bcachefs-tools/libbcachefs/io.c

1297 lines
33 KiB
C

/*
* Some low level IO code, and hacks for various block layer limitations
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc.h"
#include "bset.h"
#include "btree_update.h"
#include "buckets.h"
#include "checksum.h"
#include "compress.h"
#include "clock.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "super-io.h"
#include <linux/blkdev.h>
#include <linux/random.h>
#include <trace/events/bcachefs.h>
/* Allocate, free from mempool: */
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
{
struct bio_vec *bv;
unsigned i;
bio_for_each_segment_all(bv, bio, i)
if (bv->bv_page != ZERO_PAGE(0))
mempool_free(bv->bv_page, &c->bio_bounce_pages);
bio->bi_vcnt = 0;
}
static void bch2_bio_alloc_page_pool(struct bch_fs *c, struct bio *bio,
bool *using_mempool)
{
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt++];
if (likely(!*using_mempool)) {
bv->bv_page = alloc_page(GFP_NOIO);
if (unlikely(!bv->bv_page)) {
mutex_lock(&c->bio_bounce_pages_lock);
*using_mempool = true;
goto pool_alloc;
}
} else {
pool_alloc:
bv->bv_page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO);
}
bv->bv_len = PAGE_SIZE;
bv->bv_offset = 0;
}
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
size_t bytes)
{
bool using_mempool = false;
bio->bi_iter.bi_size = bytes;
while (bio->bi_vcnt < DIV_ROUND_UP(bytes, PAGE_SIZE))
bch2_bio_alloc_page_pool(c, bio, &using_mempool);
if (using_mempool)
mutex_unlock(&c->bio_bounce_pages_lock);
}
/* Bios with headers */
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
const struct bkey_i *k)
{
struct bkey_s_c_extent e = bkey_i_to_s_c_extent(k);
const struct bch_extent_ptr *ptr;
struct bch_write_bio *n;
struct bch_dev *ca;
unsigned ptr_idx = 0;
BUG_ON(c->opts.nochanges);
extent_for_each_ptr(e, ptr) {
BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
!c->devs[ptr->dev]);
ca = c->devs[ptr->dev];
if (ptr + 1 < &extent_entry_last(e)->ptr) {
n = to_wbio(bio_clone_fast(&wbio->bio, GFP_NOIO,
&ca->replica_set));
n->bio.bi_end_io = wbio->bio.bi_end_io;
n->bio.bi_private = wbio->bio.bi_private;
n->parent = wbio;
n->split = true;
n->bounce = false;
n->put_bio = true;
n->bio.bi_opf = wbio->bio.bi_opf;
bio_inc_remaining(&wbio->bio);
} else {
n = wbio;
n->split = false;
}
n->c = c;
n->ca = ca;
n->ptr_idx = ptr_idx++;
n->submit_time_us = local_clock_us();
n->bio.bi_iter.bi_sector = ptr->offset;
if (!journal_flushes_device(ca))
n->bio.bi_opf |= REQ_FUA;
if (likely(percpu_ref_tryget(&ca->io_ref))) {
n->have_io_ref = true;
n->bio.bi_bdev = ca->disk_sb.bdev;
submit_bio(&n->bio);
} else {
n->have_io_ref = false;
bcache_io_error(c, &n->bio, "device has been removed");
bio_endio(&n->bio);
}
}
}
/* IO errors */
/* Writes */
static struct workqueue_struct *index_update_wq(struct bch_write_op *op)
{
return op->alloc_reserve == RESERVE_MOVINGGC
? op->c->copygc_wq
: op->c->wq;
}
static void __bch2_write(struct closure *);
static void bch2_write_done(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
BUG_ON(!(op->flags & BCH_WRITE_DONE));
if (!op->error && (op->flags & BCH_WRITE_FLUSH))
op->error = bch2_journal_error(&op->c->journal);
bch2_disk_reservation_put(op->c, &op->res);
percpu_ref_put(&op->c->writes);
bch2_keylist_free(&op->insert_keys, op->inline_keys);
closure_return(cl);
}
static u64 keylist_sectors(struct keylist *keys)
{
struct bkey_i *k;
u64 ret = 0;
for_each_keylist_key(keys, k)
ret += k->k.size;
return ret;
}
static int bch2_write_index_default(struct bch_write_op *op)
{
struct keylist *keys = &op->insert_keys;
struct btree_iter iter;
int ret;
bch2_btree_iter_init(&iter, op->c, BTREE_ID_EXTENTS,
bkey_start_pos(&bch2_keylist_front(keys)->k),
BTREE_ITER_INTENT);
ret = bch2_btree_insert_list_at(&iter, keys, &op->res,
NULL, op_journal_seq(op),
BTREE_INSERT_NOFAIL);
bch2_btree_iter_unlock(&iter);
return ret;
}
/**
* bch_write_index - after a write, update index to point to new data
*/
static void bch2_write_index(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_fs *c = op->c;
struct keylist *keys = &op->insert_keys;
unsigned i;
op->flags |= BCH_WRITE_LOOPED;
if (!bch2_keylist_empty(keys)) {
u64 sectors_start = keylist_sectors(keys);
int ret = op->index_update_fn(op);
BUG_ON(keylist_sectors(keys) && !ret);
op->written += sectors_start - keylist_sectors(keys);
if (ret) {
__bcache_io_error(c, "btree IO error %i", ret);
op->error = ret;
}
}
for (i = 0; i < ARRAY_SIZE(op->open_buckets); i++)
if (op->open_buckets[i]) {
bch2_open_bucket_put(c,
c->open_buckets +
op->open_buckets[i]);
op->open_buckets[i] = 0;
}
if (!(op->flags & BCH_WRITE_DONE))
continue_at(cl, __bch2_write, op->io_wq);
if (!op->error && (op->flags & BCH_WRITE_FLUSH)) {
bch2_journal_flush_seq_async(&c->journal,
*op_journal_seq(op),
cl);
continue_at(cl, bch2_write_done, index_update_wq(op));
} else {
continue_at_nobarrier(cl, bch2_write_done, NULL);
}
}
static void bch2_write_io_error(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct keylist *keys = &op->insert_keys;
struct bch_fs *c = op->c;
struct bch_extent_ptr *ptr;
struct bkey_i *k;
int ret;
for_each_keylist_key(keys, k) {
struct bkey_i *n = bkey_next(k);
struct bkey_s_extent e = bkey_i_to_s_extent(k);
extent_for_each_ptr_backwards(e, ptr)
if (test_bit(ptr->dev, op->failed.d))
bch2_extent_drop_ptr(e, ptr);
memmove(bkey_next(k), n, (void *) keys->top - (void *) n);
keys->top_p -= (u64 *) n - (u64 *) bkey_next(k);
ret = bch2_extent_nr_ptrs(e.c)
? bch2_check_mark_super(c, e.c, BCH_DATA_USER)
: -EIO;
if (ret) {
keys->top = keys->keys;
op->error = ret;
op->flags |= BCH_WRITE_DONE;
break;
}
}
memset(&op->failed, 0, sizeof(op->failed));
bch2_write_index(cl);
return;
}
static void bch2_write_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_write_bio *wbio = to_wbio(bio);
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
struct bch_fs *c = wbio->c;
struct bch_dev *ca = wbio->ca;
if (bch2_dev_io_err_on(bio->bi_error, ca, "data write")) {
set_bit(ca->dev_idx, op->failed.d);
set_closure_fn(cl, bch2_write_io_error, index_update_wq(op));
}
if (wbio->have_io_ref)
percpu_ref_put(&ca->io_ref);
if (wbio->bounce)
bch2_bio_free_pages_pool(c, bio);
if (wbio->put_bio)
bio_put(bio);
if (parent)
bio_endio(&parent->bio);
else
closure_put(cl);
}
static struct nonce extent_nonce(struct bversion version,
unsigned nonce,
unsigned uncompressed_size,
unsigned compression_type)
{
return (struct nonce) {{
[0] = cpu_to_le32((nonce << 12) |
(uncompressed_size << 22)),
[1] = cpu_to_le32(version.lo),
[2] = cpu_to_le32(version.lo >> 32),
[3] = cpu_to_le32(version.hi|
(compression_type << 24))^BCH_NONCE_EXTENT,
}};
}
static void init_append_extent(struct bch_write_op *op,
unsigned compressed_size,
unsigned uncompressed_size,
unsigned compression_type,
unsigned nonce,
struct bch_csum csum, unsigned csum_type,
struct open_bucket *ob)
{
struct bkey_i_extent *e = bkey_extent_init(op->insert_keys.top);
op->pos.offset += uncompressed_size;
e->k.p = op->pos;
e->k.size = uncompressed_size;
e->k.version = op->version;
bkey_extent_set_cached(&e->k, op->flags & BCH_WRITE_CACHED);
bch2_extent_crc_append(e, compressed_size,
uncompressed_size,
compression_type,
nonce, csum, csum_type);
bch2_alloc_sectors_append_ptrs(op->c, e, op->nr_replicas,
ob, compressed_size);
bkey_extent_set_cached(&e->k, (op->flags & BCH_WRITE_CACHED));
bch2_keylist_push(&op->insert_keys);
}
static int bch2_write_extent(struct bch_write_op *op, struct open_bucket *ob)
{
struct bch_fs *c = op->c;
struct bio *orig = &op->wbio.bio;
struct bio *bio;
struct bch_write_bio *wbio;
unsigned key_to_write_offset = op->insert_keys.top_p -
op->insert_keys.keys_p;
struct bkey_i *key_to_write;
unsigned csum_type = op->csum_type;
unsigned compression_type = op->compression_type;
int ret, more;
/* don't refetch csum type/compression type */
barrier();
BUG_ON(!bio_sectors(orig));
/* Need to decompress data? */
if ((op->flags & BCH_WRITE_DATA_COMPRESSED) &&
(crc_uncompressed_size(NULL, &op->crc) != op->size ||
crc_compressed_size(NULL, &op->crc) > ob->sectors_free)) {
int ret;
ret = bch2_bio_uncompress_inplace(c, orig, op->size, op->crc);
if (ret)
return ret;
op->flags &= ~BCH_WRITE_DATA_COMPRESSED;
}
if (op->flags & BCH_WRITE_DATA_COMPRESSED) {
init_append_extent(op,
crc_compressed_size(NULL, &op->crc),
crc_uncompressed_size(NULL, &op->crc),
op->crc.compression_type,
op->crc.nonce,
op->crc.csum,
op->crc.csum_type,
ob);
bio = orig;
wbio = wbio_init(bio);
more = 0;
} else if (csum_type != BCH_CSUM_NONE ||
compression_type != BCH_COMPRESSION_NONE) {
/* all units here in bytes */
unsigned total_output = 0, output_available =
min(ob->sectors_free << 9, orig->bi_iter.bi_size);
unsigned crc_nonce = bch2_csum_type_is_encryption(csum_type)
? op->nonce : 0;
struct bch_csum csum;
struct nonce nonce;
bio = bio_alloc_bioset(GFP_NOIO,
DIV_ROUND_UP(output_available, PAGE_SIZE),
&c->bio_write);
wbio = wbio_init(bio);
wbio->bounce = true;
wbio->put_bio = true;
/* copy WRITE_SYNC flag */
wbio->bio.bi_opf = orig->bi_opf;
/*
* XXX: can't use mempool for more than
* BCH_COMPRESSED_EXTENT_MAX worth of pages
*/
bch2_bio_alloc_pages_pool(c, bio, output_available);
do {
unsigned fragment_compression_type = compression_type;
size_t dst_len, src_len;
bch2_bio_compress(c, bio, &dst_len,
orig, &src_len,
&fragment_compression_type);
BUG_ON(!dst_len || dst_len > bio->bi_iter.bi_size);
BUG_ON(!src_len || src_len > orig->bi_iter.bi_size);
BUG_ON(dst_len & (block_bytes(c) - 1));
BUG_ON(src_len & (block_bytes(c) - 1));
swap(bio->bi_iter.bi_size, dst_len);
nonce = extent_nonce(op->version,
crc_nonce,
src_len >> 9,
fragment_compression_type),
bch2_encrypt_bio(c, csum_type, nonce, bio);
csum = bch2_checksum_bio(c, csum_type, nonce, bio);
swap(bio->bi_iter.bi_size, dst_len);
init_append_extent(op,
dst_len >> 9, src_len >> 9,
fragment_compression_type,
crc_nonce, csum, csum_type, ob);
total_output += dst_len;
bio_advance(bio, dst_len);
bio_advance(orig, src_len);
} while (bio->bi_iter.bi_size &&
orig->bi_iter.bi_size &&
!bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_EXTENT_U64s_MAX));
BUG_ON(total_output > output_available);
memset(&bio->bi_iter, 0, sizeof(bio->bi_iter));
bio->bi_iter.bi_size = total_output;
/*
* Free unneeded pages after compressing:
*/
while (bio->bi_vcnt * PAGE_SIZE >
round_up(bio->bi_iter.bi_size, PAGE_SIZE))
mempool_free(bio->bi_io_vec[--bio->bi_vcnt].bv_page,
&c->bio_bounce_pages);
more = orig->bi_iter.bi_size != 0;
} else {
bio = bio_next_split(orig, ob->sectors_free, GFP_NOIO,
&c->bio_write);
wbio = wbio_init(bio);
wbio->put_bio = bio != orig;
init_append_extent(op, bio_sectors(bio), bio_sectors(bio),
compression_type, 0,
(struct bch_csum) { 0 }, csum_type, ob);
more = bio != orig;
}
/* might have done a realloc... */
key_to_write = (void *) (op->insert_keys.keys_p + key_to_write_offset);
ret = bch2_check_mark_super(c, bkey_i_to_s_c_extent(key_to_write),
BCH_DATA_USER);
if (ret)
return ret;
bio->bi_end_io = bch2_write_endio;
bio->bi_private = &op->cl;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
closure_get(bio->bi_private);
bch2_submit_wbio_replicas(to_wbio(bio), c, key_to_write);
return more;
}
static void __bch2_write(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_fs *c = op->c;
unsigned open_bucket_nr = 0;
struct open_bucket *b;
int ret;
do {
if (open_bucket_nr == ARRAY_SIZE(op->open_buckets))
continue_at(cl, bch2_write_index, index_update_wq(op));
/* for the device pointers and 1 for the chksum */
if (bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_EXTENT_U64s_MAX))
continue_at(cl, bch2_write_index, index_update_wq(op));
b = bch2_alloc_sectors_start(c, op->wp,
op->nr_replicas,
c->opts.data_replicas_required,
op->alloc_reserve,
(op->flags & BCH_WRITE_ALLOC_NOWAIT) ? NULL : cl);
EBUG_ON(!b);
if (unlikely(IS_ERR(b))) {
if (unlikely(PTR_ERR(b) != -EAGAIN)) {
ret = PTR_ERR(b);
goto err;
}
/*
* If we already have some keys, must insert them first
* before allocating another open bucket. We only hit
* this case if open_bucket_nr > 1.
*/
if (!bch2_keylist_empty(&op->insert_keys))
continue_at(cl, bch2_write_index,
index_update_wq(op));
/*
* If we've looped, we're running out of a workqueue -
* not the bch2_write() caller's context - and we don't
* want to block the workqueue:
*/
if (op->flags & BCH_WRITE_LOOPED)
continue_at(cl, __bch2_write, op->io_wq);
/*
* Otherwise, we do want to block the caller on alloc
* failure instead of letting it queue up more and more
* writes:
* XXX: this technically needs a try_to_freeze() -
* except that that's not safe because caller may have
* issued other IO... hmm..
*/
closure_sync(cl);
continue;
}
BUG_ON(b - c->open_buckets == 0 ||
b - c->open_buckets > U8_MAX);
op->open_buckets[open_bucket_nr++] = b - c->open_buckets;
ret = bch2_write_extent(op, b);
bch2_alloc_sectors_done(c, op->wp, b);
if (ret < 0)
goto err;
} while (ret);
op->flags |= BCH_WRITE_DONE;
continue_at(cl, bch2_write_index, index_update_wq(op));
err:
/*
* Right now we can only error here if we went RO - the
* allocation failed, but we already checked for -ENOSPC when we
* got our reservation.
*
* XXX capacity might have changed, but we don't check for that
* yet:
*/
op->error = ret;
op->flags |= BCH_WRITE_DONE;
/*
* No reason not to insert keys for whatever data was successfully
* written (especially for a cmpxchg operation that's moving data
* around)
*/
continue_at(cl, !bch2_keylist_empty(&op->insert_keys)
? bch2_write_index
: bch2_write_done, index_update_wq(op));
}
void bch2_wake_delayed_writes(unsigned long data)
{
struct bch_fs *c = (void *) data;
struct bch_write_op *op;
unsigned long flags;
spin_lock_irqsave(&c->foreground_write_pd_lock, flags);
while ((op = c->write_wait_head)) {
if (time_after(op->expires, jiffies)) {
mod_timer(&c->foreground_write_wakeup, op->expires);
break;
}
c->write_wait_head = op->next;
if (!c->write_wait_head)
c->write_wait_tail = NULL;
closure_put(&op->cl);
}
spin_unlock_irqrestore(&c->foreground_write_pd_lock, flags);
}
/**
* bch_write - handle a write to a cache device or flash only volume
*
* This is the starting point for any data to end up in a cache device; it could
* be from a normal write, or a writeback write, or a write to a flash only
* volume - it's also used by the moving garbage collector to compact data in
* mostly empty buckets.
*
* It first writes the data to the cache, creating a list of keys to be inserted
* (if the data won't fit in a single open bucket, there will be multiple keys);
* after the data is written it calls bch_journal, and after the keys have been
* added to the next journal write they're inserted into the btree.
*
* If op->discard is true, instead of inserting the data it invalidates the
* region of the cache represented by op->bio and op->inode.
*/
void bch2_write(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bio *bio = &op->wbio.bio;
struct bch_fs *c = op->c;
u64 inode = op->pos.inode;
if (c->opts.nochanges ||
!percpu_ref_tryget(&c->writes)) {
__bcache_io_error(c, "read only");
op->error = -EROFS;
bch2_disk_reservation_put(c, &op->res);
closure_return(cl);
}
if (bversion_zero(op->version) &&
bch2_csum_type_is_encryption(op->csum_type))
op->version.lo =
atomic64_inc_return(&c->key_version) + 1;
bch2_increment_clock(c, bio_sectors(bio), WRITE);
/* Don't call bch2_next_delay() if rate is >= 1 GB/sec */
if (c->foreground_write_ratelimit_enabled &&
c->foreground_write_pd.rate.rate < (1 << 30) &&
op->wp->throttle) {
unsigned long flags;
u64 delay;
spin_lock_irqsave(&c->foreground_write_pd_lock, flags);
bch2_ratelimit_increment(&c->foreground_write_pd.rate,
bio->bi_iter.bi_size);
delay = bch2_ratelimit_delay(&c->foreground_write_pd.rate);
if (delay >= HZ / 100) {
trace_write_throttle(c, inode, bio, delay);
closure_get(&op->cl); /* list takes a ref */
op->expires = jiffies + delay;
op->next = NULL;
if (c->write_wait_tail)
c->write_wait_tail->next = op;
else
c->write_wait_head = op;
c->write_wait_tail = op;
if (!timer_pending(&c->foreground_write_wakeup))
mod_timer(&c->foreground_write_wakeup,
op->expires);
spin_unlock_irqrestore(&c->foreground_write_pd_lock,
flags);
continue_at(cl, __bch2_write, index_update_wq(op));
}
spin_unlock_irqrestore(&c->foreground_write_pd_lock, flags);
}
continue_at_nobarrier(cl, __bch2_write, NULL);
}
void bch2_write_op_init(struct bch_write_op *op, struct bch_fs *c,
struct disk_reservation res,
struct write_point *wp, struct bpos pos,
u64 *journal_seq, unsigned flags)
{
EBUG_ON(res.sectors && !res.nr_replicas);
op->c = c;
op->io_wq = index_update_wq(op);
op->written = 0;
op->error = 0;
op->flags = flags;
op->csum_type = bch2_data_checksum_type(c);
op->compression_type = c->opts.compression;
op->nr_replicas = res.nr_replicas;
op->alloc_reserve = RESERVE_NONE;
op->nonce = 0;
op->pos = pos;
op->version = ZERO_VERSION;
op->res = res;
op->wp = wp;
if (journal_seq) {
op->journal_seq_p = journal_seq;
op->flags |= BCH_WRITE_JOURNAL_SEQ_PTR;
} else {
op->journal_seq = 0;
}
op->index_update_fn = bch2_write_index_default;
memset(op->open_buckets, 0, sizeof(op->open_buckets));
memset(&op->failed, 0, sizeof(op->failed));
bch2_keylist_init(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys));
if (version_stress_test(c))
get_random_bytes(&op->version, sizeof(op->version));
}
/* Cache promotion on read */
struct promote_op {
struct closure cl;
struct migrate_write write;
struct bio_vec bi_inline_vecs[0]; /* must be last */
};
static void promote_done(struct closure *cl)
{
struct promote_op *op =
container_of(cl, struct promote_op, cl);
struct bch_fs *c = op->write.op.c;
percpu_ref_put(&c->writes);
bch2_bio_free_pages_pool(c, &op->write.op.wbio.bio);
kfree(op);
}
static void promote_start(struct promote_op *op, struct bch_read_bio *rbio)
{
struct bch_fs *c = rbio->c;
struct closure *cl = &op->cl;
struct bio *bio = &op->write.op.wbio.bio;
BUG_ON(!rbio->split || !rbio->bounce);
if (!percpu_ref_tryget(&c->writes))
return;
trace_promote(&rbio->bio);
/* we now own pages: */
swap(bio->bi_vcnt, rbio->bio.bi_vcnt);
memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec,
sizeof(struct bio_vec) * bio->bi_vcnt);
rbio->promote = NULL;
closure_init(cl, NULL);
closure_call(&op->write.op.cl, bch2_write, c->wq, cl);
closure_return_with_destructor(cl, promote_done);
}
/*
* XXX: multiple promotes can race with each other, wastefully. Keep a list of
* outstanding promotes?
*/
static struct promote_op *promote_alloc(struct bch_fs *c,
struct bvec_iter iter,
struct bkey_s_c k,
struct extent_pick_ptr *pick,
bool read_full)
{
struct promote_op *op;
struct bio *bio;
/*
* biovec needs to be big enough to hold decompressed data, if
* bch2_write_extent() has to decompress/recompress it:
*/
unsigned sectors = max_t(unsigned, k.k->size,
crc_uncompressed_size(NULL, &pick->crc));
unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
op = kmalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO);
if (!op)
return NULL;
bio = &op->write.op.wbio.bio;
bio_init(bio, bio->bi_inline_vecs, pages);
bio->bi_iter = iter;
if (pick->crc.compression_type) {
op->write.op.flags |= BCH_WRITE_DATA_COMPRESSED;
op->write.op.crc = pick->crc;
op->write.op.size = k.k->size;
} else if (read_full) {
/*
* Adjust bio to correspond to _live_ portion of @k -
* which might be less than what we're actually reading:
*/
bio_advance(bio, pick->crc.offset << 9);
BUG_ON(bio_sectors(bio) < k.k->size);
bio->bi_iter.bi_size = k.k->size << 9;
} else {
/*
* Set insert pos to correspond to what we're actually
* reading:
*/
op->write.op.pos.offset = iter.bi_sector;
}
bch2_migrate_write_init(c, &op->write, &c->promote_write_point,
k, NULL,
BCH_WRITE_ALLOC_NOWAIT|
BCH_WRITE_CACHED);
op->write.promote = true;
return op;
}
/* only promote if we're not reading from the fastest tier: */
static bool should_promote(struct bch_fs *c,
struct extent_pick_ptr *pick, unsigned flags)
{
if (!(flags & BCH_READ_MAY_PROMOTE))
return false;
if (flags & BCH_READ_IN_RETRY)
return false;
if (percpu_ref_is_dying(&c->writes))
return false;
return c->fastest_tier &&
c->fastest_tier < c->tiers + pick->ca->mi.tier;
}
/* Read */
#define READ_RETRY_AVOID 1
#define READ_RETRY 2
#define READ_ERR 3
static inline struct bch_read_bio *
bch2_rbio_parent(struct bch_read_bio *rbio)
{
return rbio->split ? rbio->parent : rbio;
}
__always_inline
static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn,
struct workqueue_struct *wq)
{
if (!wq || rbio->process_context) {
fn(&rbio->work);
} else {
rbio->work.func = fn;
rbio->process_context = true;
queue_work(wq, &rbio->work);
}
}
static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio)
{
struct bch_read_bio *parent = rbio->parent;
BUG_ON(!rbio->split);
if (rbio->promote)
kfree(rbio->promote);
if (rbio->bounce)
bch2_bio_free_pages_pool(rbio->c, &rbio->bio);
bio_put(&rbio->bio);
return parent;
}
static void bch2_rbio_done(struct bch_read_bio *rbio)
{
if (rbio->promote)
kfree(rbio->promote);
rbio->promote = NULL;
if (rbio->split)
rbio = bch2_rbio_free(rbio);
bio_endio(&rbio->bio);
}
static void bch2_rbio_retry(struct work_struct *work)
{
struct bch_read_bio *rbio =
container_of(work, struct bch_read_bio, work);
struct bch_fs *c = rbio->c;
struct bvec_iter iter = rbio->bvec_iter;
unsigned flags = rbio->flags;
u64 inode = rbio->inode;
struct bch_devs_mask avoid;
trace_read_retry(&rbio->bio);
memset(&avoid, 0, sizeof(avoid));
if (rbio->retry == READ_RETRY_AVOID)
__set_bit(rbio->pick.ca->dev_idx, avoid.d);
if (rbio->split)
rbio = bch2_rbio_free(rbio);
else
rbio->bio.bi_error = 0;
flags |= BCH_READ_MUST_CLONE;
flags |= BCH_READ_IN_RETRY;
__bch2_read(c, rbio, iter, inode, &avoid, flags);
}
static void bch2_rbio_error(struct bch_read_bio *rbio, int retry, int error)
{
rbio->retry = retry;
if (rbio->flags & BCH_READ_IN_RETRY)
return;
if (retry == READ_ERR) {
bch2_rbio_parent(rbio)->bio.bi_error = error;
bch2_rbio_done(rbio);
} else {
bch2_rbio_punt(rbio, bch2_rbio_retry, rbio->c->wq);
}
}
static int bch2_rbio_checksum_uncompress(struct bio *dst,
struct bch_read_bio *rbio)
{
struct bch_fs *c = rbio->c;
struct bio *src = &rbio->bio;
struct bvec_iter dst_iter = rbio->bvec_iter;
struct nonce nonce = extent_nonce(rbio->version,
rbio->pick.crc.nonce,
crc_uncompressed_size(NULL, &rbio->pick.crc),
rbio->pick.crc.compression_type);
struct bch_csum csum;
int ret = 0;
/*
* reset iterator for checksumming and copying bounced data: here we've
* set rbio->compressed_size to the amount of data we actually read,
* which was not necessarily the full extent if we were only bouncing
* in order to promote
*/
if (rbio->bounce) {
src->bi_iter.bi_size = crc_compressed_size(NULL, &rbio->pick.crc) << 9;
src->bi_iter.bi_idx = 0;
src->bi_iter.bi_bvec_done = 0;
} else {
src->bi_iter = rbio->bvec_iter;
}
csum = bch2_checksum_bio(c, rbio->pick.crc.csum_type, nonce, src);
if (bch2_dev_io_err_on(bch2_crc_cmp(rbio->pick.crc.csum, csum),
rbio->pick.ca,
"data checksum error, inode %llu offset %llu: expected %0llx%0llx got %0llx%0llx (type %u)",
rbio->inode, (u64) rbio->bvec_iter.bi_sector << 9,
rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo,
csum.hi, csum.lo,
rbio->pick.crc.csum_type))
ret = -EIO;
/*
* If there was a checksum error, still copy the data back - unless it
* was compressed, we don't want to decompress bad data:
*/
if (rbio->pick.crc.compression_type != BCH_COMPRESSION_NONE) {
if (!ret) {
bch2_encrypt_bio(c, rbio->pick.crc.csum_type, nonce, src);
ret = bch2_bio_uncompress(c, src, dst,
dst_iter, rbio->pick.crc);
if (ret)
__bcache_io_error(c, "decompression error");
}
} else if (rbio->bounce) {
bio_advance(src, rbio->pick.crc.offset << 9);
/* don't need to decrypt the entire bio: */
BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size);
src->bi_iter.bi_size = dst_iter.bi_size;
nonce = nonce_add(nonce, rbio->pick.crc.offset << 9);
bch2_encrypt_bio(c, rbio->pick.crc.csum_type,
nonce, src);
bio_copy_data_iter(dst, &dst_iter,
src, &src->bi_iter);
} else {
bch2_encrypt_bio(c, rbio->pick.crc.csum_type, nonce, src);
}
return ret;
}
/* Inner part that may run in process context */
static void __bch2_read_endio(struct work_struct *work)
{
struct bch_read_bio *rbio =
container_of(work, struct bch_read_bio, work);
int ret;
ret = bch2_rbio_checksum_uncompress(&bch2_rbio_parent(rbio)->bio, rbio);
if (ret) {
/*
* Checksum error: if the bio wasn't bounced, we may have been
* reading into buffers owned by userspace (that userspace can
* scribble over) - retry the read, bouncing it this time:
*/
if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) {
rbio->flags |= BCH_READ_MUST_BOUNCE;
bch2_rbio_error(rbio, READ_RETRY, ret);
} else {
bch2_rbio_error(rbio, READ_RETRY_AVOID, ret);
}
return;
}
if (rbio->promote)
promote_start(rbio->promote, rbio);
if (likely(!(rbio->flags & BCH_READ_IN_RETRY)))
bch2_rbio_done(rbio);
}
static void bch2_read_endio(struct bio *bio)
{
struct bch_read_bio *rbio =
container_of(bio, struct bch_read_bio, bio);
struct bch_fs *c = rbio->c;
struct workqueue_struct *wq = NULL;
percpu_ref_put(&rbio->pick.ca->io_ref);
if (!rbio->split)
rbio->bio.bi_end_io = rbio->end_io;
if (bch2_dev_io_err_on(bio->bi_error, rbio->pick.ca, "data read")) {
bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_error);
return;
}
if (rbio->pick.ptr.cached &&
(((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) ||
ptr_stale(rbio->pick.ca, &rbio->pick.ptr))) {
atomic_long_inc(&c->read_realloc_races);
if (rbio->flags & BCH_READ_RETRY_IF_STALE)
bch2_rbio_error(rbio, READ_RETRY, -EINTR);
else
bch2_rbio_error(rbio, READ_ERR, -EINTR);
return;
}
if (rbio->pick.crc.compression_type ||
bch2_csum_type_is_encryption(rbio->pick.crc.csum_type))
wq = system_unbound_wq;
else if (rbio->pick.crc.csum_type)
wq = system_highpri_wq;
bch2_rbio_punt(rbio, __bch2_read_endio, wq);
}
int __bch2_read_extent(struct bch_fs *c, struct bch_read_bio *orig,
struct bvec_iter iter, struct bkey_s_c k,
struct extent_pick_ptr *pick, unsigned flags)
{
struct bch_read_bio *rbio;
struct promote_op *promote_op = NULL;
unsigned skip = iter.bi_sector - bkey_start_offset(k.k);
bool bounce = false, split, read_full = false;
int ret = 0;
bch2_increment_clock(c, bio_sectors(&orig->bio), READ);
PTR_BUCKET(pick->ca, &pick->ptr)->prio[READ] = c->prio_clock[READ].hand;
EBUG_ON(bkey_start_offset(k.k) > iter.bi_sector ||
k.k->p.offset < bvec_iter_end_sector(iter));
/*
* note: if compression_type and crc_type both == none, then
* compressed/uncompressed size is zero
*/
if (pick->crc.compression_type != BCH_COMPRESSION_NONE ||
(pick->crc.csum_type != BCH_CSUM_NONE &&
(bvec_iter_sectors(iter) != crc_uncompressed_size(NULL, &pick->crc) ||
(bch2_csum_type_is_encryption(pick->crc.csum_type) &&
(flags & BCH_READ_USER_MAPPED)) ||
(flags & BCH_READ_MUST_BOUNCE)))) {
read_full = true;
bounce = true;
}
if (should_promote(c, pick, flags))
promote_op = promote_alloc(c, iter, k, pick, read_full);
/* could also set read_full */
if (promote_op)
bounce = true;
if (bounce) {
unsigned sectors = read_full
? (crc_compressed_size(NULL, &pick->crc) ?: k.k->size)
: bvec_iter_sectors(iter);
rbio = rbio_init(bio_alloc_bioset(GFP_NOIO,
DIV_ROUND_UP(sectors, PAGE_SECTORS),
&c->bio_read_split));
bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9);
split = true;
} else if (flags & BCH_READ_MUST_CLONE) {
/*
* Have to clone if there were any splits, due to error
* reporting issues (if a split errored, and retrying didn't
* work, when it reports the error to its parent (us) we don't
* know if the error was from our bio, and we should retry, or
* from the whole bio, in which case we don't want to retry and
* lose the error)
*/
rbio = rbio_init(bio_clone_fast(&orig->bio,
GFP_NOIO, &c->bio_read_split));
rbio->bio.bi_iter = iter;
split = true;
} else {
rbio = orig;
rbio->bio.bi_iter = iter;
split = false;
BUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN));
}
rbio->c = c;
if (split)
rbio->parent = orig;
else
rbio->end_io = orig->bio.bi_end_io;
rbio->bvec_iter = iter;
rbio->flags = flags;
rbio->bounce = bounce;
rbio->split = split;
rbio->process_context = false;
rbio->retry = 0;
rbio->pick = *pick;
/*
* crc.compressed_size will be 0 if there wasn't any checksum
* information, also we need to stash the original size of the bio if we
* bounced (which isn't necessarily the original key size, if we bounced
* only for promoting)
*/
rbio->pick.crc._compressed_size = bio_sectors(&rbio->bio) - 1;
rbio->version = k.k->version;
rbio->promote = promote_op;
rbio->inode = k.k->p.inode;
INIT_WORK(&rbio->work, NULL);
rbio->bio.bi_bdev = pick->ca->disk_sb.bdev;
rbio->bio.bi_opf = orig->bio.bi_opf;
rbio->bio.bi_iter.bi_sector = pick->ptr.offset;
rbio->bio.bi_end_io = bch2_read_endio;
if (read_full)
rbio->pick.crc.offset += skip;
else
rbio->bio.bi_iter.bi_sector += skip;
rbio->submit_time_us = local_clock_us();
if (bounce)
trace_read_bounce(&rbio->bio);
if (likely(!(flags & BCH_READ_IN_RETRY))) {
submit_bio(&rbio->bio);
} else {
submit_bio_wait(&rbio->bio);
rbio->process_context = true;
bch2_read_endio(&rbio->bio);
ret = rbio->retry;
if (!ret)
bch2_rbio_done(rbio);
}
return ret;
}
void __bch2_read(struct bch_fs *c, struct bch_read_bio *rbio,
struct bvec_iter bvec_iter, u64 inode,
struct bch_devs_mask *avoid, unsigned flags)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret;
retry:
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS,
POS(inode, bvec_iter.bi_sector),
BTREE_ITER_WITH_HOLES, k) {
BKEY_PADDED(k) tmp;
struct extent_pick_ptr pick;
struct bvec_iter fragment;
/*
* Unlock the iterator while the btree node's lock is still in
* cache, before doing the IO:
*/
bkey_reassemble(&tmp.k, k);
k = bkey_i_to_s_c(&tmp.k);
bch2_btree_iter_unlock(&iter);
bch2_extent_pick_ptr(c, k, avoid, &pick);
if (IS_ERR(pick.ca)) {
bcache_io_error(c, &rbio->bio, "no device to read from");
bio_endio(&rbio->bio);
return;
}
fragment = bvec_iter;
fragment.bi_size = (min_t(u64, k.k->p.offset,
bvec_iter_end_sector(bvec_iter)) -
bvec_iter.bi_sector) << 9;
if (pick.ca) {
if (fragment.bi_size != bvec_iter.bi_size) {
bio_inc_remaining(&rbio->bio);
flags |= BCH_READ_MUST_CLONE;
trace_read_split(&rbio->bio);
}
ret = __bch2_read_extent(c, rbio, fragment,
k, &pick, flags);
switch (ret) {
case READ_RETRY_AVOID:
__set_bit(pick.ca->dev_idx, avoid->d);
case READ_RETRY:
goto retry;
case READ_ERR:
bio_endio(&rbio->bio);
return;
};
} else {
zero_fill_bio_iter(&rbio->bio, fragment);
if (fragment.bi_size == bvec_iter.bi_size)
bio_endio(&rbio->bio);
}
if (fragment.bi_size == bvec_iter.bi_size)
return;
bio_advance_iter(&rbio->bio, &bvec_iter, fragment.bi_size);
}
/*
* If we get here, it better have been because there was an error
* reading a btree node
*/
ret = bch2_btree_iter_unlock(&iter);
BUG_ON(!ret);
bcache_io_error(c, &rbio->bio, "btree IO error %i", ret);
bio_endio(&rbio->bio);
}