bcachefs-tools/libbcachefs/fs.c
2017-03-19 17:31:47 -08:00

1482 lines
34 KiB
C

#include "bcachefs.h"
#include "acl.h"
#include "btree_update.h"
#include "buckets.h"
#include "chardev.h"
#include "dirent.h"
#include "extents.h"
#include "fs.h"
#include "fs-gc.h"
#include "fs-io.h"
#include "inode.h"
#include "journal.h"
#include "keylist.h"
#include "super.h"
#include "xattr.h"
#include <linux/aio.h>
#include <linux/backing-dev.h>
#include <linux/compat.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/random.h>
#include <linux/statfs.h>
#include <linux/xattr.h>
static struct kmem_cache *bch2_inode_cache;
static void bch2_vfs_inode_init(struct bch_fs *,
struct bch_inode_info *,
struct bch_inode_unpacked *);
/*
* I_SIZE_DIRTY requires special handling:
*
* To the recovery code, the flag means that there is stale data past i_size
* that needs to be deleted; it's used for implementing atomic appends and
* truncates.
*
* On append, we set I_SIZE_DIRTY before doing the write, then after the write
* we clear I_SIZE_DIRTY atomically with updating i_size to the new larger size
* that exposes the data we just wrote.
*
* On truncate, it's the reverse: We set I_SIZE_DIRTY atomically with setting
* i_size to the new smaller size, then we delete the data that we just made
* invisible, and then we clear I_SIZE_DIRTY.
*
* Because there can be multiple appends in flight at a time, we need a refcount
* (i_size_dirty_count) instead of manipulating the flag directly. Nonzero
* refcount means I_SIZE_DIRTY is set, zero means it's cleared.
*
* Because write_inode() can be called at any time, i_size_dirty_count means
* something different to the runtime code - it means to write_inode() "don't
* update i_size yet".
*
* We don't clear I_SIZE_DIRTY directly, we let write_inode() clear it when
* i_size_dirty_count is zero - but the reverse is not true, I_SIZE_DIRTY must
* be set explicitly.
*/
int __must_check __bch2_write_inode(struct bch_fs *c,
struct bch_inode_info *ei,
inode_set_fn set,
void *p)
{
struct btree_iter iter;
struct inode *inode = &ei->vfs_inode;
struct bch_inode_unpacked inode_u;
struct bkey_inode_buf inode_p;
u64 inum = inode->i_ino;
unsigned i_nlink = READ_ONCE(inode->i_nlink);
int ret;
/*
* We can't write an inode with i_nlink == 0 because it's stored biased;
* however, we don't need to because if i_nlink is 0 the inode is
* getting deleted when it's evicted.
*/
if (!i_nlink)
return 0;
lockdep_assert_held(&ei->update_lock);
bch2_btree_iter_init_intent(&iter, c, BTREE_ID_INODES, POS(inum, 0));
do {
struct bkey_s_c k = bch2_btree_iter_peek_with_holes(&iter);
if ((ret = btree_iter_err(k)))
goto out;
if (WARN_ONCE(k.k->type != BCH_INODE_FS,
"inode %llu not found when updating", inum)) {
bch2_btree_iter_unlock(&iter);
return -ENOENT;
}
ret = bch2_inode_unpack(bkey_s_c_to_inode(k), &inode_u);
if (WARN_ONCE(ret,
"error %i unpacking inode %llu", ret, inum)) {
ret = -ENOENT;
break;
}
if (set) {
ret = set(ei, &inode_u, p);
if (ret)
goto out;
}
BUG_ON(i_nlink < nlink_bias(inode->i_mode));
inode_u.i_mode = inode->i_mode;
inode_u.i_uid = i_uid_read(inode);
inode_u.i_gid = i_gid_read(inode);
inode_u.i_nlink = i_nlink - nlink_bias(inode->i_mode);
inode_u.i_dev = inode->i_rdev;
inode_u.i_atime = timespec_to_bch2_time(c, inode->i_atime);
inode_u.i_mtime = timespec_to_bch2_time(c, inode->i_mtime);
inode_u.i_ctime = timespec_to_bch2_time(c, inode->i_ctime);
bch2_inode_pack(&inode_p, &inode_u);
ret = bch2_btree_insert_at(c, NULL, NULL, &ei->journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOFAIL,
BTREE_INSERT_ENTRY(&iter, &inode_p.inode.k_i));
} while (ret == -EINTR);
if (!ret) {
ei->i_size = inode_u.i_size;
ei->i_flags = inode_u.i_flags;
}
out:
bch2_btree_iter_unlock(&iter);
return ret < 0 ? ret : 0;
}
int __must_check bch2_write_inode(struct bch_fs *c,
struct bch_inode_info *ei)
{
return __bch2_write_inode(c, ei, NULL, NULL);
}
int bch2_inc_nlink(struct bch_fs *c, struct bch_inode_info *ei)
{
int ret;
mutex_lock(&ei->update_lock);
inc_nlink(&ei->vfs_inode);
ret = bch2_write_inode(c, ei);
mutex_unlock(&ei->update_lock);
return ret;
}
int bch2_dec_nlink(struct bch_fs *c, struct bch_inode_info *ei)
{
int ret = 0;
mutex_lock(&ei->update_lock);
drop_nlink(&ei->vfs_inode);
ret = bch2_write_inode(c, ei);
mutex_unlock(&ei->update_lock);
return ret;
}
static struct inode *bch2_vfs_inode_get(struct super_block *sb, u64 inum)
{
struct bch_fs *c = sb->s_fs_info;
struct inode *inode;
struct bch_inode_unpacked inode_u;
struct bch_inode_info *ei;
int ret;
pr_debug("inum %llu", inum);
inode = iget_locked(sb, inum);
if (unlikely(!inode))
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
ret = bch2_inode_find_by_inum(c, inum, &inode_u);
if (ret) {
iget_failed(inode);
return ERR_PTR(ret);
}
ei = to_bch_ei(inode);
bch2_vfs_inode_init(c, ei, &inode_u);
ei->journal_seq = bch2_inode_journal_seq(&c->journal, inum);
unlock_new_inode(inode);
return inode;
}
static struct inode *bch2_vfs_inode_create(struct bch_fs *c,
struct inode *parent,
umode_t mode, dev_t rdev)
{
struct inode *inode;
struct posix_acl *default_acl = NULL, *acl = NULL;
struct bch_inode_info *ei;
struct bch_inode_unpacked inode_u;
struct bkey_inode_buf inode_p;
int ret;
inode = new_inode(parent->i_sb);
if (unlikely(!inode))
return ERR_PTR(-ENOMEM);
inode_init_owner(inode, parent, mode);
ret = posix_acl_create(parent, &inode->i_mode, &default_acl, &acl);
if (ret) {
make_bad_inode(inode);
goto err;
}
ei = to_bch_ei(inode);
bch2_inode_init(c, &inode_u, i_uid_read(inode),
i_gid_read(inode), inode->i_mode, rdev);
bch2_inode_pack(&inode_p, &inode_u);
ret = bch2_inode_create(c, &inode_p.inode.k_i,
BLOCKDEV_INODE_MAX, 0,
&c->unused_inode_hint);
if (unlikely(ret)) {
/*
* indicate to bch_evict_inode that the inode was never actually
* created:
*/
make_bad_inode(inode);
goto err;
}
inode_u.inum = inode_p.inode.k.p.inode;
bch2_vfs_inode_init(c, ei, &inode_u);
if (default_acl) {
ret = bch2_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
if (unlikely(ret))
goto err;
}
if (acl) {
ret = bch2_set_acl(inode, acl, ACL_TYPE_ACCESS);
if (unlikely(ret))
goto err;
}
insert_inode_hash(inode);
atomic_long_inc(&c->nr_inodes);
out:
posix_acl_release(default_acl);
posix_acl_release(acl);
return inode;
err:
clear_nlink(inode);
iput(inode);
inode = ERR_PTR(ret);
goto out;
}
static int bch2_vfs_dirent_create(struct bch_fs *c, struct inode *dir,
u8 type, const struct qstr *name,
struct inode *dst)
{
struct bch_inode_info *dir_ei = to_bch_ei(dir);
int ret;
ret = bch2_dirent_create(c, dir->i_ino, &dir_ei->str_hash,
type, name, dst->i_ino,
&dir_ei->journal_seq,
BCH_HASH_SET_MUST_CREATE);
if (unlikely(ret))
return ret;
dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
mark_inode_dirty_sync(dir);
return 0;
}
static int __bch2_create(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
struct bch_inode_info *dir_ei = to_bch_ei(dir);
struct bch_fs *c = dir->i_sb->s_fs_info;
struct inode *inode;
struct bch_inode_info *ei;
int ret;
inode = bch2_vfs_inode_create(c, dir, mode, rdev);
if (unlikely(IS_ERR(inode)))
return PTR_ERR(inode);
ei = to_bch_ei(inode);
ret = bch2_vfs_dirent_create(c, dir, mode_to_type(mode),
&dentry->d_name, inode);
if (unlikely(ret)) {
clear_nlink(inode);
iput(inode);
return ret;
}
if (dir_ei->journal_seq > ei->journal_seq)
ei->journal_seq = dir_ei->journal_seq;
d_instantiate(dentry, inode);
return 0;
}
/* methods */
static struct dentry *bch2_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
struct bch_inode_info *dir_ei = to_bch_ei(dir);
struct inode *inode = NULL;
u64 inum;
inum = bch2_dirent_lookup(c, dir->i_ino,
&dir_ei->str_hash,
&dentry->d_name);
if (inum)
inode = bch2_vfs_inode_get(dir->i_sb, inum);
return d_splice_alias(inode, dentry);
}
static int bch2_create(struct inode *dir, struct dentry *dentry,
umode_t mode, bool excl)
{
return __bch2_create(dir, dentry, mode|S_IFREG, 0);
}
static int bch2_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *dentry)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
struct inode *inode = old_dentry->d_inode;
struct bch_inode_info *ei = to_bch_ei(inode);
int ret;
lockdep_assert_held(&inode->i_rwsem);
inode->i_ctime = current_fs_time(dir->i_sb);
ret = bch2_inc_nlink(c, ei);
if (ret)
return ret;
ihold(inode);
ret = bch2_vfs_dirent_create(c, dir, mode_to_type(inode->i_mode),
&dentry->d_name, inode);
if (unlikely(ret)) {
bch2_dec_nlink(c, ei);
iput(inode);
return ret;
}
d_instantiate(dentry, inode);
return 0;
}
static int bch2_unlink(struct inode *dir, struct dentry *dentry)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
struct bch_inode_info *dir_ei = to_bch_ei(dir);
struct inode *inode = dentry->d_inode;
struct bch_inode_info *ei = to_bch_ei(inode);
int ret;
lockdep_assert_held(&inode->i_rwsem);
ret = bch2_dirent_delete(c, dir->i_ino, &dir_ei->str_hash,
&dentry->d_name, &dir_ei->journal_seq);
if (ret)
return ret;
if (dir_ei->journal_seq > ei->journal_seq)
ei->journal_seq = dir_ei->journal_seq;
inode->i_ctime = dir->i_ctime;
if (S_ISDIR(inode->i_mode)) {
bch2_dec_nlink(c, dir_ei);
drop_nlink(inode);
}
bch2_dec_nlink(c, ei);
return 0;
}
static int bch2_symlink(struct inode *dir, struct dentry *dentry,
const char *symname)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
struct inode *inode;
struct bch_inode_info *ei, *dir_ei = to_bch_ei(dir);
int ret;
inode = bch2_vfs_inode_create(c, dir, S_IFLNK|S_IRWXUGO, 0);
if (unlikely(IS_ERR(inode)))
return PTR_ERR(inode);
ei = to_bch_ei(inode);
inode_lock(inode);
ret = page_symlink(inode, symname, strlen(symname) + 1);
inode_unlock(inode);
if (unlikely(ret))
goto err;
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (unlikely(ret))
goto err;
/* XXX: racy */
if (dir_ei->journal_seq < ei->journal_seq)
dir_ei->journal_seq = ei->journal_seq;
ret = bch2_vfs_dirent_create(c, dir, DT_LNK, &dentry->d_name, inode);
if (unlikely(ret))
goto err;
d_instantiate(dentry, inode);
return 0;
err:
clear_nlink(inode);
iput(inode);
return ret;
}
static int bch2_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
int ret;
lockdep_assert_held(&dir->i_rwsem);
ret = __bch2_create(dir, dentry, mode|S_IFDIR, 0);
if (unlikely(ret))
return ret;
bch2_inc_nlink(c, to_bch_ei(dir));
return 0;
}
static int bch2_rmdir(struct inode *dir, struct dentry *dentry)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
struct inode *inode = dentry->d_inode;
if (bch2_empty_dir(c, inode->i_ino))
return -ENOTEMPTY;
return bch2_unlink(dir, dentry);
}
static int bch2_mknod(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
return __bch2_create(dir, dentry, mode, rdev);
}
static int bch2_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
struct bch_fs *c = old_dir->i_sb->s_fs_info;
struct inode *old_inode = old_dentry->d_inode;
struct bch_inode_info *ei = to_bch_ei(old_inode);
struct inode *new_inode = new_dentry->d_inode;
struct timespec now = current_fs_time(old_dir->i_sb);
int ret;
lockdep_assert_held(&old_dir->i_rwsem);
lockdep_assert_held(&new_dir->i_rwsem);
if (new_inode)
filemap_write_and_wait_range(old_inode->i_mapping,
0, LLONG_MAX);
if (new_inode && S_ISDIR(old_inode->i_mode)) {
lockdep_assert_held(&new_inode->i_rwsem);
if (!S_ISDIR(new_inode->i_mode))
return -ENOTDIR;
if (bch2_empty_dir(c, new_inode->i_ino))
return -ENOTEMPTY;
ret = bch2_dirent_rename(c,
old_dir, &old_dentry->d_name,
new_dir, &new_dentry->d_name,
&ei->journal_seq, BCH_RENAME_OVERWRITE);
if (unlikely(ret))
return ret;
clear_nlink(new_inode);
bch2_dec_nlink(c, to_bch_ei(old_dir));
} else if (new_inode) {
lockdep_assert_held(&new_inode->i_rwsem);
ret = bch2_dirent_rename(c,
old_dir, &old_dentry->d_name,
new_dir, &new_dentry->d_name,
&ei->journal_seq, BCH_RENAME_OVERWRITE);
if (unlikely(ret))
return ret;
new_inode->i_ctime = now;
bch2_dec_nlink(c, to_bch_ei(new_inode));
} else if (S_ISDIR(old_inode->i_mode)) {
ret = bch2_dirent_rename(c,
old_dir, &old_dentry->d_name,
new_dir, &new_dentry->d_name,
&ei->journal_seq, BCH_RENAME);
if (unlikely(ret))
return ret;
bch2_inc_nlink(c, to_bch_ei(new_dir));
bch2_dec_nlink(c, to_bch_ei(old_dir));
} else {
ret = bch2_dirent_rename(c,
old_dir, &old_dentry->d_name,
new_dir, &new_dentry->d_name,
&ei->journal_seq, BCH_RENAME);
if (unlikely(ret))
return ret;
}
old_dir->i_ctime = old_dir->i_mtime = now;
new_dir->i_ctime = new_dir->i_mtime = now;
mark_inode_dirty_sync(old_dir);
mark_inode_dirty_sync(new_dir);
old_inode->i_ctime = now;
mark_inode_dirty_sync(old_inode);
return 0;
}
static int bch2_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
struct bch_fs *c = old_dir->i_sb->s_fs_info;
struct inode *old_inode = old_dentry->d_inode;
struct inode *new_inode = new_dentry->d_inode;
struct bch_inode_info *ei = to_bch_ei(old_inode);
struct timespec now = current_fs_time(old_dir->i_sb);
int ret;
ret = bch2_dirent_rename(c,
old_dir, &old_dentry->d_name,
new_dir, &new_dentry->d_name,
&ei->journal_seq, BCH_RENAME_EXCHANGE);
if (unlikely(ret))
return ret;
if (S_ISDIR(old_inode->i_mode) !=
S_ISDIR(new_inode->i_mode)) {
if (S_ISDIR(old_inode->i_mode)) {
bch2_inc_nlink(c, to_bch_ei(new_dir));
bch2_dec_nlink(c, to_bch_ei(old_dir));
} else {
bch2_dec_nlink(c, to_bch_ei(new_dir));
bch2_inc_nlink(c, to_bch_ei(old_dir));
}
}
old_dir->i_ctime = old_dir->i_mtime = now;
new_dir->i_ctime = new_dir->i_mtime = now;
mark_inode_dirty_sync(old_dir);
mark_inode_dirty_sync(new_dir);
old_inode->i_ctime = now;
new_inode->i_ctime = now;
mark_inode_dirty_sync(old_inode);
mark_inode_dirty_sync(new_inode);
return 0;
}
static int bch2_rename2(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned flags)
{
if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE))
return -EINVAL;
if (flags & RENAME_EXCHANGE)
return bch2_rename_exchange(old_dir, old_dentry,
new_dir, new_dentry);
return bch2_rename(old_dir, old_dentry, new_dir, new_dentry);
}
static int bch2_setattr(struct dentry *dentry, struct iattr *iattr)
{
struct inode *inode = dentry->d_inode;
struct bch_inode_info *ei = to_bch_ei(inode);
struct bch_fs *c = inode->i_sb->s_fs_info;
int ret = 0;
lockdep_assert_held(&inode->i_rwsem);
pr_debug("i_size was %llu update has %llu",
inode->i_size, iattr->ia_size);
ret = setattr_prepare(dentry, iattr);
if (ret)
return ret;
if (iattr->ia_valid & ATTR_SIZE) {
ret = bch2_truncate(inode, iattr);
} else {
mutex_lock(&ei->update_lock);
setattr_copy(inode, iattr);
ret = bch2_write_inode(c, ei);
mutex_unlock(&ei->update_lock);
}
if (unlikely(ret))
return ret;
if (iattr->ia_valid & ATTR_MODE)
ret = posix_acl_chmod(inode, inode->i_mode);
return ret;
}
static int bch2_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct bch_fs *c = dir->i_sb->s_fs_info;
struct inode *inode;
/* XXX: i_nlink should be 0? */
inode = bch2_vfs_inode_create(c, dir, mode, 0);
if (unlikely(IS_ERR(inode)))
return PTR_ERR(inode);
d_tmpfile(dentry, inode);
return 0;
}
static int bch2_fill_extent(struct fiemap_extent_info *info,
const struct bkey_i *k, unsigned flags)
{
if (bkey_extent_is_data(&k->k)) {
struct bkey_s_c_extent e = bkey_i_to_s_c_extent(k);
const struct bch_extent_ptr *ptr;
const union bch_extent_crc *crc;
int ret;
extent_for_each_ptr_crc(e, ptr, crc) {
int flags2 = 0;
u64 offset = ptr->offset;
if (crc_compression_type(crc))
flags2 |= FIEMAP_EXTENT_ENCODED;
else
offset += crc_offset(crc);
if ((offset & (PAGE_SECTORS - 1)) ||
(e.k->size & (PAGE_SECTORS - 1)))
flags2 |= FIEMAP_EXTENT_NOT_ALIGNED;
ret = fiemap_fill_next_extent(info,
bkey_start_offset(e.k) << 9,
offset << 9,
e.k->size << 9, flags|flags2);
if (ret)
return ret;
}
return 0;
} else if (k->k.type == BCH_RESERVATION) {
return fiemap_fill_next_extent(info,
bkey_start_offset(&k->k) << 9,
0, k->k.size << 9,
flags|
FIEMAP_EXTENT_DELALLOC|
FIEMAP_EXTENT_UNWRITTEN);
} else {
BUG();
}
}
static int bch2_fiemap(struct inode *inode, struct fiemap_extent_info *info,
u64 start, u64 len)
{
struct bch_fs *c = inode->i_sb->s_fs_info;
struct btree_iter iter;
struct bkey_s_c k;
BKEY_PADDED(k) tmp;
bool have_extent = false;
int ret = 0;
if (start + len < start)
return -EINVAL;
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS,
POS(inode->i_ino, start >> 9), k)
if (bkey_extent_is_data(k.k) ||
k.k->type == BCH_RESERVATION) {
if (bkey_cmp(bkey_start_pos(k.k),
POS(inode->i_ino, (start + len) >> 9)) >= 0)
break;
if (have_extent) {
ret = bch2_fill_extent(info, &tmp.k, 0);
if (ret)
goto out;
}
bkey_reassemble(&tmp.k, k);
have_extent = true;
}
if (have_extent)
ret = bch2_fill_extent(info, &tmp.k, FIEMAP_EXTENT_LAST);
out:
bch2_btree_iter_unlock(&iter);
return ret < 0 ? ret : 0;
}
static const struct vm_operations_struct bch_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = bch2_page_mkwrite,
};
static int bch2_mmap(struct file *file, struct vm_area_struct *vma)
{
file_accessed(file);
vma->vm_ops = &bch_vm_ops;
return 0;
}
/* Inode flags: */
static const unsigned bch_inode_flags_to_vfs_flags_map[] = {
[__BCH_INODE_SYNC] = S_SYNC,
[__BCH_INODE_IMMUTABLE] = S_IMMUTABLE,
[__BCH_INODE_APPEND] = S_APPEND,
[__BCH_INODE_NOATIME] = S_NOATIME,
};
static const unsigned bch_inode_flags_to_user_flags_map[] = {
[__BCH_INODE_SYNC] = FS_SYNC_FL,
[__BCH_INODE_IMMUTABLE] = FS_IMMUTABLE_FL,
[__BCH_INODE_APPEND] = FS_APPEND_FL,
[__BCH_INODE_NODUMP] = FS_NODUMP_FL,
[__BCH_INODE_NOATIME] = FS_NOATIME_FL,
};
/* Set VFS inode flags from bcachefs inode: */
static void bch2_inode_flags_to_vfs(struct inode *inode)
{
unsigned i, flags = to_bch_ei(inode)->i_flags;
for (i = 0; i < ARRAY_SIZE(bch_inode_flags_to_vfs_flags_map); i++)
if (flags & (1 << i))
inode->i_flags |= bch_inode_flags_to_vfs_flags_map[i];
else
inode->i_flags &= ~bch_inode_flags_to_vfs_flags_map[i];
}
/* Get FS_IOC_GETFLAGS flags from bcachefs inode: */
static unsigned bch2_inode_flags_to_user_flags(unsigned flags)
{
unsigned i, ret = 0;
for (i = 0; i < ARRAY_SIZE(bch_inode_flags_to_user_flags_map); i++)
if (flags & (1 << i))
ret |= bch_inode_flags_to_user_flags_map[i];
return ret;
}
static int bch2_inode_user_flags_set(struct bch_inode_info *ei,
struct bch_inode_unpacked *bi,
void *p)
{
/*
* We're relying on btree locking here for exclusion with other ioctl
* calls - use the flags in the btree (@bi), not ei->i_flags:
*/
unsigned bch_flags = bi->i_flags;
unsigned oldflags = bch2_inode_flags_to_user_flags(bch_flags);
unsigned newflags = *((unsigned *) p);
unsigned i;
if (((newflags ^ oldflags) & (FS_APPEND_FL|FS_IMMUTABLE_FL)) &&
!capable(CAP_LINUX_IMMUTABLE))
return -EPERM;
for (i = 0; i < ARRAY_SIZE(bch_inode_flags_to_user_flags_map); i++) {
if (newflags & bch_inode_flags_to_user_flags_map[i])
bch_flags |= (1 << i);
else
bch_flags &= ~(1 << i);
newflags &= ~bch_inode_flags_to_user_flags_map[i];
oldflags &= ~bch_inode_flags_to_user_flags_map[i];
}
if (oldflags != newflags)
return -EOPNOTSUPP;
bi->i_flags = bch_flags;
ei->vfs_inode.i_ctime = current_fs_time(ei->vfs_inode.i_sb);
return 0;
}
#define FS_IOC_GOINGDOWN _IOR ('X', 125, __u32)
static long bch2_fs_file_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct super_block *sb = inode->i_sb;
struct bch_fs *c = sb->s_fs_info;
struct bch_inode_info *ei = to_bch_ei(inode);
unsigned flags;
int ret;
switch (cmd) {
case FS_IOC_GETFLAGS:
return put_user(bch2_inode_flags_to_user_flags(ei->i_flags),
(int __user *) arg);
case FS_IOC_SETFLAGS: {
ret = mnt_want_write_file(filp);
if (ret)
return ret;
if (!inode_owner_or_capable(inode)) {
ret = -EACCES;
goto setflags_out;
}
if (get_user(flags, (int __user *) arg)) {
ret = -EFAULT;
goto setflags_out;
}
if (!S_ISREG(inode->i_mode) &&
!S_ISDIR(inode->i_mode) &&
(flags & (FS_NODUMP_FL|FS_NOATIME_FL)) != flags) {
ret = -EINVAL;
goto setflags_out;
}
inode_lock(inode);
mutex_lock(&ei->update_lock);
ret = __bch2_write_inode(c, ei, bch2_inode_user_flags_set, &flags);
mutex_unlock(&ei->update_lock);
if (!ret)
bch2_inode_flags_to_vfs(inode);
inode_unlock(inode);
setflags_out:
mnt_drop_write_file(filp);
return ret;
}
case FS_IOC_GETVERSION:
return -ENOTTY;
case FS_IOC_SETVERSION:
return -ENOTTY;
case FS_IOC_GOINGDOWN:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
down_write(&sb->s_umount);
sb->s_flags |= MS_RDONLY;
bch2_fs_emergency_read_only(c);
up_write(&sb->s_umount);
return 0;
default:
return bch2_fs_ioctl(c, cmd, (void __user *) arg);
}
}
#ifdef CONFIG_COMPAT
static long bch2_compat_fs_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
/* These are just misnamed, they actually get/put from/to user an int */
switch (cmd) {
case FS_IOC_GETFLAGS:
cmd = FS_IOC_GETFLAGS;
break;
case FS_IOC32_SETFLAGS:
cmd = FS_IOC_SETFLAGS;
break;
default:
return -ENOIOCTLCMD;
}
return bch2_fs_file_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif
/* Directories: */
static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence)
{
return generic_file_llseek_size(file, offset, whence,
S64_MAX, S64_MAX);
}
static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
struct bch_fs *c = inode->i_sb->s_fs_info;
return bch2_readdir(c, file, ctx);
}
static const struct file_operations bch_file_operations = {
.llseek = bch2_llseek,
.read_iter = generic_file_read_iter,
.write_iter = bch2_write_iter,
.mmap = bch2_mmap,
.open = generic_file_open,
.fsync = bch2_fsync,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = bch2_fallocate_dispatch,
.unlocked_ioctl = bch2_fs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = bch2_compat_fs_ioctl,
#endif
};
static const struct inode_operations bch_file_inode_operations = {
.setattr = bch2_setattr,
.fiemap = bch2_fiemap,
.listxattr = bch2_xattr_list,
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
};
static const struct inode_operations bch_dir_inode_operations = {
.lookup = bch2_lookup,
.create = bch2_create,
.link = bch2_link,
.unlink = bch2_unlink,
.symlink = bch2_symlink,
.mkdir = bch2_mkdir,
.rmdir = bch2_rmdir,
.mknod = bch2_mknod,
.rename = bch2_rename2,
.setattr = bch2_setattr,
.tmpfile = bch2_tmpfile,
.listxattr = bch2_xattr_list,
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
};
static const struct file_operations bch_dir_file_operations = {
.llseek = bch2_dir_llseek,
.read = generic_read_dir,
.iterate = bch2_vfs_readdir,
.fsync = bch2_fsync,
.unlocked_ioctl = bch2_fs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = bch2_compat_fs_ioctl,
#endif
};
static const struct inode_operations bch_symlink_inode_operations = {
.readlink = generic_readlink,
.get_link = page_get_link,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
};
static const struct inode_operations bch_special_inode_operations = {
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
};
static const struct address_space_operations bch_address_space_operations = {
.writepage = bch2_writepage,
.readpage = bch2_readpage,
.writepages = bch2_writepages,
.readpages = bch2_readpages,
.set_page_dirty = bch2_set_page_dirty,
.write_begin = bch2_write_begin,
.write_end = bch2_write_end,
.invalidatepage = bch2_invalidatepage,
.releasepage = bch2_releasepage,
.direct_IO = bch2_direct_IO,
#ifdef CONFIG_MIGRATION
.migratepage = bch2_migrate_page,
#endif
.error_remove_page = generic_error_remove_page,
};
static void bch2_vfs_inode_init(struct bch_fs *c,
struct bch_inode_info *ei,
struct bch_inode_unpacked *bi)
{
struct inode *inode = &ei->vfs_inode;
pr_debug("init inode %llu with mode %o",
bi->inum, bi->i_mode);
ei->i_flags = bi->i_flags;
ei->i_size = bi->i_size;
inode->i_mode = bi->i_mode;
i_uid_write(inode, bi->i_uid);
i_gid_write(inode, bi->i_gid);
atomic64_set(&ei->i_sectors, bi->i_sectors);
inode->i_blocks = bi->i_sectors;
inode->i_ino = bi->inum;
set_nlink(inode, bi->i_nlink + nlink_bias(inode->i_mode));
inode->i_rdev = bi->i_dev;
inode->i_generation = bi->i_generation;
inode->i_size = bi->i_size;
inode->i_atime = bch2_time_to_timespec(c, bi->i_atime);
inode->i_mtime = bch2_time_to_timespec(c, bi->i_mtime);
inode->i_ctime = bch2_time_to_timespec(c, bi->i_ctime);
bch2_inode_flags_to_vfs(inode);
ei->str_hash = bch2_hash_info_init(c, bi);
inode->i_mapping->a_ops = &bch_address_space_operations;
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
inode->i_op = &bch_file_inode_operations;
inode->i_fop = &bch_file_operations;
break;
case S_IFDIR:
inode->i_op = &bch_dir_inode_operations;
inode->i_fop = &bch_dir_file_operations;
break;
case S_IFLNK:
inode_nohighmem(inode);
inode->i_op = &bch_symlink_inode_operations;
break;
default:
init_special_inode(inode, inode->i_mode, inode->i_rdev);
inode->i_op = &bch_special_inode_operations;
break;
}
}
static struct inode *bch2_alloc_inode(struct super_block *sb)
{
struct bch_inode_info *ei;
ei = kmem_cache_alloc(bch2_inode_cache, GFP_NOFS);
if (!ei)
return NULL;
pr_debug("allocated %p", &ei->vfs_inode);
inode_init_once(&ei->vfs_inode);
mutex_init(&ei->update_lock);
ei->journal_seq = 0;
atomic_long_set(&ei->i_size_dirty_count, 0);
atomic_long_set(&ei->i_sectors_dirty_count, 0);
return &ei->vfs_inode;
}
static void bch2_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(bch2_inode_cache, to_bch_ei(inode));
}
static void bch2_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, bch2_i_callback);
}
static int bch2_vfs_write_inode(struct inode *inode,
struct writeback_control *wbc)
{
struct bch_fs *c = inode->i_sb->s_fs_info;
struct bch_inode_info *ei = to_bch_ei(inode);
int ret;
mutex_lock(&ei->update_lock);
ret = bch2_write_inode(c, ei);
mutex_unlock(&ei->update_lock);
if (c->opts.journal_flush_disabled)
return ret;
if (!ret && wbc->sync_mode == WB_SYNC_ALL)
ret = bch2_journal_flush_seq(&c->journal, ei->journal_seq);
return ret;
}
static void bch2_evict_inode(struct inode *inode)
{
struct bch_fs *c = inode->i_sb->s_fs_info;
truncate_inode_pages_final(&inode->i_data);
if (!bch2_journal_error(&c->journal) && !is_bad_inode(inode)) {
struct bch_inode_info *ei = to_bch_ei(inode);
/* XXX - we want to check this stuff iff there weren't IO errors: */
BUG_ON(atomic_long_read(&ei->i_sectors_dirty_count));
BUG_ON(atomic64_read(&ei->i_sectors) != inode->i_blocks);
}
clear_inode(inode);
if (!inode->i_nlink && !is_bad_inode(inode)) {
bch2_inode_rm(c, inode->i_ino);
atomic_long_dec(&c->nr_inodes);
}
}
static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct bch_fs *c = sb->s_fs_info;
u64 fsid;
buf->f_type = BCACHE_STATFS_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = c->capacity >> PAGE_SECTOR_SHIFT;
buf->f_bfree = (c->capacity - bch2_fs_sectors_used(c)) >> PAGE_SECTOR_SHIFT;
buf->f_bavail = buf->f_bfree;
buf->f_files = atomic_long_read(&c->nr_inodes);
buf->f_ffree = U64_MAX;
fsid = le64_to_cpup((void *) c->sb.user_uuid.b) ^
le64_to_cpup((void *) c->sb.user_uuid.b + sizeof(u64));
buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
buf->f_namelen = NAME_MAX;
return 0;
}
static int bch2_sync_fs(struct super_block *sb, int wait)
{
struct bch_fs *c = sb->s_fs_info;
if (!wait) {
bch2_journal_flush_async(&c->journal, NULL);
return 0;
}
return bch2_journal_flush(&c->journal);
}
static struct bch_fs *bch2_open_as_blockdevs(const char *_dev_name,
struct bch_opts opts)
{
size_t nr_devs = 0, i = 0;
char *dev_name, *s, **devs;
struct bch_fs *c = NULL;
const char *err = "cannot allocate memory";
dev_name = kstrdup(_dev_name, GFP_KERNEL);
if (!dev_name)
return NULL;
for (s = dev_name; s; s = strchr(s + 1, ':'))
nr_devs++;
devs = kcalloc(nr_devs, sizeof(const char *), GFP_KERNEL);
if (!devs)
goto err;
for (i = 0, s = dev_name;
s;
(s = strchr(s, ':')) && (*s++ = '\0'))
devs[i++] = s;
err = bch2_fs_open(devs, nr_devs, opts, &c);
if (err) {
/*
* Already open?
* Look up each block device, make sure they all belong to a
* filesystem and they all belong to the _same_ filesystem
*/
for (i = 0; i < nr_devs; i++) {
struct block_device *bdev = lookup_bdev(devs[i]);
struct bch_fs *c2;
if (IS_ERR(bdev))
goto err;
c2 = bch2_bdev_to_fs(bdev);
bdput(bdev);
if (!c)
c = c2;
else if (c2)
closure_put(&c2->cl);
if (!c)
goto err;
if (c != c2) {
closure_put(&c->cl);
goto err;
}
}
mutex_lock(&c->state_lock);
if (!bch2_fs_running(c)) {
mutex_unlock(&c->state_lock);
closure_put(&c->cl);
err = "incomplete filesystem";
c = NULL;
goto err;
}
mutex_unlock(&c->state_lock);
}
set_bit(BCH_FS_BDEV_MOUNTED, &c->flags);
err:
kfree(devs);
kfree(dev_name);
if (!c)
pr_err("bch_fs_open err %s", err);
return c;
}
static int bch2_remount(struct super_block *sb, int *flags, char *data)
{
struct bch_fs *c = sb->s_fs_info;
struct bch_opts opts = bch2_opts_empty();
int ret;
opts.read_only = (*flags & MS_RDONLY) != 0;
ret = bch2_parse_mount_opts(&opts, data);
if (ret)
return ret;
if (opts.read_only >= 0 &&
opts.read_only != c->opts.read_only) {
const char *err = NULL;
if (opts.read_only) {
bch2_fs_read_only(c);
sb->s_flags |= MS_RDONLY;
} else {
err = bch2_fs_read_write(c);
if (err) {
bch_err(c, "error going rw: %s", err);
return -EINVAL;
}
sb->s_flags &= ~MS_RDONLY;
}
c->opts.read_only = opts.read_only;
}
if (opts.errors >= 0)
c->opts.errors = opts.errors;
return ret;
}
static const struct super_operations bch_super_operations = {
.alloc_inode = bch2_alloc_inode,
.destroy_inode = bch2_destroy_inode,
.write_inode = bch2_vfs_write_inode,
.evict_inode = bch2_evict_inode,
.sync_fs = bch2_sync_fs,
.statfs = bch2_statfs,
.show_options = generic_show_options,
.remount_fs = bch2_remount,
#if 0
.put_super = bch2_put_super,
.freeze_fs = bch2_freeze,
.unfreeze_fs = bch2_unfreeze,
#endif
};
static int bch2_test_super(struct super_block *s, void *data)
{
return s->s_fs_info == data;
}
static int bch2_set_super(struct super_block *s, void *data)
{
s->s_fs_info = data;
return 0;
}
static struct dentry *bch2_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
struct bch_fs *c;
struct bch_dev *ca;
struct super_block *sb;
struct inode *inode;
struct bch_opts opts = bch2_opts_empty();
unsigned i;
int ret;
opts.read_only = (flags & MS_RDONLY) != 0;
ret = bch2_parse_mount_opts(&opts, data);
if (ret)
return ERR_PTR(ret);
c = bch2_open_as_blockdevs(dev_name, opts);
if (!c)
return ERR_PTR(-ENOENT);
sb = sget(fs_type, bch2_test_super, bch2_set_super, flags|MS_NOSEC, c);
if (IS_ERR(sb)) {
closure_put(&c->cl);
return ERR_CAST(sb);
}
BUG_ON(sb->s_fs_info != c);
if (sb->s_root) {
closure_put(&c->cl);
if ((flags ^ sb->s_flags) & MS_RDONLY) {
ret = -EBUSY;
goto err_put_super;
}
goto out;
}
/* XXX: blocksize */
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_op = &bch_super_operations;
sb->s_xattr = bch2_xattr_handlers;
sb->s_magic = BCACHE_STATFS_MAGIC;
sb->s_time_gran = c->sb.time_precision;
c->vfs_sb = sb;
sb->s_bdi = &c->bdi;
strlcpy(sb->s_id, c->name, sizeof(sb->s_id));
for_each_online_member(ca, c, i) {
struct block_device *bdev = ca->disk_sb.bdev;
/* XXX: create an anonymous device for multi device filesystems */
sb->s_bdev = bdev;
sb->s_dev = bdev->bd_dev;
percpu_ref_put(&ca->io_ref);
break;
}
if (opts.posix_acl < 0)
sb->s_flags |= MS_POSIXACL;
else
sb->s_flags |= opts.posix_acl ? MS_POSIXACL : 0;
inode = bch2_vfs_inode_get(sb, BCACHE_ROOT_INO);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto err_put_super;
}
sb->s_root = d_make_root(inode);
if (!sb->s_root) {
ret = -ENOMEM;
goto err_put_super;
}
sb->s_flags |= MS_ACTIVE;
out:
return dget(sb->s_root);
err_put_super:
deactivate_locked_super(sb);
return ERR_PTR(ret);
}
static void bch2_kill_sb(struct super_block *sb)
{
struct bch_fs *c = sb->s_fs_info;
generic_shutdown_super(sb);
if (test_bit(BCH_FS_BDEV_MOUNTED, &c->flags))
bch2_fs_stop(c);
else
closure_put(&c->cl);
}
static struct file_system_type bcache_fs_type = {
.owner = THIS_MODULE,
.name = "bcachefs",
.mount = bch2_mount,
.kill_sb = bch2_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("bcachefs");
void bch2_vfs_exit(void)
{
unregister_filesystem(&bcache_fs_type);
if (bch2_dio_write_bioset)
bioset_free(bch2_dio_write_bioset);
if (bch2_dio_read_bioset)
bioset_free(bch2_dio_read_bioset);
if (bch2_writepage_bioset)
bioset_free(bch2_writepage_bioset);
if (bch2_inode_cache)
kmem_cache_destroy(bch2_inode_cache);
}
int __init bch2_vfs_init(void)
{
int ret = -ENOMEM;
bch2_inode_cache = KMEM_CACHE(bch_inode_info, 0);
if (!bch2_inode_cache)
goto err;
bch2_writepage_bioset =
bioset_create(4, offsetof(struct bch_writepage_io, bio.bio));
if (!bch2_writepage_bioset)
goto err;
bch2_dio_read_bioset = bioset_create(4, offsetof(struct dio_read, rbio.bio));
if (!bch2_dio_read_bioset)
goto err;
bch2_dio_write_bioset = bioset_create(4, offsetof(struct dio_write, bio.bio));
if (!bch2_dio_write_bioset)
goto err;
ret = register_filesystem(&bcache_fs_type);
if (ret)
goto err;
return 0;
err:
bch2_vfs_exit();
return ret;
}