bcachefs-tools/libbcachefs/super.c
2017-03-19 17:31:47 -08:00

1833 lines
42 KiB
C

/*
* bcachefs setup/teardown code, and some metadata io - read a superblock and
* figure out what to do with it.
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_io.h"
#include "chardev.h"
#include "checksum.h"
#include "clock.h"
#include "compress.h"
#include "debug.h"
#include "error.h"
#include "fs.h"
#include "fs-gc.h"
#include "inode.h"
#include "io.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "migrate.h"
#include "movinggc.h"
#include "super.h"
#include "super-io.h"
#include "tier.h"
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/idr.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/random.h>
#include <linux/sysfs.h>
#include <crypto/hash.h>
#include <trace/events/bcachefs.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
static const uuid_le invalid_uuid = {
.b = {
0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
}
};
static struct kset *bcachefs_kset;
static LIST_HEAD(bch_fs_list);
static DEFINE_MUTEX(bch_fs_list_lock);
static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait);
static void bch2_dev_free(struct bch_dev *);
static int bch2_dev_alloc(struct bch_fs *, unsigned);
static int bch2_dev_sysfs_online(struct bch_dev *);
static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
struct bch_fs *bch2_bdev_to_fs(struct block_device *bdev)
{
struct bch_fs *c;
struct bch_dev *ca;
unsigned i;
mutex_lock(&bch_fs_list_lock);
rcu_read_lock();
list_for_each_entry(c, &bch_fs_list, list)
for_each_member_device_rcu(ca, c, i)
if (ca->disk_sb.bdev == bdev) {
closure_get(&c->cl);
goto found;
}
c = NULL;
found:
rcu_read_unlock();
mutex_unlock(&bch_fs_list_lock);
return c;
}
static struct bch_fs *__bch2_uuid_to_fs(uuid_le uuid)
{
struct bch_fs *c;
lockdep_assert_held(&bch_fs_list_lock);
list_for_each_entry(c, &bch_fs_list, list)
if (!memcmp(&c->disk_sb->uuid, &uuid, sizeof(uuid_le)))
return c;
return NULL;
}
struct bch_fs *bch2_uuid_to_fs(uuid_le uuid)
{
struct bch_fs *c;
mutex_lock(&bch_fs_list_lock);
c = __bch2_uuid_to_fs(uuid);
if (c)
closure_get(&c->cl);
mutex_unlock(&bch_fs_list_lock);
return c;
}
int bch2_congested(struct bch_fs *c, int bdi_bits)
{
struct backing_dev_info *bdi;
struct bch_dev *ca;
unsigned i;
int ret = 0;
if (bdi_bits & (1 << WB_sync_congested)) {
/* Reads - check all devices: */
for_each_readable_member(ca, c, i) {
bdi = blk_get_backing_dev_info(ca->disk_sb.bdev);
if (bdi_congested(bdi, bdi_bits)) {
ret = 1;
break;
}
}
} else {
/* Writes prefer fastest tier: */
struct bch_tier *tier = READ_ONCE(c->fastest_tier);
struct dev_group *grp = tier ? &tier->devs : &c->all_devs;
rcu_read_lock();
group_for_each_dev(ca, grp, i) {
bdi = blk_get_backing_dev_info(ca->disk_sb.bdev);
if (bdi_congested(bdi, bdi_bits)) {
ret = 1;
break;
}
}
rcu_read_unlock();
}
return ret;
}
static int bch2_congested_fn(void *data, int bdi_bits)
{
struct bch_fs *c = data;
return bch2_congested(c, bdi_bits);
}
/* Filesystem RO/RW: */
/*
* For startup/shutdown of RW stuff, the dependencies are:
*
* - foreground writes depend on copygc and tiering (to free up space)
*
* - copygc and tiering depend on mark and sweep gc (they actually probably
* don't because they either reserve ahead of time or don't block if
* allocations fail, but allocations can require mark and sweep gc to run
* because of generation number wraparound)
*
* - all of the above depends on the allocator threads
*
* - allocator depends on the journal (when it rewrites prios and gens)
*/
static void __bch2_fs_read_only(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
bch2_tiering_stop(c);
for_each_member_device(ca, c, i)
bch2_moving_gc_stop(ca);
bch2_gc_thread_stop(c);
bch2_btree_flush(c);
for_each_member_device(ca, c, i)
bch2_dev_allocator_stop(ca);
bch2_fs_journal_stop(&c->journal);
}
static void bch2_writes_disabled(struct percpu_ref *writes)
{
struct bch_fs *c = container_of(writes, struct bch_fs, writes);
set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
wake_up(&bch_read_only_wait);
}
void bch2_fs_read_only(struct bch_fs *c)
{
mutex_lock(&c->state_lock);
if (c->state != BCH_FS_STARTING &&
c->state != BCH_FS_RW)
goto out;
if (test_bit(BCH_FS_ERROR, &c->flags))
goto out;
/*
* Block new foreground-end write operations from starting - any new
* writes will return -EROFS:
*
* (This is really blocking new _allocations_, writes to previously
* allocated space can still happen until stopping the allocator in
* bch2_dev_allocator_stop()).
*/
percpu_ref_kill(&c->writes);
del_timer(&c->foreground_write_wakeup);
cancel_delayed_work(&c->pd_controllers_update);
c->foreground_write_pd.rate.rate = UINT_MAX;
bch2_wake_delayed_writes((unsigned long) c);
/*
* If we're not doing an emergency shutdown, we want to wait on
* outstanding writes to complete so they don't see spurious errors due
* to shutting down the allocator:
*
* If we are doing an emergency shutdown outstanding writes may
* hang until we shutdown the allocator so we don't want to wait
* on outstanding writes before shutting everything down - but
* we do need to wait on them before returning and signalling
* that going RO is complete:
*/
wait_event(bch_read_only_wait,
test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
__bch2_fs_read_only(c);
wait_event(bch_read_only_wait,
test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
if (!bch2_journal_error(&c->journal) &&
!test_bit(BCH_FS_ERROR, &c->flags)) {
mutex_lock(&c->sb_lock);
SET_BCH_SB_CLEAN(c->disk_sb, true);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
}
c->state = BCH_FS_RO;
out:
mutex_unlock(&c->state_lock);
}
static void bch2_fs_read_only_work(struct work_struct *work)
{
struct bch_fs *c =
container_of(work, struct bch_fs, read_only_work);
bch2_fs_read_only(c);
}
static void bch2_fs_read_only_async(struct bch_fs *c)
{
queue_work(system_long_wq, &c->read_only_work);
}
bool bch2_fs_emergency_read_only(struct bch_fs *c)
{
bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
bch2_fs_read_only_async(c);
bch2_journal_halt(&c->journal);
wake_up(&bch_read_only_wait);
return ret;
}
const char *bch2_fs_read_write(struct bch_fs *c)
{
struct bch_dev *ca;
const char *err = NULL;
unsigned i;
mutex_lock(&c->state_lock);
if (c->state != BCH_FS_STARTING &&
c->state != BCH_FS_RO)
goto out;
err = "error starting allocator thread";
for_each_rw_member(ca, c, i)
if (bch2_dev_allocator_start(ca)) {
percpu_ref_put(&ca->io_ref);
goto err;
}
err = "error starting btree GC thread";
if (bch2_gc_thread_start(c))
goto err;
err = "error starting moving GC thread";
for_each_rw_member(ca, c, i)
if (bch2_moving_gc_start(ca)) {
percpu_ref_put(&ca->io_ref);
goto err;
}
err = "error starting tiering thread";
if (bch2_tiering_start(c))
goto err;
schedule_delayed_work(&c->pd_controllers_update, 5 * HZ);
if (c->state != BCH_FS_STARTING)
percpu_ref_reinit(&c->writes);
c->state = BCH_FS_RW;
err = NULL;
out:
mutex_unlock(&c->state_lock);
return err;
err:
__bch2_fs_read_only(c);
goto out;
}
/* Filesystem startup/shutdown: */
static void bch2_fs_free(struct bch_fs *c)
{
bch2_fs_encryption_exit(c);
bch2_fs_btree_exit(c);
bch2_fs_journal_exit(&c->journal);
bch2_io_clock_exit(&c->io_clock[WRITE]);
bch2_io_clock_exit(&c->io_clock[READ]);
bch2_fs_compress_exit(c);
bdi_destroy(&c->bdi);
lg_lock_free(&c->usage_lock);
free_percpu(c->usage_percpu);
mempool_exit(&c->btree_bounce_pool);
mempool_exit(&c->bio_bounce_pages);
bioset_exit(&c->bio_write);
bioset_exit(&c->bio_read_split);
bioset_exit(&c->bio_read);
bioset_exit(&c->btree_read_bio);
mempool_exit(&c->btree_interior_update_pool);
mempool_exit(&c->btree_reserve_pool);
mempool_exit(&c->fill_iter);
percpu_ref_exit(&c->writes);
if (c->copygc_wq)
destroy_workqueue(c->copygc_wq);
if (c->wq)
destroy_workqueue(c->wq);
free_pages((unsigned long) c->disk_sb, c->disk_sb_order);
kfree(c);
module_put(THIS_MODULE);
}
static void bch2_fs_exit(struct bch_fs *c)
{
unsigned i;
del_timer_sync(&c->foreground_write_wakeup);
cancel_delayed_work_sync(&c->pd_controllers_update);
cancel_work_sync(&c->read_only_work);
cancel_work_sync(&c->read_retry_work);
for (i = 0; i < c->sb.nr_devices; i++)
if (c->devs[i])
bch2_dev_free(c->devs[i]);
closure_debug_destroy(&c->cl);
kobject_put(&c->kobj);
}
static void bch2_fs_offline(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
mutex_lock(&bch_fs_list_lock);
list_del(&c->list);
mutex_unlock(&bch_fs_list_lock);
for_each_member_device(ca, c, i)
if (ca->kobj.state_in_sysfs &&
ca->disk_sb.bdev)
sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
"bcachefs");
if (c->kobj.state_in_sysfs)
kobject_del(&c->kobj);
bch2_fs_debug_exit(c);
bch2_fs_chardev_exit(c);
kobject_put(&c->time_stats);
kobject_put(&c->opts_dir);
kobject_put(&c->internal);
__bch2_fs_read_only(c);
}
void bch2_fs_release(struct kobject *kobj)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
bch2_fs_free(c);
}
void bch2_fs_stop(struct bch_fs *c)
{
mutex_lock(&c->state_lock);
BUG_ON(c->state == BCH_FS_STOPPING);
c->state = BCH_FS_STOPPING;
mutex_unlock(&c->state_lock);
bch2_fs_offline(c);
closure_sync(&c->cl);
bch2_fs_exit(c);
}
#define alloc_bucket_pages(gfp, ca) \
((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(ca))))
static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
{
struct bch_sb_field_members *mi;
struct bch_fs *c;
unsigned i, iter_size, journal_entry_bytes;
c = kzalloc(sizeof(struct bch_fs), GFP_KERNEL);
if (!c)
return NULL;
__module_get(THIS_MODULE);
c->minor = -1;
mutex_init(&c->state_lock);
mutex_init(&c->sb_lock);
mutex_init(&c->btree_cache_lock);
mutex_init(&c->bucket_lock);
mutex_init(&c->btree_root_lock);
INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
init_rwsem(&c->gc_lock);
#define BCH_TIME_STAT(name, frequency_units, duration_units) \
spin_lock_init(&c->name##_time.lock);
BCH_TIME_STATS()
#undef BCH_TIME_STAT
bch2_fs_allocator_init(c);
bch2_fs_tiering_init(c);
INIT_LIST_HEAD(&c->list);
INIT_LIST_HEAD(&c->btree_cache);
INIT_LIST_HEAD(&c->btree_cache_freeable);
INIT_LIST_HEAD(&c->btree_cache_freed);
INIT_LIST_HEAD(&c->btree_interior_update_list);
mutex_init(&c->btree_reserve_cache_lock);
mutex_init(&c->btree_interior_update_lock);
mutex_init(&c->bio_bounce_pages_lock);
bio_list_init(&c->read_retry_list);
spin_lock_init(&c->read_retry_lock);
INIT_WORK(&c->read_retry_work, bch2_read_retry_work);
mutex_init(&c->zlib_workspace_lock);
seqcount_init(&c->gc_pos_lock);
c->prio_clock[READ].hand = 1;
c->prio_clock[READ].min_prio = 0;
c->prio_clock[WRITE].hand = 1;
c->prio_clock[WRITE].min_prio = 0;
init_waitqueue_head(&c->writeback_wait);
c->writeback_pages_max = (256 << 10) / PAGE_SIZE;
c->copy_gc_enabled = 1;
c->tiering_enabled = 1;
c->tiering_percent = 10;
c->foreground_target_percent = 20;
c->journal.write_time = &c->journal_write_time;
c->journal.delay_time = &c->journal_delay_time;
c->journal.blocked_time = &c->journal_blocked_time;
c->journal.flush_seq_time = &c->journal_flush_seq_time;
mutex_lock(&c->sb_lock);
if (bch2_sb_to_fs(c, sb)) {
mutex_unlock(&c->sb_lock);
goto err;
}
mutex_unlock(&c->sb_lock);
scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid);
bch2_opts_apply(&c->opts, bch2_sb_opts(sb));
bch2_opts_apply(&c->opts, opts);
c->opts.nochanges |= c->opts.noreplay;
c->opts.read_only |= c->opts.nochanges;
c->block_bits = ilog2(c->sb.block_size);
if (bch2_fs_init_fault("fs_alloc"))
goto err;
iter_size = (btree_blocks(c) + 1) * 2 *
sizeof(struct btree_node_iter_set);
journal_entry_bytes = 512U << BCH_SB_JOURNAL_ENTRY_SIZE(sb);
if (!(c->wq = alloc_workqueue("bcachefs",
WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
!(c->copygc_wq = alloc_workqueue("bcache_copygc",
WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
percpu_ref_init(&c->writes, bch2_writes_disabled, 0, GFP_KERNEL) ||
mempool_init_kmalloc_pool(&c->btree_reserve_pool, 1,
sizeof(struct btree_reserve)) ||
mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
sizeof(struct btree_interior_update)) ||
mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
bioset_init(&c->btree_read_bio, 1, 0) ||
bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio)) ||
bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio)) ||
bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio)) ||
mempool_init_page_pool(&c->bio_bounce_pages,
max_t(unsigned,
c->sb.btree_node_size,
BCH_ENCODED_EXTENT_MAX) /
PAGE_SECTORS, 0) ||
!(c->usage_percpu = alloc_percpu(struct bch_fs_usage)) ||
lg_lock_init(&c->usage_lock) ||
mempool_init_page_pool(&c->btree_bounce_pool, 1,
ilog2(btree_pages(c))) ||
bdi_setup_and_register(&c->bdi, "bcachefs") ||
bch2_io_clock_init(&c->io_clock[READ]) ||
bch2_io_clock_init(&c->io_clock[WRITE]) ||
bch2_fs_journal_init(&c->journal, journal_entry_bytes) ||
bch2_fs_btree_init(c) ||
bch2_fs_encryption_init(c) ||
bch2_fs_compress_init(c) ||
bch2_check_set_has_compressed_data(c, c->opts.compression))
goto err;
c->bdi.ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
c->bdi.congested_fn = bch2_congested_fn;
c->bdi.congested_data = c;
mi = bch2_sb_get_members(c->disk_sb);
for (i = 0; i < c->sb.nr_devices; i++)
if (!bch2_is_zero(mi->members[i].uuid.b, sizeof(uuid_le)) &&
bch2_dev_alloc(c, i))
goto err;
/*
* Now that all allocations have succeeded, init various refcounty
* things that let us shutdown:
*/
closure_init(&c->cl, NULL);
c->kobj.kset = bcachefs_kset;
kobject_init(&c->kobj, &bch2_fs_ktype);
kobject_init(&c->internal, &bch2_fs_internal_ktype);
kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
return c;
err:
bch2_fs_free(c);
return NULL;
}
static const char *__bch2_fs_online(struct bch_fs *c)
{
struct bch_dev *ca;
const char *err = NULL;
unsigned i;
int ret;
lockdep_assert_held(&bch_fs_list_lock);
if (!list_empty(&c->list))
return NULL;
if (__bch2_uuid_to_fs(c->sb.uuid))
return "filesystem UUID already open";
ret = bch2_fs_chardev_init(c);
if (ret)
return "error creating character device";
bch2_fs_debug_init(c);
if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ||
kobject_add(&c->internal, &c->kobj, "internal") ||
kobject_add(&c->opts_dir, &c->kobj, "options") ||
kobject_add(&c->time_stats, &c->kobj, "time_stats"))
return "error creating sysfs objects";
mutex_lock(&c->state_lock);
err = "error creating sysfs objects";
__for_each_member_device(ca, c, i)
if (bch2_dev_sysfs_online(ca))
goto err;
list_add(&c->list, &bch_fs_list);
err = NULL;
err:
mutex_unlock(&c->state_lock);
return err;
}
static const char *bch2_fs_online(struct bch_fs *c)
{
const char *err;
mutex_lock(&bch_fs_list_lock);
err = __bch2_fs_online(c);
mutex_unlock(&bch_fs_list_lock);
return err;
}
static const char *__bch2_fs_start(struct bch_fs *c)
{
const char *err = "cannot allocate memory";
struct bch_sb_field_members *mi;
struct bch_dev *ca;
unsigned i, id;
time64_t now;
LIST_HEAD(journal);
struct jset *j;
int ret = -EINVAL;
BUG_ON(c->state != BCH_FS_STARTING);
mutex_lock(&c->sb_lock);
for_each_online_member(ca, c, i)
bch2_sb_from_fs(c, ca);
mutex_unlock(&c->sb_lock);
if (BCH_SB_INITIALIZED(c->disk_sb)) {
ret = bch2_journal_read(c, &journal);
if (ret)
goto err;
j = &list_entry(journal.prev, struct journal_replay, list)->j;
c->prio_clock[READ].hand = le16_to_cpu(j->read_clock);
c->prio_clock[WRITE].hand = le16_to_cpu(j->write_clock);
err = "error reading priorities";
for_each_readable_member(ca, c, i) {
ret = bch2_prio_read(ca);
if (ret) {
percpu_ref_put(&ca->io_ref);
goto err;
}
}
for (id = 0; id < BTREE_ID_NR; id++) {
unsigned level;
struct bkey_i *k;
err = "bad btree root";
k = bch2_journal_find_btree_root(c, j, id, &level);
if (!k && id == BTREE_ID_EXTENTS)
goto err;
if (!k) {
pr_debug("missing btree root: %d", id);
continue;
}
err = "error reading btree root";
if (bch2_btree_root_read(c, id, k, level))
goto err;
}
bch_verbose(c, "starting mark and sweep:");
err = "error in recovery";
if (bch2_initial_gc(c, &journal))
goto err;
if (c->opts.noreplay)
goto recovery_done;
bch_verbose(c, "mark and sweep done");
/*
* bch2_journal_start() can't happen sooner, or btree_gc_finish()
* will give spurious errors about oldest_gen > bucket_gen -
* this is a hack but oh well.
*/
bch2_journal_start(c);
err = "error starting allocator thread";
for_each_rw_member(ca, c, i)
if (bch2_dev_allocator_start(ca)) {
percpu_ref_put(&ca->io_ref);
goto err;
}
bch_verbose(c, "starting journal replay:");
err = "journal replay failed";
ret = bch2_journal_replay(c, &journal);
if (ret)
goto err;
bch_verbose(c, "journal replay done");
if (c->opts.norecovery)
goto recovery_done;
bch_verbose(c, "starting fsck:");
err = "error in fsck";
ret = bch2_fsck(c, !c->opts.nofsck);
if (ret)
goto err;
bch_verbose(c, "fsck done");
} else {
struct bch_inode_unpacked inode;
struct bkey_inode_buf packed_inode;
struct closure cl;
closure_init_stack(&cl);
bch_notice(c, "initializing new filesystem");
bch2_initial_gc(c, NULL);
err = "unable to allocate journal buckets";
for_each_rw_member(ca, c, i)
if (bch2_dev_journal_alloc(ca)) {
percpu_ref_put(&ca->io_ref);
goto err;
}
/*
* journal_res_get() will crash if called before this has
* set up the journal.pin FIFO and journal.cur pointer:
*/
bch2_journal_start(c);
bch2_journal_set_replay_done(&c->journal);
err = "error starting allocator thread";
for_each_rw_member(ca, c, i)
if (bch2_dev_allocator_start(ca)) {
percpu_ref_put(&ca->io_ref);
goto err;
}
err = "cannot allocate new btree root";
for (id = 0; id < BTREE_ID_NR; id++)
if (bch2_btree_root_alloc(c, id, &cl)) {
closure_sync(&cl);
goto err;
}
/* Wait for new btree roots to be written: */
closure_sync(&cl);
bch2_inode_init(c, &inode, 0, 0,
S_IFDIR|S_IRWXU|S_IRUGO|S_IXUGO, 0);
inode.inum = BCACHE_ROOT_INO;
bch2_inode_pack(&packed_inode, &inode);
err = "error creating root directory";
if (bch2_btree_insert(c, BTREE_ID_INODES,
&packed_inode.inode.k_i,
NULL, NULL, NULL, 0))
goto err;
err = "error writing first journal entry";
if (bch2_journal_meta(&c->journal))
goto err;
}
recovery_done:
err = "dynamic fault";
if (bch2_fs_init_fault("fs_start"))
goto err;
if (c->opts.read_only) {
bch2_fs_read_only(c);
} else {
err = bch2_fs_read_write(c);
if (err)
goto err;
}
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb);
now = ktime_get_seconds();
for_each_member_device(ca, c, i)
mi->members[ca->dev_idx].last_mount = cpu_to_le64(now);
SET_BCH_SB_INITIALIZED(c->disk_sb, true);
SET_BCH_SB_CLEAN(c->disk_sb, false);
c->disk_sb->version = BCACHE_SB_VERSION_CDEV;
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
err = NULL;
out:
bch2_journal_entries_free(&journal);
return err;
err:
switch (ret) {
case BCH_FSCK_ERRORS_NOT_FIXED:
bch_err(c, "filesystem contains errors: please report this to the developers");
pr_cont("mount with -o fix_errors to repair");
err = "fsck error";
break;
case BCH_FSCK_REPAIR_UNIMPLEMENTED:
bch_err(c, "filesystem contains errors: please report this to the developers");
pr_cont("repair unimplemented: inform the developers so that it can be added");
err = "fsck error";
break;
case BCH_FSCK_REPAIR_IMPOSSIBLE:
bch_err(c, "filesystem contains errors, but repair impossible");
err = "fsck error";
break;
case BCH_FSCK_UNKNOWN_VERSION:
err = "unknown metadata version";;
break;
case -ENOMEM:
err = "cannot allocate memory";
break;
case -EIO:
err = "IO error";
break;
}
BUG_ON(!err);
set_bit(BCH_FS_ERROR, &c->flags);
goto out;
}
const char *bch2_fs_start(struct bch_fs *c)
{
return __bch2_fs_start(c) ?: bch2_fs_online(c);
}
static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
{
struct bch_sb_field_members *sb_mi;
sb_mi = bch2_sb_get_members(sb);
if (!sb_mi)
return "Invalid superblock: member info area missing";
if (le16_to_cpu(sb->block_size) != c->sb.block_size)
return "mismatched block size";
if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) <
BCH_SB_BTREE_NODE_SIZE(c->disk_sb))
return "new cache bucket size is too small";
return NULL;
}
static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
{
struct bch_sb *newest =
le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
struct bch_sb_field_members *mi = bch2_sb_get_members(newest);
if (uuid_le_cmp(fs->uuid, sb->uuid))
return "device not a member of filesystem";
if (sb->dev_idx >= newest->nr_devices)
return "device has invalid dev_idx";
if (bch2_is_zero(mi->members[sb->dev_idx].uuid.b, sizeof(uuid_le)))
return "device has been removed";
if (fs->block_size != sb->block_size)
return "mismatched block size";
return NULL;
}
/* Device startup/shutdown: */
void bch2_dev_release(struct kobject *kobj)
{
struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
kfree(ca);
}
static void bch2_dev_free(struct bch_dev *ca)
{
unsigned i;
cancel_work_sync(&ca->io_error_work);
if (ca->kobj.state_in_sysfs &&
ca->disk_sb.bdev)
sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
"bcachefs");
if (ca->kobj.state_in_sysfs)
kobject_del(&ca->kobj);
bch2_free_super(&ca->disk_sb);
bch2_dev_journal_exit(ca);
free_percpu(ca->sectors_written);
bioset_exit(&ca->replica_set);
free_percpu(ca->usage_percpu);
free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
kfree(ca->prio_buckets);
kfree(ca->bio_prio);
vfree(ca->buckets);
vfree(ca->oldest_gens);
free_heap(&ca->heap);
free_fifo(&ca->free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&ca->free[i]);
percpu_ref_exit(&ca->io_ref);
percpu_ref_exit(&ca->ref);
kobject_put(&ca->kobj);
}
static void bch2_dev_io_ref_release(struct percpu_ref *ref)
{
struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
complete(&ca->offline_complete);
}
static void __bch2_dev_offline(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
lockdep_assert_held(&c->state_lock);
__bch2_dev_read_only(ca->fs, ca);
reinit_completion(&ca->offline_complete);
percpu_ref_kill(&ca->io_ref);
wait_for_completion(&ca->offline_complete);
if (ca->kobj.state_in_sysfs) {
struct kobject *block =
&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
sysfs_remove_link(block, "bcachefs");
sysfs_remove_link(&ca->kobj, "block");
}
bch2_free_super(&ca->disk_sb);
bch2_dev_journal_exit(ca);
}
static void bch2_dev_ref_release(struct percpu_ref *ref)
{
struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
complete(&ca->stop_complete);
}
static void bch2_dev_stop(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
lockdep_assert_held(&c->state_lock);
BUG_ON(rcu_access_pointer(c->devs[ca->dev_idx]) != ca);
rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
synchronize_rcu();
reinit_completion(&ca->stop_complete);
percpu_ref_kill(&ca->ref);
wait_for_completion(&ca->stop_complete);
}
static int bch2_dev_sysfs_online(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
int ret;
if (!c->kobj.state_in_sysfs)
return 0;
if (!ca->kobj.state_in_sysfs) {
ret = kobject_add(&ca->kobj, &ca->fs->kobj,
"dev-%u", ca->dev_idx);
if (ret)
return ret;
}
if (ca->disk_sb.bdev) {
struct kobject *block =
&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
if (ret)
return ret;
ret = sysfs_create_link(&ca->kobj, block, "block");
if (ret)
return ret;
}
return 0;
}
static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
{
struct bch_member *member;
size_t reserve_none, movinggc_reserve, free_inc_reserve, total_reserve;
size_t heap_size;
unsigned i;
struct bch_dev *ca;
if (bch2_fs_init_fault("dev_alloc"))
return -ENOMEM;
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
return -ENOMEM;
kobject_init(&ca->kobj, &bch2_dev_ktype);
init_completion(&ca->stop_complete);
init_completion(&ca->offline_complete);
spin_lock_init(&ca->self.lock);
ca->self.nr = 1;
rcu_assign_pointer(ca->self.d[0].dev, ca);
ca->dev_idx = dev_idx;
spin_lock_init(&ca->freelist_lock);
spin_lock_init(&ca->prio_buckets_lock);
mutex_init(&ca->heap_lock);
bch2_dev_moving_gc_init(ca);
INIT_WORK(&ca->io_error_work, bch2_nonfatal_io_error_work);
if (bch2_fs_init_fault("dev_alloc"))
goto err;
member = bch2_sb_get_members(c->disk_sb)->members + dev_idx;
ca->mi = bch2_mi_to_cpu(member);
ca->uuid = member->uuid;
ca->bucket_bits = ilog2(ca->mi.bucket_size);
scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
/* XXX: tune these */
movinggc_reserve = max_t(size_t, 16, ca->mi.nbuckets >> 7);
reserve_none = max_t(size_t, 4, ca->mi.nbuckets >> 9);
/*
* free_inc must be smaller than the copygc reserve: if it was bigger,
* one copygc iteration might not make enough buckets available to fill
* up free_inc and allow the allocator to make forward progress
*/
free_inc_reserve = movinggc_reserve / 2;
heap_size = movinggc_reserve * 8;
if (percpu_ref_init(&ca->ref, bch2_dev_ref_release,
0, GFP_KERNEL) ||
percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_release,
PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
!init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
!init_fifo(&ca->free[RESERVE_BTREE], BTREE_NODE_RESERVE, GFP_KERNEL) ||
!init_fifo(&ca->free[RESERVE_MOVINGGC],
movinggc_reserve, GFP_KERNEL) ||
!init_fifo(&ca->free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
!init_fifo(&ca->free_inc, free_inc_reserve, GFP_KERNEL) ||
!init_heap(&ca->heap, heap_size, GFP_KERNEL) ||
!(ca->oldest_gens = vzalloc(sizeof(u8) *
ca->mi.nbuckets)) ||
!(ca->buckets = vzalloc(sizeof(struct bucket) *
ca->mi.nbuckets)) ||
!(ca->prio_buckets = kzalloc(sizeof(u64) * prio_buckets(ca) *
2, GFP_KERNEL)) ||
!(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
!(ca->usage_percpu = alloc_percpu(struct bch_dev_usage)) ||
!(ca->bio_prio = bio_kmalloc(GFP_NOIO, bucket_pages(ca))) ||
bioset_init(&ca->replica_set, 4,
offsetof(struct bch_write_bio, bio)) ||
!(ca->sectors_written = alloc_percpu(*ca->sectors_written)))
goto err;
ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
total_reserve = ca->free_inc.size;
for (i = 0; i < RESERVE_NR; i++)
total_reserve += ca->free[i].size;
ca->copygc_write_point.group = &ca->self;
ca->tiering_write_point.group = &ca->self;
ca->fs = c;
rcu_assign_pointer(c->devs[ca->dev_idx], ca);
if (bch2_dev_sysfs_online(ca))
pr_warn("error creating sysfs objects");
return 0;
err:
bch2_dev_free(ca);
return -ENOMEM;
}
static int __bch2_dev_online(struct bch_fs *c, struct bcache_superblock *sb)
{
struct bch_dev *ca;
int ret;
lockdep_assert_held(&c->sb_lock);
if (le64_to_cpu(sb->sb->seq) >
le64_to_cpu(c->disk_sb->seq))
bch2_sb_to_fs(c, sb->sb);
BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
!c->devs[sb->sb->dev_idx]);
ca = c->devs[sb->sb->dev_idx];
if (ca->disk_sb.bdev) {
bch_err(c, "already have device online in slot %u",
sb->sb->dev_idx);
return -EINVAL;
}
ret = bch2_dev_journal_init(ca, sb->sb);
if (ret)
return ret;
/*
* Increase journal write timeout if flushes to this device are
* expensive:
*/
if (!blk_queue_nonrot(bdev_get_queue(sb->bdev)) &&
journal_flushes_device(ca))
c->journal.write_delay_ms =
max(c->journal.write_delay_ms, 1000U);
/* Commit: */
ca->disk_sb = *sb;
if (sb->mode & FMODE_EXCL)
ca->disk_sb.bdev->bd_holder = ca;
memset(sb, 0, sizeof(*sb));
if (c->sb.nr_devices == 1)
bdevname(ca->disk_sb.bdev, c->name);
bdevname(ca->disk_sb.bdev, ca->name);
if (bch2_dev_sysfs_online(ca))
pr_warn("error creating sysfs objects");
lg_local_lock(&c->usage_lock);
if (!gc_will_visit(c, gc_phase(GC_PHASE_SB_METADATA)))
bch2_mark_dev_metadata(ca->fs, ca);
lg_local_unlock(&c->usage_lock);
percpu_ref_reinit(&ca->io_ref);
return 0;
}
/* Device management: */
bool bch2_fs_may_start(struct bch_fs *c, int flags)
{
struct bch_sb_field_members *mi;
unsigned meta_missing = 0;
unsigned data_missing = 0;
bool degraded = false;
unsigned i;
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb);
for (i = 0; i < c->disk_sb->nr_devices; i++)
if (!c->devs[i] &&
!bch2_is_zero(mi->members[i].uuid.b, sizeof(uuid_le))) {
degraded = true;
if (BCH_MEMBER_HAS_METADATA(&mi->members[i]))
meta_missing++;
if (BCH_MEMBER_HAS_DATA(&mi->members[i]))
data_missing++;
}
mutex_unlock(&c->sb_lock);
if (degraded &&
!(flags & BCH_FORCE_IF_DEGRADED))
return false;
if (meta_missing &&
!(flags & BCH_FORCE_IF_METADATA_DEGRADED))
return false;
if (meta_missing >= BCH_SB_META_REPLICAS_HAVE(c->disk_sb) &&
!(flags & BCH_FORCE_IF_METADATA_LOST))
return false;
if (data_missing && !(flags & BCH_FORCE_IF_DATA_DEGRADED))
return false;
if (data_missing >= BCH_SB_DATA_REPLICAS_HAVE(c->disk_sb) &&
!(flags & BCH_FORCE_IF_DATA_LOST))
return false;
return true;
}
bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
lockdep_assert_held(&c->state_lock);
if (new_state == BCH_MEMBER_STATE_RW)
return true;
if (ca->mi.has_data &&
!(flags & BCH_FORCE_IF_DATA_DEGRADED))
return false;
if (ca->mi.has_data &&
c->sb.data_replicas_have <= 1 &&
!(flags & BCH_FORCE_IF_DATA_LOST))
return false;
if (ca->mi.has_metadata &&
!(flags & BCH_FORCE_IF_METADATA_DEGRADED))
return false;
if (ca->mi.has_metadata &&
c->sb.meta_replicas_have <= 1 &&
!(flags & BCH_FORCE_IF_METADATA_LOST))
return false;
return true;
}
static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
{
bch2_moving_gc_stop(ca);
/*
* This stops new data writes (e.g. to existing open data
* buckets) and then waits for all existing writes to
* complete.
*/
bch2_dev_allocator_stop(ca);
bch2_dev_group_remove(&c->journal.devs, ca);
}
static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW);
if (bch2_dev_allocator_start(ca))
return "error starting allocator thread";
if (bch2_moving_gc_start(ca))
return "error starting moving GC thread";
if (bch2_tiering_start(c))
return "error starting tiering thread";
return NULL;
}
int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
struct bch_sb_field_members *mi;
if (ca->mi.state == new_state)
return 0;
if (!bch2_dev_state_allowed(c, ca, new_state, flags))
return -EINVAL;
if (new_state == BCH_MEMBER_STATE_RW) {
if (__bch2_dev_read_write(c, ca))
return -ENOMEM;
} else {
__bch2_dev_read_only(c, ca);
}
bch_notice(ca, "%s", bch2_dev_state[new_state]);
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb);
SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return 0;
}
int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
int ret;
mutex_lock(&c->state_lock);
ret = __bch2_dev_set_state(c, ca, new_state, flags);
mutex_unlock(&c->state_lock);
return ret;
}
/* Device add/removal: */
int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
{
struct bch_sb_field_members *mi;
unsigned dev_idx = ca->dev_idx;
int ret = -EINVAL;
mutex_lock(&c->state_lock);
percpu_ref_put(&ca->ref); /* XXX */
if (ca->mi.state == BCH_MEMBER_STATE_RW) {
bch_err(ca, "Cannot remove RW device");
goto err;
}
if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
bch_err(ca, "Cannot remove without losing data");
goto err;
}
/*
* XXX: verify that dev_idx is really not in use anymore, anywhere
*
* flag_data_bad() does not check btree pointers
*/
ret = bch2_flag_data_bad(ca);
if (ret) {
bch_err(ca, "Remove failed");
goto err;
}
if (ca->mi.has_data || ca->mi.has_metadata) {
bch_err(ca, "Remove failed, still has data");
goto err;
}
/*
* Ok, really doing the remove:
* Drop device's prio pointer before removing it from superblock:
*/
spin_lock(&c->journal.lock);
c->journal.prio_buckets[dev_idx] = 0;
spin_unlock(&c->journal.lock);
bch2_journal_meta(&c->journal);
__bch2_dev_offline(ca);
bch2_dev_stop(ca);
bch2_dev_free(ca);
/*
* Free this device's slot in the bch_member array - all pointers to
* this device must be gone:
*/
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb);
memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid));
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
mutex_unlock(&c->state_lock);
return 0;
err:
mutex_unlock(&c->state_lock);
return ret;
}
int bch2_dev_add(struct bch_fs *c, const char *path)
{
struct bcache_superblock sb;
const char *err;
struct bch_dev *ca = NULL;
struct bch_sb_field_members *mi, *dev_mi;
struct bch_member saved_mi;
unsigned dev_idx, nr_devices, u64s;
int ret = -EINVAL;
err = bch2_read_super(&sb, bch2_opts_empty(), path);
if (err)
return -EINVAL;
err = bch2_validate_cache_super(&sb);
if (err)
return -EINVAL;
err = bch2_dev_may_add(sb.sb, c);
if (err)
return -EINVAL;
mutex_lock(&c->state_lock);
mutex_lock(&c->sb_lock);
/*
* Preserve the old cache member information (esp. tier)
* before we start bashing the disk stuff.
*/
dev_mi = bch2_sb_get_members(sb.sb);
saved_mi = dev_mi->members[sb.sb->dev_idx];
saved_mi.last_mount = cpu_to_le64(ktime_get_seconds());
if (dynamic_fault("bcachefs:add:no_slot"))
goto no_slot;
mi = bch2_sb_get_members(c->disk_sb);
for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
if (dev_idx >= c->sb.nr_devices ||
bch2_is_zero(mi->members[dev_idx].uuid.b,
sizeof(uuid_le)))
goto have_slot;
no_slot:
err = "no slots available in superblock";
ret = -ENOSPC;
goto err_unlock;
have_slot:
nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
u64s = (sizeof(struct bch_sb_field_members) +
sizeof(struct bch_member) * nr_devices) / sizeof(u64);
err = "no space in superblock for member info";
mi = bch2_fs_sb_resize_members(c, u64s);
if (!mi)
goto err_unlock;
dev_mi = bch2_sb_resize_members(&sb, u64s);
if (!dev_mi)
goto err_unlock;
memcpy(dev_mi, mi, u64s * sizeof(u64));
dev_mi->members[dev_idx] = saved_mi;
sb.sb->uuid = c->disk_sb->uuid;
sb.sb->dev_idx = dev_idx;
sb.sb->nr_devices = nr_devices;
/* commit new member info */
memcpy(mi, dev_mi, u64s * sizeof(u64));
c->disk_sb->nr_devices = nr_devices;
c->sb.nr_devices = nr_devices;
if (bch2_dev_alloc(c, dev_idx)) {
err = "cannot allocate memory";
ret = -ENOMEM;
goto err_unlock;
}
if (__bch2_dev_online(c, &sb)) {
err = "bch2_dev_online() error";
ret = -ENOMEM;
goto err_unlock;
}
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
ca = c->devs[dev_idx];
if (ca->mi.state == BCH_MEMBER_STATE_RW) {
err = "journal alloc failed";
if (bch2_dev_journal_alloc(ca))
goto err;
err = __bch2_dev_read_write(c, ca);
if (err)
goto err;
}
mutex_unlock(&c->state_lock);
return 0;
err_unlock:
mutex_unlock(&c->sb_lock);
err:
mutex_unlock(&c->state_lock);
bch2_free_super(&sb);
bch_err(c, "Unable to add device: %s", err);
return ret ?: -EINVAL;
}
int bch2_dev_online(struct bch_fs *c, const char *path)
{
struct bcache_superblock sb = { 0 };
struct bch_dev *ca;
unsigned dev_idx;
const char *err;
mutex_lock(&c->state_lock);
err = bch2_read_super(&sb, bch2_opts_empty(), path);
if (err)
goto err;
dev_idx = sb.sb->dev_idx;
err = bch2_dev_in_fs(c->disk_sb, sb.sb);
if (err)
goto err;
mutex_lock(&c->sb_lock);
if (__bch2_dev_online(c, &sb)) {
err = "__bch2_dev_online() error";
mutex_unlock(&c->sb_lock);
goto err;
}
mutex_unlock(&c->sb_lock);
ca = c->devs[dev_idx];
if (ca->mi.state == BCH_MEMBER_STATE_RW) {
err = __bch2_dev_read_write(c, ca);
if (err)
goto err;
}
mutex_unlock(&c->state_lock);
return 0;
err:
mutex_unlock(&c->state_lock);
bch2_free_super(&sb);
bch_err(c, "error bringing %s online: %s", path, err);
return -EINVAL;
}
int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
{
mutex_lock(&c->state_lock);
if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
bch_err(ca, "Cannot offline required disk");
mutex_unlock(&c->state_lock);
return -EINVAL;
}
__bch2_dev_read_only(c, ca);
__bch2_dev_offline(ca);
mutex_unlock(&c->state_lock);
return 0;
}
int bch2_dev_evacuate(struct bch_fs *c, struct bch_dev *ca)
{
int ret;
mutex_lock(&c->state_lock);
if (ca->mi.state == BCH_MEMBER_STATE_RW) {
bch_err(ca, "Cannot migrate data off RW device");
mutex_unlock(&c->state_lock);
return -EINVAL;
}
mutex_unlock(&c->state_lock);
ret = bch2_move_data_off_device(ca);
if (ret) {
bch_err(ca, "Error migrating data: %i", ret);
return ret;
}
ret = bch2_move_metadata_off_device(ca);
if (ret) {
bch_err(ca, "Error migrating metadata: %i", ret);
return ret;
}
if (ca->mi.has_data || ca->mi.has_metadata) {
bch_err(ca, "Migrate error: data still present");
return -EINVAL;
}
return 0;
}
/* Filesystem open: */
const char *bch2_fs_open(char * const *devices, unsigned nr_devices,
struct bch_opts opts, struct bch_fs **ret)
{
const char *err;
struct bch_fs *c = NULL;
struct bcache_superblock *sb;
unsigned i, best_sb = 0;
if (!nr_devices)
return "need at least one device";
if (!try_module_get(THIS_MODULE))
return "module unloading";
err = "cannot allocate memory";
sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
if (!sb)
goto err;
for (i = 0; i < nr_devices; i++) {
err = bch2_read_super(&sb[i], opts, devices[i]);
if (err)
goto err;
err = "attempting to register backing device";
if (__SB_IS_BDEV(le64_to_cpu(sb[i].sb->version)))
goto err;
err = bch2_validate_cache_super(&sb[i]);
if (err)
goto err;
}
for (i = 1; i < nr_devices; i++)
if (le64_to_cpu(sb[i].sb->seq) >
le64_to_cpu(sb[best_sb].sb->seq))
best_sb = i;
for (i = 0; i < nr_devices; i++) {
err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
if (err)
goto err;
}
err = "cannot allocate memory";
c = bch2_fs_alloc(sb[best_sb].sb, opts);
if (!c)
goto err;
err = "bch2_dev_online() error";
mutex_lock(&c->sb_lock);
for (i = 0; i < nr_devices; i++)
if (__bch2_dev_online(c, &sb[i])) {
mutex_unlock(&c->sb_lock);
goto err;
}
mutex_unlock(&c->sb_lock);
err = "insufficient devices";
if (!bch2_fs_may_start(c, 0))
goto err;
if (!c->opts.nostart) {
err = __bch2_fs_start(c);
if (err)
goto err;
}
err = bch2_fs_online(c);
if (err)
goto err;
if (ret)
*ret = c;
else
closure_put(&c->cl);
err = NULL;
out:
kfree(sb);
module_put(THIS_MODULE);
if (err)
c = NULL;
return err;
err:
if (c)
bch2_fs_stop(c);
for (i = 0; i < nr_devices; i++)
bch2_free_super(&sb[i]);
goto out;
}
static const char *__bch2_fs_open_incremental(struct bcache_superblock *sb,
struct bch_opts opts)
{
const char *err;
struct bch_fs *c;
bool allocated_fs = false;
err = bch2_validate_cache_super(sb);
if (err)
return err;
mutex_lock(&bch_fs_list_lock);
c = __bch2_uuid_to_fs(sb->sb->uuid);
if (c) {
closure_get(&c->cl);
err = bch2_dev_in_fs(c->disk_sb, sb->sb);
if (err)
goto err;
} else {
c = bch2_fs_alloc(sb->sb, opts);
err = "cannot allocate memory";
if (!c)
goto err;
allocated_fs = true;
}
err = "bch2_dev_online() error";
mutex_lock(&c->sb_lock);
if (__bch2_dev_online(c, sb)) {
mutex_unlock(&c->sb_lock);
goto err;
}
mutex_unlock(&c->sb_lock);
if (!c->opts.nostart && bch2_fs_may_start(c, 0)) {
err = __bch2_fs_start(c);
if (err)
goto err;
}
err = __bch2_fs_online(c);
if (err)
goto err;
closure_put(&c->cl);
mutex_unlock(&bch_fs_list_lock);
return NULL;
err:
mutex_unlock(&bch_fs_list_lock);
if (allocated_fs)
bch2_fs_stop(c);
else if (c)
closure_put(&c->cl);
return err;
}
const char *bch2_fs_open_incremental(const char *path)
{
struct bcache_superblock sb;
struct bch_opts opts = bch2_opts_empty();
const char *err;
err = bch2_read_super(&sb, opts, path);
if (err)
return err;
if (!__SB_IS_BDEV(le64_to_cpu(sb.sb->version)))
err = __bch2_fs_open_incremental(&sb, opts);
else
err = "not a bcachefs superblock";
bch2_free_super(&sb);
return err;
}
/* Global interfaces/init */
static void bcachefs_exit(void)
{
bch2_debug_exit();
bch2_vfs_exit();
bch2_chardev_exit();
if (bcachefs_kset)
kset_unregister(bcachefs_kset);
}
static int __init bcachefs_init(void)
{
bch2_bkey_pack_test();
if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
bch2_chardev_init() ||
bch2_vfs_init() ||
bch2_debug_init())
goto err;
return 0;
err:
bcachefs_exit();
return -ENOMEM;
}
#define BCH_DEBUG_PARAM(name, description) \
bool bch2_##name; \
module_param_named(name, bch2_##name, bool, 0644); \
MODULE_PARM_DESC(name, description);
BCH_DEBUG_PARAMS()
#undef BCH_DEBUG_PARAM
module_exit(bcachefs_exit);
module_init(bcachefs_init);