Kent Overstreet 7a041ef0c9 Update bcachefs sources to 581f7e27bc97 bcachefs: s/rebalance/reconcile
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2025-11-12 17:43:08 -05:00

1670 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc/accounting.h"
#include "alloc/background.h"
#include "alloc/backpointers.h"
#include "alloc/buckets.h"
#include "alloc/buckets_waiting_for_journal.h"
#include "alloc/check.h"
#include "alloc/foreground.h"
#include "alloc/lru.h"
#include "btree/bkey_buf.h"
#include "btree/cache.h"
#include "btree/key_cache.h"
#include "btree/update.h"
#include "btree/interior.h"
#include "btree/check.h"
#include "btree/write_buffer.h"
#include "data/ec.h"
#include "init/error.h"
#include "init/progress.h"
#include "init/recovery.h"
#include "util/clock.h"
#include "util/enumerated_ref.h"
#include "util/varint.h"
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/random.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
#include <linux/jiffies.h>
static void bch2_discard_one_bucket_fast(struct bch_dev *, u64);
/* Persistent alloc info: */
static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = {
#define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8,
BCH_ALLOC_FIELDS_V1()
#undef x
};
struct bkey_alloc_unpacked {
u64 journal_seq;
u8 gen;
u8 oldest_gen;
u8 data_type;
bool need_discard:1;
bool need_inc_gen:1;
#define x(_name, _bits) u##_bits _name;
BCH_ALLOC_FIELDS_V2()
#undef x
};
static inline u64 alloc_field_v1_get(const struct bch_alloc *a,
const void **p, unsigned field)
{
unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
u64 v;
if (!(a->fields & (1 << field)))
return 0;
switch (bytes) {
case 1:
v = *((const u8 *) *p);
break;
case 2:
v = le16_to_cpup(*p);
break;
case 4:
v = le32_to_cpup(*p);
break;
case 8:
v = le64_to_cpup(*p);
break;
default:
BUG();
}
*p += bytes;
return v;
}
static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
const struct bch_alloc *in = bkey_s_c_to_alloc(k).v;
const void *d = in->data;
unsigned idx = 0;
out->gen = in->gen;
#define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++);
BCH_ALLOC_FIELDS_V1()
#undef x
}
static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k);
const u8 *in = a.v->data;
const u8 *end = bkey_val_end(a);
unsigned fieldnr = 0;
int ret;
u64 v;
out->gen = a.v->gen;
out->oldest_gen = a.v->oldest_gen;
out->data_type = a.v->data_type;
#define x(_name, _bits) \
if (fieldnr < a.v->nr_fields) { \
ret = bch2_varint_decode_fast(in, end, &v); \
if (ret < 0) \
return ret; \
in += ret; \
} else { \
v = 0; \
} \
out->_name = v; \
if (v != out->_name) \
return -1; \
fieldnr++;
BCH_ALLOC_FIELDS_V2()
#undef x
return 0;
}
static int bch2_alloc_unpack_v3(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
struct bkey_s_c_alloc_v3 a = bkey_s_c_to_alloc_v3(k);
const u8 *in = a.v->data;
const u8 *end = bkey_val_end(a);
unsigned fieldnr = 0;
int ret;
u64 v;
out->gen = a.v->gen;
out->oldest_gen = a.v->oldest_gen;
out->data_type = a.v->data_type;
out->need_discard = BCH_ALLOC_V3_NEED_DISCARD(a.v);
out->need_inc_gen = BCH_ALLOC_V3_NEED_INC_GEN(a.v);
out->journal_seq = le64_to_cpu(a.v->journal_seq);
#define x(_name, _bits) \
if (fieldnr < a.v->nr_fields) { \
ret = bch2_varint_decode_fast(in, end, &v); \
if (ret < 0) \
return ret; \
in += ret; \
} else { \
v = 0; \
} \
out->_name = v; \
if (v != out->_name) \
return -1; \
fieldnr++;
BCH_ALLOC_FIELDS_V2()
#undef x
return 0;
}
static struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
{
struct bkey_alloc_unpacked ret = { .gen = 0 };
switch (k.k->type) {
case KEY_TYPE_alloc:
bch2_alloc_unpack_v1(&ret, k);
break;
case KEY_TYPE_alloc_v2:
bch2_alloc_unpack_v2(&ret, k);
break;
case KEY_TYPE_alloc_v3:
bch2_alloc_unpack_v3(&ret, k);
break;
}
return ret;
}
static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a)
{
unsigned i, bytes = offsetof(struct bch_alloc, data);
for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++)
if (a->fields & (1 << i))
bytes += BCH_ALLOC_V1_FIELD_BYTES[i];
return DIV_ROUND_UP(bytes, sizeof(u64));
}
int bch2_alloc_v1_validate(struct bch_fs *c, struct bkey_s_c k,
struct bkey_validate_context from)
{
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
int ret = 0;
/* allow for unknown fields */
bkey_fsck_err_on(bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v),
c, alloc_v1_val_size_bad,
"incorrect value size (%zu < %u)",
bkey_val_u64s(a.k), bch_alloc_v1_val_u64s(a.v));
fsck_err:
return ret;
}
int bch2_alloc_v2_validate(struct bch_fs *c, struct bkey_s_c k,
struct bkey_validate_context from)
{
struct bkey_alloc_unpacked u;
int ret = 0;
bkey_fsck_err_on(bch2_alloc_unpack_v2(&u, k),
c, alloc_v2_unpack_error,
"unpack error");
fsck_err:
return ret;
}
int bch2_alloc_v3_validate(struct bch_fs *c, struct bkey_s_c k,
struct bkey_validate_context from)
{
struct bkey_alloc_unpacked u;
int ret = 0;
bkey_fsck_err_on(bch2_alloc_unpack_v3(&u, k),
c, alloc_v3_unpack_error,
"unpack error");
fsck_err:
return ret;
}
int bch2_alloc_v4_validate(struct bch_fs *c, struct bkey_s_c k,
struct bkey_validate_context from)
{
struct bch_alloc_v4 a;
int ret = 0;
bkey_val_copy_pad(&a, bkey_s_c_to_alloc_v4(k));
bkey_fsck_err_on(alloc_v4_u64s_noerror(&a) > bkey_val_u64s(k.k),
c, alloc_v4_val_size_bad,
"bad val size (%u > %zu)",
alloc_v4_u64s_noerror(&a), bkey_val_u64s(k.k));
bkey_fsck_err_on(!BCH_ALLOC_V4_BACKPOINTERS_START(&a) &&
BCH_ALLOC_V4_NR_BACKPOINTERS(&a),
c, alloc_v4_backpointers_start_bad,
"invalid backpointers_start");
bkey_fsck_err_on(alloc_data_type(a, a.data_type) != a.data_type,
c, alloc_key_data_type_bad,
"invalid data type (got %u should be %u)",
a.data_type, alloc_data_type(a, a.data_type));
for (unsigned i = 0; i < 2; i++)
bkey_fsck_err_on(a.io_time[i] > LRU_TIME_MAX,
c, alloc_key_io_time_bad,
"invalid io_time[%s]: %llu, max %llu",
i == READ ? "read" : "write",
a.io_time[i], LRU_TIME_MAX);
unsigned stripe_sectors = BCH_ALLOC_V4_BACKPOINTERS_START(&a) * sizeof(u64) >
offsetof(struct bch_alloc_v4, stripe_sectors)
? a.stripe_sectors
: 0;
switch (a.data_type) {
case BCH_DATA_free:
case BCH_DATA_need_gc_gens:
case BCH_DATA_need_discard:
bkey_fsck_err_on(stripe_sectors ||
a.dirty_sectors ||
a.cached_sectors ||
a.stripe,
c, alloc_key_empty_but_have_data,
"empty data type free but have data %u.%u.%u %u",
stripe_sectors,
a.dirty_sectors,
a.cached_sectors,
a.stripe);
break;
case BCH_DATA_sb:
case BCH_DATA_journal:
case BCH_DATA_btree:
case BCH_DATA_user:
case BCH_DATA_parity:
bkey_fsck_err_on(!a.dirty_sectors &&
!stripe_sectors,
c, alloc_key_dirty_sectors_0,
"data_type %s but dirty_sectors==0",
bch2_data_type_str(a.data_type));
break;
case BCH_DATA_cached:
bkey_fsck_err_on(!a.cached_sectors ||
a.dirty_sectors ||
stripe_sectors ||
a.stripe,
c, alloc_key_cached_inconsistency,
"data type inconsistency");
bkey_fsck_err_on(!a.io_time[READ] &&
!(c->recovery.passes_to_run &
BIT_ULL(BCH_RECOVERY_PASS_check_alloc_to_lru_refs)),
c, alloc_key_cached_but_read_time_zero,
"cached bucket with read_time == 0");
break;
case BCH_DATA_stripe:
break;
}
fsck_err:
return ret;
}
void bch2_alloc_v4_swab(const struct bch_fs *c, struct bkey_s k)
{
struct bch_alloc_v4 *a = bkey_s_to_alloc_v4(k).v;
a->journal_seq_nonempty = swab64(a->journal_seq_nonempty);
a->journal_seq_empty = swab64(a->journal_seq_empty);
a->flags = swab32(a->flags);
a->dirty_sectors = swab32(a->dirty_sectors);
a->cached_sectors = swab32(a->cached_sectors);
a->io_time[0] = swab64(a->io_time[0]);
a->io_time[1] = swab64(a->io_time[1]);
a->stripe = swab32(a->stripe);
a->nr_external_backpointers = swab32(a->nr_external_backpointers);
a->stripe_sectors = swab32(a->stripe_sectors);
}
static inline void __bch2_alloc_v4_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k,
const struct bch_alloc_v4 *a)
{
struct bch_dev *ca = c ? bch2_dev_tryget_noerror(c, k.k->p.inode) : NULL;
prt_newline(out);
prt_printf(out, "gen %u oldest_gen %u data_type ", a->gen, a->oldest_gen);
bch2_prt_data_type(out, a->data_type);
prt_newline(out);
prt_printf(out, "journal_seq_nonempty %llu\n", a->journal_seq_nonempty);
if (bkey_val_bytes(k.k) > offsetof(struct bch_alloc_v4, journal_seq_empty))
prt_printf(out, "journal_seq_empty %llu\n", a->journal_seq_empty);
prt_printf(out, "need_discard %llu\n", BCH_ALLOC_V4_NEED_DISCARD(a));
prt_printf(out, "need_inc_gen %llu\n", BCH_ALLOC_V4_NEED_INC_GEN(a));
prt_printf(out, "dirty_sectors %u\n", a->dirty_sectors);
if (bkey_val_bytes(k.k) > offsetof(struct bch_alloc_v4, stripe_sectors))
prt_printf(out, "stripe_sectors %u\n", a->stripe_sectors);
prt_printf(out, "cached_sectors %u\n", a->cached_sectors);
prt_printf(out, "stripe %u\n", a->stripe);
prt_printf(out, "io_time[READ] %llu\n", a->io_time[READ]);
prt_printf(out, "io_time[WRITE] %llu\n", a->io_time[WRITE]);
if (ca)
prt_printf(out, "fragmentation %llu\n", alloc_lru_idx_fragmentation(*a, ca));
prt_printf(out, "bp_start %llu\n", BCH_ALLOC_V4_BACKPOINTERS_START(a));
bch2_dev_put(ca);
}
void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
struct bch_alloc_v4 _a;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &_a);
__bch2_alloc_v4_to_text(out, c, k, a);
}
void bch2_alloc_v4_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
__bch2_alloc_v4_to_text(out, c, k, bkey_s_c_to_alloc_v4(k).v);
}
void __bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *out)
{
if (k.k->type == KEY_TYPE_alloc_v4) {
void *src, *dst;
bkey_val_copy_pad(out, bkey_s_c_to_alloc_v4(k));
src = alloc_v4_backpointers(out);
SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s);
dst = alloc_v4_backpointers(out);
if (src < dst)
memset(src, 0, dst - src);
SET_BCH_ALLOC_V4_NR_BACKPOINTERS(out, 0);
} else {
struct bkey_alloc_unpacked u = bch2_alloc_unpack(k);
*out = (struct bch_alloc_v4) {
.journal_seq_nonempty = u.journal_seq,
.flags = u.need_discard,
.gen = u.gen,
.oldest_gen = u.oldest_gen,
.data_type = u.data_type,
.dirty_sectors = u.dirty_sectors,
.cached_sectors = u.cached_sectors,
.io_time[READ] = u.read_time,
.io_time[WRITE] = u.write_time,
.stripe = u.stripe,
};
SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s);
}
}
static noinline struct bkey_i_alloc_v4 *
__bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k)
{
struct bkey_i_alloc_v4 *ret;
ret = bch2_trans_kmalloc(trans, max(bkey_bytes(k.k), sizeof(struct bkey_i_alloc_v4)));
if (IS_ERR(ret))
return ret;
if (k.k->type == KEY_TYPE_alloc_v4) {
void *src, *dst;
bkey_reassemble(&ret->k_i, k);
src = alloc_v4_backpointers(&ret->v);
SET_BCH_ALLOC_V4_BACKPOINTERS_START(&ret->v, BCH_ALLOC_V4_U64s);
dst = alloc_v4_backpointers(&ret->v);
if (src < dst)
memset(src, 0, dst - src);
SET_BCH_ALLOC_V4_NR_BACKPOINTERS(&ret->v, 0);
set_alloc_v4_u64s(ret);
} else {
bkey_alloc_v4_init(&ret->k_i);
ret->k.p = k.k->p;
bch2_alloc_to_v4(k, &ret->v);
}
return ret;
}
static inline struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut_inlined(struct btree_trans *trans, struct bkey_s_c k)
{
struct bkey_s_c_alloc_v4 a;
if (likely(k.k->type == KEY_TYPE_alloc_v4) &&
((a = bkey_s_c_to_alloc_v4(k), true) &&
BCH_ALLOC_V4_NR_BACKPOINTERS(a.v) == 0))
return bch2_bkey_make_mut_noupdate_typed(trans, k, alloc_v4);
return __bch2_alloc_to_v4_mut(trans, k);
}
struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k)
{
return bch2_alloc_to_v4_mut_inlined(trans, k);
}
struct bkey_i_alloc_v4 *
bch2_trans_start_alloc_update_noupdate(struct btree_trans *trans, struct btree_iter *iter,
struct bpos pos)
{
bch2_trans_iter_init(trans, iter, BTREE_ID_alloc, pos,
BTREE_ITER_with_updates|
BTREE_ITER_cached|
BTREE_ITER_intent);
struct bkey_s_c k = bch2_btree_iter_peek_slot(iter);
int ret = bkey_err(k);
if (unlikely(ret))
return ERR_PTR(ret);
return bch2_alloc_to_v4_mut_inlined(trans, k);
}
__flatten
struct bkey_i_alloc_v4 *bch2_trans_start_alloc_update(struct btree_trans *trans, struct bpos pos,
enum btree_iter_update_trigger_flags flags)
{
CLASS(btree_iter, iter)(trans, BTREE_ID_alloc, pos,
BTREE_ITER_with_updates|
BTREE_ITER_cached|
BTREE_ITER_intent);
struct bkey_s_c k = bch2_btree_iter_peek_slot(&iter);
int ret = bkey_err(k);
if (unlikely(ret))
return ERR_PTR(ret);
if ((void *) k.v >= trans->mem &&
(void *) k.v < trans->mem + trans->mem_top)
return container_of(bkey_s_c_to_alloc_v4(k).v, struct bkey_i_alloc_v4, v);
struct bkey_i_alloc_v4 *a = bch2_alloc_to_v4_mut_inlined(trans, k);
if (IS_ERR(a))
return a;
ret = bch2_trans_update_ip(trans, &iter, &a->k_i, flags, _RET_IP_);
return unlikely(ret) ? ERR_PTR(ret) : a;
}
int bch2_bucket_gens_validate(struct bch_fs *c, struct bkey_s_c k,
struct bkey_validate_context from)
{
int ret = 0;
bkey_fsck_err_on(bkey_val_bytes(k.k) != sizeof(struct bch_bucket_gens),
c, bucket_gens_val_size_bad,
"bad val size (%zu != %zu)",
bkey_val_bytes(k.k), sizeof(struct bch_bucket_gens));
fsck_err:
return ret;
}
void bch2_bucket_gens_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_s_c_bucket_gens g = bkey_s_c_to_bucket_gens(k);
unsigned i;
for (i = 0; i < ARRAY_SIZE(g.v->gens); i++) {
if (i)
prt_char(out, ' ');
prt_printf(out, "%u", g.v->gens[i]);
}
}
static int bucket_gens_init_iter(struct btree_trans *trans, struct bkey_s_c k,
struct bkey_i_bucket_gens *g,
bool *have_bucket_gens_key)
{
/*
* Not a fsck error because this is checked/repaired by
* bch2_check_alloc_key() which runs later:
*/
if (!bch2_dev_bucket_exists(trans->c, k.k->p))
return 0;
unsigned offset;
struct bpos pos = alloc_gens_pos(k.k->p, &offset);
if (*have_bucket_gens_key && !bkey_eq(g->k.p, pos)) {
try(bch2_btree_insert_trans(trans, BTREE_ID_bucket_gens, &g->k_i, 0));
try(bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc));
*have_bucket_gens_key = false;
}
if (!*have_bucket_gens_key) {
bkey_bucket_gens_init(&g->k_i);
g->k.p = pos;
*have_bucket_gens_key = true;
}
struct bch_alloc_v4 a;
g->v.gens[offset] = bch2_alloc_to_v4(k, &a)->gen;
return 0;
}
int bch2_bucket_gens_init(struct bch_fs *c)
{
struct bkey_i_bucket_gens g;
bool have_bucket_gens_key = false;
CLASS(btree_trans, trans)(c);
try(for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_prefetch, k, ({
bucket_gens_init_iter(trans, k, &g, &have_bucket_gens_key);
})));
if (have_bucket_gens_key)
try(commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc,
bch2_btree_insert_trans(trans, BTREE_ID_bucket_gens, &g.k_i, 0)));
return 0;
}
int bch2_alloc_read(struct bch_fs *c)
{
guard(rwsem_read)(&c->state_lock);
CLASS(btree_trans, trans)(c);
struct bch_dev *ca = NULL;
int ret;
if (c->sb.version_upgrade_complete >= bcachefs_metadata_version_bucket_gens) {
ret = for_each_btree_key(trans, iter, BTREE_ID_bucket_gens, POS_MIN,
BTREE_ITER_prefetch, k, ({
u64 start = bucket_gens_pos_to_alloc(k.k->p, 0).offset;
u64 end = bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0).offset;
if (k.k->type != KEY_TYPE_bucket_gens)
continue;
ca = bch2_dev_iterate(c, ca, k.k->p.inode);
/*
* Not a fsck error because this is checked/repaired by
* bch2_check_alloc_key() which runs later:
*/
if (!ca) {
bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0));
continue;
}
const struct bch_bucket_gens *g = bkey_s_c_to_bucket_gens(k).v;
for (u64 b = max_t(u64, ca->mi.first_bucket, start);
b < min_t(u64, ca->mi.nbuckets, end);
b++)
*bucket_gen(ca, b) = g->gens[b & KEY_TYPE_BUCKET_GENS_MASK];
0;
}));
} else {
ret = for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_prefetch, k, ({
ca = bch2_dev_iterate(c, ca, k.k->p.inode);
/*
* Not a fsck error because this is checked/repaired by
* bch2_check_alloc_key() which runs later:
*/
if (!ca) {
bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0));
continue;
}
if (k.k->p.offset < ca->mi.first_bucket) {
bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode, ca->mi.first_bucket));
continue;
}
if (k.k->p.offset >= ca->mi.nbuckets) {
bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0));
continue;
}
struct bch_alloc_v4 a;
*bucket_gen(ca, k.k->p.offset) = bch2_alloc_to_v4(k, &a)->gen;
0;
}));
}
bch2_dev_put(ca);
return ret;
}
/* Free space/discard btree: */
int bch2_bucket_do_index(struct btree_trans *trans,
struct bch_dev *ca,
struct bkey_s_c alloc_k,
const struct bch_alloc_v4 *a,
bool set)
{
enum btree_id btree;
struct bpos pos;
int ret = 0;
if (a->data_type != BCH_DATA_free &&
a->data_type != BCH_DATA_need_discard)
return 0;
switch (a->data_type) {
case BCH_DATA_free:
btree = BTREE_ID_freespace;
pos = alloc_freespace_pos(alloc_k.k->p, *a);
break;
case BCH_DATA_need_discard:
btree = BTREE_ID_need_discard;
pos = alloc_k.k->p;
break;
default:
return 0;
}
CLASS(btree_iter, iter)(trans, btree, pos, BTREE_ITER_intent);
struct bkey_s_c old = bkey_try(bch2_btree_iter_peek_slot(&iter));
need_discard_or_freespace_err_on(ca->mi.freespace_initialized &&
!old.k->type != set,
trans, alloc_k, set,
btree == BTREE_ID_need_discard, false);
return bch2_btree_bit_mod_iter(trans, &iter, set);
fsck_err:
return ret;
}
static noinline int bch2_bucket_gen_update(struct btree_trans *trans,
struct bpos bucket, u8 gen)
{
struct bkey_i_bucket_gens *g = errptr_try(bch2_trans_kmalloc(trans, sizeof(*g)));
unsigned offset;
struct bpos pos = alloc_gens_pos(bucket, &offset);
CLASS(btree_iter, iter)(trans, BTREE_ID_bucket_gens, pos,
BTREE_ITER_intent|BTREE_ITER_with_updates);
struct bkey_s_c k = bkey_try(bch2_btree_iter_peek_slot(&iter));
if (k.k->type != KEY_TYPE_bucket_gens) {
bkey_bucket_gens_init(&g->k_i);
g->k.p = iter.pos;
} else {
bkey_reassemble(&g->k_i, k);
}
g->v.gens[offset] = gen;
return bch2_trans_update(trans, &iter, &g->k_i, 0);
}
static inline int bch2_dev_data_type_accounting_mod(struct btree_trans *trans, struct bch_dev *ca,
enum bch_data_type data_type,
s64 delta_buckets,
s64 delta_sectors,
s64 delta_fragmented, unsigned flags)
{
s64 d[3] = { delta_buckets, delta_sectors, delta_fragmented };
return bch2_disk_accounting_mod2(trans, flags & BTREE_TRIGGER_gc,
d, dev_data_type,
.dev = ca->dev_idx,
.data_type = data_type);
}
int bch2_alloc_key_to_dev_counters(struct btree_trans *trans, struct bch_dev *ca,
const struct bch_alloc_v4 *old,
const struct bch_alloc_v4 *new,
unsigned flags)
{
s64 old_sectors = bch2_bucket_sectors(*old);
s64 new_sectors = bch2_bucket_sectors(*new);
if (old->data_type != new->data_type) {
try(bch2_dev_data_type_accounting_mod(trans, ca, new->data_type,
1, new_sectors, bch2_bucket_sectors_fragmented(ca, *new), flags));
try(bch2_dev_data_type_accounting_mod(trans, ca, old->data_type,
-1, -old_sectors, -bch2_bucket_sectors_fragmented(ca, *old), flags));
} else if (old_sectors != new_sectors) {
try(bch2_dev_data_type_accounting_mod(trans, ca, new->data_type,
0,
new_sectors - old_sectors,
bch2_bucket_sectors_fragmented(ca, *new) -
bch2_bucket_sectors_fragmented(ca, *old), flags));
}
s64 old_unstriped = bch2_bucket_sectors_unstriped(*old);
s64 new_unstriped = bch2_bucket_sectors_unstriped(*new);
if (old_unstriped != new_unstriped) {
try(bch2_dev_data_type_accounting_mod(trans, ca, BCH_DATA_unstriped,
!!new_unstriped - !!old_unstriped,
new_unstriped - old_unstriped,
0,
flags));
}
return 0;
}
static noinline int inval_bucket_key(struct btree_trans *trans, struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
CLASS(printbuf, buf)();
bch2_fs_inconsistent(c, "reference to invalid bucket\n%s",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf));
return bch_err_throw(c, trigger_alloc);
}
int bch2_trigger_alloc(struct btree_trans *trans,
enum btree_id btree, unsigned level,
struct bkey_s_c old, struct bkey_s new,
enum btree_iter_update_trigger_flags flags)
{
struct bch_fs *c = trans->c;
int ret = 0;
CLASS(bch2_dev_bucket_tryget, ca)(c, new.k->p);
if (!ca)
return bch_err_throw(c, trigger_alloc);
struct bch_alloc_v4 old_a_convert;
const struct bch_alloc_v4 *old_a = bch2_alloc_to_v4(old, &old_a_convert);
struct bch_alloc_v4 *new_a;
if (likely(new.k->type == KEY_TYPE_alloc_v4)) {
new_a = bkey_s_to_alloc_v4(new).v;
} else {
BUG_ON(!(flags & (BTREE_TRIGGER_gc|BTREE_TRIGGER_check_repair)));
struct bkey_i_alloc_v4 *new_ka =
errptr_try(bch2_alloc_to_v4_mut_inlined(trans, new.s_c));
new_a = &new_ka->v;
}
if (flags & BTREE_TRIGGER_transactional) {
alloc_data_type_set(new_a, new_a->data_type);
int is_empty_delta = (int) data_type_is_empty(new_a->data_type) -
(int) data_type_is_empty(old_a->data_type);
if (is_empty_delta < 0) {
new_a->io_time[READ] = bch2_current_io_time(c, READ);
new_a->io_time[WRITE]= bch2_current_io_time(c, WRITE);
SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, true);
SET_BCH_ALLOC_V4_NEED_DISCARD(new_a, true);
}
if (data_type_is_empty(new_a->data_type) &&
BCH_ALLOC_V4_NEED_INC_GEN(new_a) &&
!bch2_bucket_is_open_safe(c, new.k->p.inode, new.k->p.offset)) {
if (new_a->oldest_gen == new_a->gen &&
!bch2_bucket_sectors_total(*new_a))
new_a->oldest_gen++;
new_a->gen++;
SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, false);
alloc_data_type_set(new_a, new_a->data_type);
}
if (old_a->data_type != new_a->data_type ||
(new_a->data_type == BCH_DATA_free &&
alloc_freespace_genbits(*old_a) != alloc_freespace_genbits(*new_a))) {
try(bch2_bucket_do_index(trans, ca, old, old_a, false));
try(bch2_bucket_do_index(trans, ca, new.s_c, new_a, true));
}
if (new_a->data_type == BCH_DATA_cached &&
!new_a->io_time[READ])
new_a->io_time[READ] = bch2_current_io_time(c, READ);
try(bch2_lru_change(trans, new.k->p.inode,
bucket_to_u64(new.k->p),
alloc_lru_idx_read(*old_a),
alloc_lru_idx_read(*new_a)));
try(bch2_lru_change(trans,
BCH_LRU_BUCKET_FRAGMENTATION,
bucket_to_u64(new.k->p),
alloc_lru_idx_fragmentation(*old_a, ca),
alloc_lru_idx_fragmentation(*new_a, ca)));
if (old_a->gen != new_a->gen)
try(bch2_bucket_gen_update(trans, new.k->p, new_a->gen));
try(bch2_alloc_key_to_dev_counters(trans, ca, old_a, new_a, flags));
}
if ((flags & BTREE_TRIGGER_atomic) && (flags & BTREE_TRIGGER_insert)) {
u64 transaction_seq = trans->journal_res.seq;
BUG_ON(!transaction_seq);
CLASS(printbuf, buf)();
if (log_fsck_err_on(transaction_seq && new_a->journal_seq_nonempty > transaction_seq,
trans, alloc_key_journal_seq_in_future,
"bucket journal seq in future (currently at %llu)\n%s",
journal_cur_seq(&c->journal),
(bch2_bkey_val_to_text(&buf, c, new.s_c), buf.buf)))
new_a->journal_seq_nonempty = transaction_seq;
int is_empty_delta = (int) data_type_is_empty(new_a->data_type) -
(int) data_type_is_empty(old_a->data_type);
/*
* Record journal sequence number of empty -> nonempty transition:
* Note that there may be multiple empty -> nonempty
* transitions, data in a bucket may be overwritten while we're
* still writing to it - so be careful to only record the first:
* */
if (is_empty_delta < 0 &&
new_a->journal_seq_empty <= c->journal.flushed_seq_ondisk) {
new_a->journal_seq_nonempty = transaction_seq;
new_a->journal_seq_empty = 0;
}
/*
* Bucket becomes empty: mark it as waiting for a journal flush,
* unless updates since empty -> nonempty transition were never
* flushed - we may need to ask the journal not to flush
* intermediate sequence numbers:
*/
if (is_empty_delta > 0) {
if (new_a->journal_seq_nonempty == transaction_seq ||
bch2_journal_noflush_seq(&c->journal,
new_a->journal_seq_nonempty,
transaction_seq)) {
new_a->journal_seq_nonempty = new_a->journal_seq_empty = 0;
} else {
new_a->journal_seq_empty = transaction_seq;
ret = bch2_set_bucket_needs_journal_commit(&c->buckets_waiting_for_journal,
c->journal.flushed_seq_ondisk,
new.k->p.inode, new.k->p.offset,
transaction_seq);
if (bch2_fs_fatal_err_on(ret, c,
"setting bucket_needs_journal_commit: %s",
bch2_err_str(ret)))
return ret;
}
}
if (new_a->gen != old_a->gen) {
guard(rcu)();
u8 *gen = bucket_gen(ca, new.k->p.offset);
if (unlikely(!gen))
return inval_bucket_key(trans, new.s_c);
*gen = new_a->gen;
}
#define eval_state(_a, expr) ({ const struct bch_alloc_v4 *a = _a; expr; })
#define statechange(expr) !eval_state(old_a, expr) && eval_state(new_a, expr)
#define bucket_flushed(a) (a->journal_seq_empty <= c->journal.flushed_seq_ondisk)
if (statechange(a->data_type == BCH_DATA_free) &&
bucket_flushed(new_a))
closure_wake_up(&c->freelist_wait);
if (statechange(a->data_type == BCH_DATA_need_discard) &&
!bch2_bucket_is_open_safe(c, new.k->p.inode, new.k->p.offset) &&
bucket_flushed(new_a))
bch2_discard_one_bucket_fast(ca, new.k->p.offset);
if (statechange(a->data_type == BCH_DATA_cached) &&
!bch2_bucket_is_open(c, new.k->p.inode, new.k->p.offset) &&
should_invalidate_buckets(ca, bch2_dev_usage_read(ca)))
bch2_dev_do_invalidates(ca);
if (statechange(a->data_type == BCH_DATA_need_gc_gens))
bch2_gc_gens_async(c);
}
if ((flags & BTREE_TRIGGER_gc) && (flags & BTREE_TRIGGER_insert)) {
guard(rcu)();
struct bucket *g = gc_bucket(ca, new.k->p.offset);
if (unlikely(!g))
return inval_bucket_key(trans, new.s_c);
g->gen_valid = 1;
g->gen = new_a->gen;
}
fsck_err:
return ret;
}
static int discard_in_flight_add(struct bch_dev *ca, u64 bucket, bool in_progress)
{
struct bch_fs *c = ca->fs;
guard(mutex)(&ca->discard_buckets_in_flight_lock);
struct discard_in_flight *i =
darray_find_p(ca->discard_buckets_in_flight, i, i->bucket == bucket);
if (i)
return bch_err_throw(c, EEXIST_discard_in_flight_add);
return darray_push(&ca->discard_buckets_in_flight, ((struct discard_in_flight) {
.in_progress = in_progress,
.bucket = bucket,
}));
}
static void discard_in_flight_remove(struct bch_dev *ca, u64 bucket)
{
guard(mutex)(&ca->discard_buckets_in_flight_lock);
struct discard_in_flight *i =
darray_find_p(ca->discard_buckets_in_flight, i, i->bucket == bucket);
BUG_ON(!i || !i->in_progress);
darray_remove_item(&ca->discard_buckets_in_flight, i);
}
static int bch2_discard_one_bucket(struct btree_trans *trans,
struct bch_dev *ca,
struct btree_iter *need_discard_iter,
struct bpos *discard_pos_done,
struct discard_buckets_state *s,
bool fastpath)
{
struct bch_fs *c = trans->c;
struct bpos pos = need_discard_iter->pos;
bool discard_locked = false;
int ret = 0;
s->seen++;
if (bch2_bucket_is_open_safe(c, pos.inode, pos.offset)) {
s->open++;
return 0;
}
u64 seq_ready = bch2_bucket_journal_seq_ready(&c->buckets_waiting_for_journal,
pos.inode, pos.offset);
if (seq_ready > c->journal.flushed_seq_ondisk) {
if (seq_ready > c->journal.flushing_seq)
s->need_journal_commit++;
else
s->commit_in_flight++;
return 0;
}
CLASS(btree_iter, iter)(trans, BTREE_ID_alloc, need_discard_iter->pos, BTREE_ITER_cached);
struct bkey_s_c k = bkey_try(bch2_btree_iter_peek_slot(&iter));
struct bkey_i_alloc_v4 *a = errptr_try(bch2_alloc_to_v4_mut(trans, k));
if (a->v.data_type != BCH_DATA_need_discard) {
s->bad_data_type++;
if (need_discard_or_freespace_err(trans, k, true, true, true)) {
try(bch2_btree_bit_mod_iter(trans, need_discard_iter, false));
goto commit;
}
return 0;
}
if (!fastpath) {
if (discard_in_flight_add(ca, iter.pos.offset, true)) {
s->already_discarding++;
goto out;
}
discard_locked = true;
}
if (!bkey_eq(*discard_pos_done, iter.pos)) {
s->discarded++;
*discard_pos_done = iter.pos;
if (bch2_discard_opt_enabled(c, ca) && !c->opts.nochanges) {
/*
* This works without any other locks because this is the only
* thread that removes items from the need_discard tree
*/
bch2_trans_unlock_long(trans);
blkdev_issue_discard(ca->disk_sb.bdev,
k.k->p.offset * ca->mi.bucket_size,
ca->mi.bucket_size,
GFP_KERNEL);
ret = bch2_trans_relock_notrace(trans);
if (ret)
goto out;
}
}
SET_BCH_ALLOC_V4_NEED_DISCARD(&a->v, false);
alloc_data_type_set(&a->v, a->v.data_type);
ret = bch2_trans_update(trans, &iter, &a->k_i, 0);
if (ret)
goto out;
commit:
ret = bch2_trans_commit(trans, NULL, NULL,
BCH_WATERMARK_btree|
BCH_TRANS_COMMIT_no_check_rw|
BCH_TRANS_COMMIT_no_enospc);
if (ret)
goto out;
if (!fastpath)
count_event(c, bucket_discard);
else
count_event(c, bucket_discard_fast);
out:
fsck_err:
if (discard_locked)
discard_in_flight_remove(ca, iter.pos.offset);
return ret;
}
static void __bch2_dev_do_discards(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
struct discard_buckets_state s = {};
struct bpos discard_pos_done = POS_MAX;
int ret;
/*
* We're doing the commit in bch2_discard_one_bucket instead of using
* for_each_btree_key_commit() so that we can increment counters after
* successful commit:
*/
ret = bch2_trans_run(c,
for_each_btree_key_max(trans, iter,
BTREE_ID_need_discard,
POS(ca->dev_idx, 0),
POS(ca->dev_idx, U64_MAX), 0, k,
bch2_discard_one_bucket(trans, ca, &iter, &discard_pos_done, &s, false)));
if (s.need_journal_commit > dev_buckets_available(ca, BCH_WATERMARK_normal))
bch2_journal_flush_async(&c->journal, NULL);
trace_discard_buckets(c, &s, bch2_err_str(ret));
enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_dev_do_discards);
}
void bch2_do_discards_going_ro(struct bch_fs *c)
{
for_each_member_device(c, ca)
if (bch2_dev_get_ioref(c, ca->dev_idx, WRITE, BCH_DEV_WRITE_REF_dev_do_discards))
__bch2_dev_do_discards(ca);
}
static void bch2_do_discards_work(struct work_struct *work)
{
struct bch_dev *ca = container_of(work, struct bch_dev, discard_work);
struct bch_fs *c = ca->fs;
__bch2_dev_do_discards(ca);
enumerated_ref_put(&c->writes, BCH_WRITE_REF_discard);
}
void bch2_dev_do_discards(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_discard))
return;
if (!bch2_dev_get_ioref(c, ca->dev_idx, WRITE, BCH_DEV_WRITE_REF_dev_do_discards))
goto put_write_ref;
if (queue_work(c->write_ref_wq, &ca->discard_work))
return;
enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_dev_do_discards);
put_write_ref:
enumerated_ref_put(&c->writes, BCH_WRITE_REF_discard);
}
void bch2_do_discards(struct bch_fs *c)
{
for_each_member_device(c, ca)
bch2_dev_do_discards(ca);
}
static int bch2_do_discards_fast_one(struct btree_trans *trans,
struct bch_dev *ca,
u64 bucket,
struct bpos *discard_pos_done,
struct discard_buckets_state *s)
{
CLASS(btree_iter, need_discard_iter)(trans, BTREE_ID_need_discard, POS(ca->dev_idx, bucket), 0);
struct bkey_s_c discard_k = bkey_try(bch2_btree_iter_peek_slot(&need_discard_iter));
int ret = 0;
if (log_fsck_err_on(discard_k.k->type != KEY_TYPE_set,
trans, discarding_bucket_not_in_need_discard_btree,
"attempting to discard bucket %u:%llu not in need_discard btree",
ca->dev_idx, bucket))
return 0;
return bch2_discard_one_bucket(trans, ca, &need_discard_iter, discard_pos_done, s, true);
fsck_err:
return ret;
}
static void bch2_do_discards_fast_work(struct work_struct *work)
{
struct bch_dev *ca = container_of(work, struct bch_dev, discard_fast_work);
struct bch_fs *c = ca->fs;
struct discard_buckets_state s = {};
struct bpos discard_pos_done = POS_MAX;
struct btree_trans *trans = bch2_trans_get(c);
int ret = 0;
while (1) {
bool got_bucket = false;
u64 bucket;
scoped_guard(mutex, &ca->discard_buckets_in_flight_lock)
darray_for_each(ca->discard_buckets_in_flight, i) {
if (i->in_progress)
continue;
got_bucket = true;
bucket = i->bucket;
i->in_progress = true;
break;
}
if (!got_bucket)
break;
ret = lockrestart_do(trans,
bch2_do_discards_fast_one(trans, ca, bucket, &discard_pos_done, &s));
bch_err_fn(c, ret);
discard_in_flight_remove(ca, bucket);
if (ret)
break;
}
trace_discard_buckets_fast(c, &s, bch2_err_str(ret));
bch2_trans_put(trans);
enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_discard_one_bucket_fast);
enumerated_ref_put(&c->writes, BCH_WRITE_REF_discard_fast);
}
static void bch2_discard_one_bucket_fast(struct bch_dev *ca, u64 bucket)
{
struct bch_fs *c = ca->fs;
if (discard_in_flight_add(ca, bucket, false))
return;
if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_discard_fast))
return;
if (!bch2_dev_get_ioref(c, ca->dev_idx, WRITE, BCH_DEV_WRITE_REF_discard_one_bucket_fast))
goto put_ref;
if (queue_work(c->write_ref_wq, &ca->discard_fast_work))
return;
enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_discard_one_bucket_fast);
put_ref:
enumerated_ref_put(&c->writes, BCH_WRITE_REF_discard_fast);
}
static int invalidate_one_bp(struct btree_trans *trans,
struct bch_dev *ca,
struct bkey_s_c_backpointer bp,
struct wb_maybe_flush *last_flushed)
{
CLASS(btree_iter_uninit, iter)(trans);
struct bkey_s_c k = bkey_try(bch2_backpointer_get_key(trans, bp, &iter, 0, last_flushed));
if (!k.k)
return 0;
struct bkey_i *n = errptr_try(bch2_bkey_make_mut(trans, &iter, &k,
BTREE_UPDATE_internal_snapshot_node));
bch2_bkey_drop_device(trans->c, bkey_i_to_s(n), ca->dev_idx);
return 0;
}
static int invalidate_one_bucket_by_bps(struct btree_trans *trans,
struct bch_dev *ca,
struct bpos bucket,
u8 gen,
struct wb_maybe_flush *last_flushed)
{
struct bpos bp_start = bucket_pos_to_bp_start(ca, bucket);
struct bpos bp_end = bucket_pos_to_bp_end(ca, bucket);
return for_each_btree_key_max_commit(trans, iter, BTREE_ID_backpointers,
bp_start, bp_end, 0, k,
NULL, NULL,
BCH_WATERMARK_btree|
BCH_TRANS_COMMIT_no_enospc, ({
if (k.k->type != KEY_TYPE_backpointer)
continue;
struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(k);
if (bp.v->bucket_gen != gen)
continue;
/* filter out bps with gens that don't match */
invalidate_one_bp(trans, ca, bp, last_flushed);
}));
}
noinline_for_stack
static int invalidate_one_bucket(struct btree_trans *trans,
struct bch_dev *ca,
struct btree_iter *lru_iter,
struct bkey_s_c lru_k,
struct wb_maybe_flush *last_flushed,
s64 *nr_to_invalidate)
{
struct bch_fs *c = trans->c;
CLASS(printbuf, buf)();
struct bpos bucket = u64_to_bucket(lru_k.k->p.offset);
if (*nr_to_invalidate <= 0)
return 1;
if (!bch2_dev_bucket_exists(c, bucket)) {
if (ret_fsck_err(trans, lru_entry_to_invalid_bucket,
"lru key points to nonexistent device:bucket %llu:%llu",
bucket.inode, bucket.offset))
return bch2_btree_bit_mod_buffered(trans, BTREE_ID_lru, lru_iter->pos, false);
return 0;
}
if (bch2_bucket_is_open_safe(c, bucket.inode, bucket.offset))
return 0;
{
CLASS(btree_iter, alloc_iter)(trans, BTREE_ID_alloc, bucket, BTREE_ITER_cached);
struct bkey_s_c alloc_k = bkey_try(bch2_btree_iter_peek_slot(&alloc_iter));
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(alloc_k, &a_convert);
/* We expect harmless races here due to the btree write buffer: */
if (lru_pos_time(lru_iter->pos) != alloc_lru_idx_read(*a))
return 0;
/*
* Impossible since alloc_lru_idx_read() only returns nonzero if the
* bucket is supposed to be on the cached bucket LRU (i.e.
* BCH_DATA_cached)
*
* bch2_lru_validate() also disallows lru keys with lru_pos_time() == 0
*/
BUG_ON(a->data_type != BCH_DATA_cached);
BUG_ON(a->dirty_sectors);
if (!a->cached_sectors) {
bch2_check_bucket_backpointer_mismatch(trans, ca, bucket.offset,
true, last_flushed);
return 0;
}
unsigned cached_sectors = a->cached_sectors;
u8 gen = a->gen;
try(invalidate_one_bucket_by_bps(trans, ca, bucket, gen, last_flushed));
trace_and_count(c, bucket_invalidate, c, bucket.inode, bucket.offset, cached_sectors);
--*nr_to_invalidate;
}
return 0;
}
static struct bkey_s_c next_lru_key(struct btree_trans *trans, struct btree_iter *iter,
struct bch_dev *ca, bool *wrapped)
{
while (true) {
struct bkey_s_c k = bch2_btree_iter_peek_max(iter, lru_pos(ca->dev_idx, U64_MAX, LRU_TIME_MAX));
if (k.k || *wrapped)
return k;
bch2_btree_iter_set_pos(iter, lru_pos(ca->dev_idx, 0, 0));
*wrapped = true;
}
}
static void __bch2_do_invalidates(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
CLASS(btree_trans, trans)(c);
struct wb_maybe_flush last_flushed __cleanup(wb_maybe_flush_exit);
wb_maybe_flush_init(&last_flushed);
bch2_btree_write_buffer_tryflush(trans);
s64 nr_to_invalidate =
should_invalidate_buckets(ca, bch2_dev_usage_read(ca));
bool wrapped = false;
CLASS(btree_iter, iter)(trans, BTREE_ID_lru,
lru_pos(ca->dev_idx, 0,
((bch2_current_io_time(c, READ) + U32_MAX) &
LRU_TIME_MAX)), 0);
while (true) {
bch2_trans_begin(trans);
struct bkey_s_c k = next_lru_key(trans, &iter, ca, &wrapped);
int ret = bkey_err(k);
if (ret)
goto restart_err;
if (!k.k)
break;
ret = invalidate_one_bucket(trans, ca, &iter, k, &last_flushed, &nr_to_invalidate);
restart_err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
wb_maybe_flush_inc(&last_flushed);
bch2_btree_iter_advance(&iter);
}
}
static void bch2_do_invalidates_work(struct work_struct *work)
{
struct bch_dev *ca = container_of(work, struct bch_dev, invalidate_work);
struct bch_fs *c = ca->fs;
__bch2_do_invalidates(ca);
enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_do_invalidates);
enumerated_ref_put(&c->writes, BCH_WRITE_REF_invalidate);
}
void bch2_dev_do_invalidates(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_invalidate))
return;
if (!bch2_dev_get_ioref(c, ca->dev_idx, WRITE, BCH_DEV_WRITE_REF_do_invalidates))
goto put_ref;
if (queue_work(c->write_ref_wq, &ca->invalidate_work))
return;
enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_do_invalidates);
put_ref:
enumerated_ref_put(&c->writes, BCH_WRITE_REF_invalidate);
}
void bch2_do_invalidates(struct bch_fs *c)
{
for_each_member_device(c, ca)
bch2_dev_do_invalidates(ca);
}
/* device removal */
int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
{
struct bpos start = POS(ca->dev_idx, 0);
struct bpos end = POS(ca->dev_idx, U64_MAX);
int ret;
/*
* We clear the LRU and need_discard btrees first so that we don't race
* with bch2_do_invalidates() and bch2_do_discards()
*/
ret = bch2_dev_remove_lrus(c, ca) ?:
bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
BTREE_TRIGGER_norun) ?:
bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
BTREE_TRIGGER_norun) ?:
bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
BTREE_TRIGGER_norun) ?:
bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
BTREE_TRIGGER_norun) ?:
bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
BTREE_TRIGGER_norun) ?:
bch2_dev_usage_remove(c, ca);
bch_err_msg(ca, ret, "removing dev alloc info");
return ret;
}
/* Bucket IO clocks: */
static int __bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
size_t bucket_nr, int rw)
{
CLASS(btree_iter_uninit, iter)(trans);
struct bkey_i_alloc_v4 *a =
errptr_try(bch2_trans_start_alloc_update_noupdate(trans, &iter, POS(dev, bucket_nr)));
u64 now = bch2_current_io_time(trans->c, rw);
if (a->v.io_time[rw] == now)
return 0;
a->v.io_time[rw] = now;
try(bch2_trans_update(trans, &iter, &a->k_i, 0));
try(bch2_trans_commit(trans, NULL, NULL, 0));
return 0;
}
int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
size_t bucket_nr, int rw)
{
if (bch2_trans_relock(trans))
bch2_trans_begin(trans);
return nested_lockrestart_do(trans, __bch2_bucket_io_time_reset(trans, dev, bucket_nr, rw));
}
/* Startup/shutdown (ro/rw): */
void bch2_recalc_capacity(struct bch_fs *c)
{
u64 capacity = 0, reserved_sectors = 0, gc_reserve;
unsigned bucket_size_max = 0;
unsigned long ra_pages = 0;
lockdep_assert_held(&c->state_lock);
guard(rcu)();
for_each_member_device_rcu(c, ca, NULL) {
struct block_device *bdev = READ_ONCE(ca->disk_sb.bdev);
if (bdev)
ra_pages += bdev->bd_disk->bdi->ra_pages;
if (ca->mi.state != BCH_MEMBER_STATE_rw)
continue;
u64 dev_reserve = 0;
/*
* We need to reserve buckets (from the number
* of currently available buckets) against
* foreground writes so that mainly copygc can
* make forward progress.
*
* We need enough to refill the various reserves
* from scratch - copygc will use its entire
* reserve all at once, then run against when
* its reserve is refilled (from the formerly
* available buckets).
*
* This reserve is just used when considering if
* allocations for foreground writes must wait -
* not -ENOSPC calculations.
*/
dev_reserve += ca->nr_btree_reserve * 2;
dev_reserve += ca->mi.nbuckets >> 6; /* copygc reserve */
dev_reserve += 1; /* btree write point */
dev_reserve += 1; /* copygc write point */
dev_reserve += 1; /* rebalance write point */
dev_reserve *= ca->mi.bucket_size;
capacity += bucket_to_sector(ca, ca->mi.nbuckets -
ca->mi.first_bucket);
reserved_sectors += dev_reserve * 2;
bucket_size_max = max_t(unsigned, bucket_size_max,
ca->mi.bucket_size);
}
bch2_set_ra_pages(c, ra_pages);
gc_reserve = c->opts.gc_reserve_bytes
? c->opts.gc_reserve_bytes >> 9
: div64_u64(capacity * c->opts.gc_reserve_percent, 100);
reserved_sectors = max(gc_reserve, reserved_sectors);
reserved_sectors = min(reserved_sectors, capacity);
c->reserved = reserved_sectors;
c->capacity = capacity - reserved_sectors;
c->bucket_size_max = bucket_size_max;
/* Wake up case someone was waiting for buckets */
closure_wake_up(&c->freelist_wait);
}
u64 bch2_min_rw_member_capacity(struct bch_fs *c)
{
u64 ret = U64_MAX;
guard(rcu)();
for_each_rw_member_rcu(c, ca)
ret = min(ret, ca->mi.nbuckets * ca->mi.bucket_size);
return ret;
}
static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
{
struct open_bucket *ob;
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
scoped_guard(spinlock, &ob->lock) {
if (ob->valid && !ob->on_partial_list &&
ob->dev == ca->dev_idx)
return true;
}
}
return false;
}
void bch2_dev_allocator_set_rw(struct bch_fs *c, struct bch_dev *ca, bool rw)
{
/* BCH_DATA_free == all rw devs */
for (unsigned i = 0; i < ARRAY_SIZE(c->rw_devs); i++) {
bool data_type_rw = rw;
if (i != BCH_DATA_free &&
!(ca->mi.data_allowed & BIT(i)))
data_type_rw = false;
if ((i == BCH_DATA_journal ||
i == BCH_DATA_btree) &&
!ca->mi.durability)
data_type_rw = false;
mod_bit(ca->dev_idx, c->rw_devs[i].d, data_type_rw);
}
c->rw_devs_change_count++;
}
/* device goes ro: */
void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
/* First, remove device from allocation groups: */
bch2_dev_allocator_set_rw(c, ca, false);
/*
* Capacity is calculated based off of devices in allocation groups:
*/
bch2_recalc_capacity(c);
bch2_open_buckets_stop(c, ca, false);
/*
* Wake up threads that were blocked on allocation, so they can notice
* the device can no longer be removed and the capacity has changed:
*/
closure_wake_up(&c->freelist_wait);
/*
* journal_res_get() can block waiting for free space in the journal -
* it needs to notice there may not be devices to allocate from anymore:
*/
wake_up(&c->journal.wait);
/* Now wait for any in flight writes: */
closure_wait_event(&c->open_buckets_wait,
!bch2_dev_has_open_write_point(c, ca));
}
/* device goes rw: */
void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
bch2_dev_allocator_set_rw(c, ca, true);
c->rw_devs_change_count++;
}
void bch2_dev_allocator_background_exit(struct bch_dev *ca)
{
darray_exit(&ca->discard_buckets_in_flight);
}
void bch2_dev_allocator_background_init(struct bch_dev *ca)
{
mutex_init(&ca->discard_buckets_in_flight_lock);
INIT_WORK(&ca->discard_work, bch2_do_discards_work);
INIT_WORK(&ca->discard_fast_work, bch2_do_discards_fast_work);
INIT_WORK(&ca->invalidate_work, bch2_do_invalidates_work);
}
void bch2_fs_allocator_background_init(struct bch_fs *c)
{
spin_lock_init(&c->freelist_lock);
}