bcachefs-tools/linux/mean_and_variance.c

179 lines
4.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Functions for incremental mean and variance.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* Copyright © 2022 Daniel B. Hill
*
* Author: Daniel B. Hill <daniel@gluo.nz>
*
* Description:
*
* This is includes some incremental algorithms for mean and variance calculation
*
* Derived from the paper: https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
*
* Create a struct and if it's the weighted variant set the w field (weight = 2^k).
*
* Use mean_and_variance[_weighted]_update() on the struct to update it's state.
*
* Use the mean_and_variance[_weighted]_get_* functions to calculate the mean and variance, some computation
* is deferred to these functions for performance reasons.
*
* see lib/math/mean_and_variance_test.c for examples of usage.
*
* DO NOT access the mean and variance fields of the weighted variants directly.
* DO NOT change the weight after calling update.
*/
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/limits.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/mean_and_variance.h>
#include <linux/module.h>
#include <linux/printbuf.h>
/**
* fast_divpow2() - fast approximation for n / (1 << d)
* @n: numerator
* @d: the power of 2 denominator.
*
* note: this rounds towards 0.
*/
s64 fast_divpow2(s64 n, u8 d)
{
return (n + ((n < 0) ? ((1 << d) - 1) : 0)) >> d;
}
/**
* mean_and_variance_update() - update a mean_and_variance struct @s1 with a new sample @v1
* and return it.
* @s1: the mean_and_variance to update.
* @v1: the new sample.
*
* see linked pdf equation 12.
*/
struct mean_and_variance mean_and_variance_update(struct mean_and_variance s1, s64 v1)
{
struct mean_and_variance s2;
u64 v2 = abs(v1);
s2.n = s1.n + 1;
s2.sum = s1.sum + v1;
s2.sum_squares = u128_add(s1.sum_squares, u128_square(v2));
return s2;
}
EXPORT_SYMBOL_GPL(mean_and_variance_update);
/**
* mean_and_variance_get_mean() - get mean from @s
*/
s64 mean_and_variance_get_mean(struct mean_and_variance s)
{
return div64_u64(s.sum, s.n);
}
EXPORT_SYMBOL_GPL(mean_and_variance_get_mean);
/**
* mean_and_variance_get_variance() - get variance from @s1
*
* see linked pdf equation 12.
*/
u64 mean_and_variance_get_variance(struct mean_and_variance s1)
{
u128 s2 = u128_div(s1.sum_squares, s1.n);
u64 s3 = abs(mean_and_variance_get_mean(s1));
return u128_to_u64(u128_sub(s2, u128_square(s3)));
}
EXPORT_SYMBOL_GPL(mean_and_variance_get_variance);
/**
* mean_and_variance_get_stddev() - get standard deviation from @s
*/
u32 mean_and_variance_get_stddev(struct mean_and_variance s)
{
return int_sqrt64(mean_and_variance_get_variance(s));
}
EXPORT_SYMBOL_GPL(mean_and_variance_get_stddev);
/**
* mean_and_variance_weighted_update() - exponentially weighted variant of mean_and_variance_update()
* @s1: ..
* @s2: ..
*
* see linked pdf: function derived from equations 140-143 where alpha = 2^w.
* values are stored bitshifted for performance and added precision.
*/
struct mean_and_variance_weighted mean_and_variance_weighted_update(struct mean_and_variance_weighted s1,
s64 x)
{
struct mean_and_variance_weighted s2;
// previous weighted variance.
u64 var_w0 = s1.variance;
u8 w = s2.w = s1.w;
// new value weighted.
s64 x_w = x << w;
s64 diff_w = x_w - s1.mean;
s64 diff = fast_divpow2(diff_w, w);
// new mean weighted.
s64 u_w1 = s1.mean + diff;
BUG_ON(w % 2 != 0);
if (!s1.init) {
s2.mean = x_w;
s2.variance = 0;
} else {
s2.mean = u_w1;
s2.variance = ((var_w0 << w) - var_w0 + ((diff_w * (x_w - u_w1)) >> w)) >> w;
}
s2.init = true;
return s2;
}
EXPORT_SYMBOL_GPL(mean_and_variance_weighted_update);
/**
* mean_and_variance_weighted_get_mean() - get mean from @s
*/
s64 mean_and_variance_weighted_get_mean(struct mean_and_variance_weighted s)
{
return fast_divpow2(s.mean, s.w);
}
EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_mean);
/**
* mean_and_variance_weighted_get_variance() -- get variance from @s
*/
u64 mean_and_variance_weighted_get_variance(struct mean_and_variance_weighted s)
{
// always positive don't need fast divpow2
return s.variance >> s.w;
}
EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_variance);
/**
* mean_and_variance_weighted_get_stddev() - get standard deviation from @s
*/
u32 mean_and_variance_weighted_get_stddev(struct mean_and_variance_weighted s)
{
return int_sqrt64(mean_and_variance_weighted_get_variance(s));
}
EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_stddev);
MODULE_AUTHOR("Daniel B. Hill");
MODULE_LICENSE("GPL");