + len);
if (unlikely(ret))
goto err;
truncate_pagecache_range(inode, offset, offset + len - 1);
block_start = round_up(offset, PAGE_SIZE);
block_end = round_down(offset + len, PAGE_SIZE);
} else {
block_start = round_down(offset, PAGE_SIZE);
block_end = round_up(offset + len, PAGE_SIZE);
}
bch2_btree_iter_set_pos(&iter, POS(inode->i_ino, block_start >> 9));
end = POS(inode->i_ino, block_end >> 9);
ret = i_sectors_dirty_get(ei, &i_sectors_hook);
if (unlikely(ret))
goto err;
while (bkey_cmp(iter.pos, end) < 0) {
struct disk_reservation disk_res = { 0 };
struct bkey_i_reservation reservation;
struct bkey_s_c k;
k = bch2_btree_iter_peek_with_holes(&iter);
if ((ret = btree_iter_err(k)))
goto btree_iter_err;
/* already reserved */
if (k.k->type == BCH_RESERVATION &&
bkey_s_c_to_reservation(k).v->nr_replicas >= replicas) {
bch2_btree_iter_advance_pos(&iter);
continue;
}
if (bkey_extent_is_data(k.k)) {
if (!(mode & FALLOC_FL_ZERO_RANGE)) {
bch2_btree_iter_advance_pos(&iter);
continue;
}
}
bkey_reservation_init(&reservation.k_i);
reservation.k.type = BCH_RESERVATION;
reservation.k.p = k.k->p;
reservation.k.size = k.k->size;
bch2_cut_front(iter.pos, &reservation.k_i);
bch2_cut_back(end, &reservation.k);
sectors = reservation.k.size;
reservation.v.nr_replicas = bch2_extent_nr_dirty_ptrs(k);
if (reservation.v.nr_replicas < replicas ||
bkey_extent_is_compressed(k)) {
ret = bch2_disk_reservation_get(c, &disk_res,
sectors, 0);
if (ret)
goto err_put_sectors_dirty;
reservation.v.nr_replicas = disk_res.nr_replicas;
}
ret = bch2_btree_insert_at(c, &disk_res, &i_sectors_hook.hook,
&ei->journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOFAIL,
BTREE_INSERT_ENTRY(&iter, &reservation.k_i));
bch2_disk_reservation_put(c, &disk_res);
btree_iter_err:
if (ret < 0 && ret != -EINTR)
goto err_put_sectors_dirty;
}
bch2_btree_iter_unlock(&iter);
i_sectors_dirty_put(ei, &i_sectors_hook);
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
new_size > inode->i_size) {
i_size_write(inode, new_size);
mutex_lock(&ei->update_lock);
ret = bch2_write_inode_size(c, ei, inode->i_size);
mutex_unlock(&ei->update_lock);
}
/* blech */
if ((mode & FALLOC_FL_KEEP_SIZE) &&
(mode & FALLOC_FL_ZERO_RANGE) &&
ei->i_size != inode->i_size) {
/* sync appends.. */
ret = filemap_write_and_wait_range(mapping, ei->i_size, S64_MAX);
if (ret)
goto err;
if (ei->i_size != inode->i_size) {
mutex_lock(&ei->update_lock);
ret = bch2_write_inode_size(c, ei, inode->i_size);
mutex_unlock(&ei->update_lock);
}
}
pagecache_block_put(&mapping->add_lock);
inode_unlock(inode);
return 0;
err_put_sectors_dirty:
i_sectors_dirty_put(ei, &i_sectors_hook);
err:
bch2_btree_iter_unlock(&iter);
pagecache_block_put(&mapping->add_lock);
inode_unlock(inode);
return ret;
}
long bch2_fallocate_dispatch(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE)))
return bch2_fallocate(inode, mode, offset, len);
if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE))
return bch2_fpunch(inode, offset, len);
if (mode == FALLOC_FL_COLLAPSE_RANGE)
return bch2_fcollapse(inode, offset, len);
return -EOPNOTSUPP;
}
static bool page_is_data(struct page *page)
{
/* XXX: should only have to check PageDirty */
return PagePrivate(page) &&
(page_state(page)->sectors ||
page_state(page)->dirty_sectors);
}
static loff_t bch2_next_pagecache_data(struct inode *inode,
loff_t start_offset,
loff_t end_offset)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
pgoff_t index;
for (index = start_offset >> PAGE_SHIFT;
index < end_offset >> PAGE_SHIFT;
index++) {
if (find_get_pages(mapping, index, 1, &page)) {
lock_page(page);
index = page->index;
if (page_is_data(page))
end_offset =
min(end_offset,
max(start_offset,
((loff_t) index) << PAGE_SHIFT));
unlock_page(page);
put_page(page);
} else {
break;
}
}
return end_offset;
}
static loff_t bch2_seek_data(struct file *file, u64 offset)
{
struct inode *inode = file->f_mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct btree_iter iter;
struct bkey_s_c k;
u64 isize, next_data = MAX_LFS_FILESIZE;
int ret;
isize = i_size_read(inode);
if (offset >= isize)
return -ENXIO;
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS,
POS(inode->i_ino, offset >> 9), k) {
if (k.k->p.inode != inode->i_ino) {
break;
} else if (bkey_extent_is_data(k.k)) {
next_data = max(offset, bkey_start_offset(k.k) << 9);
break;
} else if (k.k->p.offset >> 9 > isize)
break;
}
ret = bch2_btree_iter_unlock(&iter);
if (ret)
return ret;
if (next_data > offset)
next_data = bch2_next_pagecache_data(inode, offset, next_data);
if (next_data > isize)
return -ENXIO;
return vfs_setpos(file, next_data, MAX_LFS_FILESIZE);
}
static bool page_slot_is_data(struct address_space *mapping, pgoff_t index)
{
struct page *page;
bool ret;
page = find_lock_entry(mapping, index);
if (!page || radix_tree_exception(page))
return false;
ret = page_is_data(page);
unlock_page(page);
return ret;
}
static loff_t bch2_next_pagecache_hole(struct inode *inode,
loff_t start_offset,
loff_t end_offset)
{
struct address_space *mapping = inode->i_mapping;
pgoff_t index;
for (index = start_offset >> PAGE_SHIFT;
index < end_offset >> PAGE_SHIFT;
index++)
if (!page_slot_is_data(mapping, index))
end_offset = max(start_offset,
((loff_t) index) << PAGE_SHIFT);
return end_offset;
}
static loff_t bch2_seek_hole(struct file *file, u64 offset)
{
struct inode *inode = file->f_mapping->host;
struct bch_fs *c = inode->i_sb->s_fs_info;
struct btree_iter iter;
struct bkey_s_c k;
u64 isize, next_hole = MAX_LFS_FILESIZE;
int ret;
isize = i_size_read(inode);
if (offset >= isize)
return -ENXIO;
for_each_btree_key_with_holes(&iter, c, BTREE_ID_EXTENTS,
POS(inode->i_ino, offset >> 9), k) {
if (k.k->p.inode != inode->i_ino) {
next_hole = bch2_next_pagecache_hole(inode,
offset, MAX_LFS_FILESIZE);
break;
} else if (!bkey_extent_is_data(k.k)) {
next_hole = bch2_next_pagecache_hole(inode,
max(offset, bkey_start_offset(k.k) << 9),
k.k->p.offset << 9);
if (next_hole < k.k->p.offset << 9)
break;
} else {
offset = max(offset, bkey_start_offset(k.k) << 9);
}
}
ret = bch2_btree_iter_unlock(&iter);
if (ret)
return ret;
if (next_hole > isize)
next_hole = isize;
return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE);
}
loff_t bch2_llseek(struct file *file, loff_t offset, int whence)
{
switch (whence) {
case SEEK_SET:
case SEEK_CUR:
case SEEK_END:
return generic_file_llseek(file, offset, whence);
case SEEK_DATA:
return bch2_seek_data(file, offset);
case SEEK_HOLE:
return bch2_seek_hole(file, offset);
}
return -EINVAL;
}