mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-01-23 00:07:07 +03:00
a104f0407b
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
131 lines
3.3 KiB
C
131 lines
3.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Helpers for formatting and printing strings
|
|
*
|
|
* Copyright 31 August 2008 James Bottomley
|
|
* Copyright (C) 2013, Intel Corporation
|
|
*/
|
|
#include <linux/bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/export.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/device.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/string_helpers.h>
|
|
|
|
/**
|
|
* string_get_size - get the size in the specified units
|
|
* @size: The size to be converted in blocks
|
|
* @blk_size: Size of the block (use 1 for size in bytes)
|
|
* @units: units to use (powers of 1000 or 1024)
|
|
* @buf: buffer to format to
|
|
* @len: length of buffer
|
|
*
|
|
* This function returns a string formatted to 3 significant figures
|
|
* giving the size in the required units. @buf should have room for
|
|
* at least 9 bytes and will always be zero terminated.
|
|
*
|
|
*/
|
|
int string_get_size(u64 size, u64 blk_size, const enum string_size_units units,
|
|
char *buf, int len)
|
|
{
|
|
static const char *const units_10[] = {
|
|
"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
|
|
};
|
|
static const char *const units_2[] = {
|
|
"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
|
|
};
|
|
static const char *const *const units_str[] = {
|
|
[STRING_UNITS_10] = units_10,
|
|
[STRING_UNITS_2] = units_2,
|
|
};
|
|
static const unsigned int divisor[] = {
|
|
[STRING_UNITS_10] = 1000,
|
|
[STRING_UNITS_2] = 1024,
|
|
};
|
|
static const unsigned int rounding[] = { 500, 50, 5 };
|
|
int i = 0, j;
|
|
u32 remainder = 0, sf_cap;
|
|
char tmp[12];
|
|
const char *unit;
|
|
|
|
tmp[0] = '\0';
|
|
|
|
if (blk_size == 0)
|
|
size = 0;
|
|
if (size == 0)
|
|
goto out;
|
|
|
|
/* This is Napier's algorithm. Reduce the original block size to
|
|
*
|
|
* coefficient * divisor[units]^i
|
|
*
|
|
* we do the reduction so both coefficients are just under 32 bits so
|
|
* that multiplying them together won't overflow 64 bits and we keep
|
|
* as much precision as possible in the numbers.
|
|
*
|
|
* Note: it's safe to throw away the remainders here because all the
|
|
* precision is in the coefficients.
|
|
*/
|
|
while (blk_size >> 32) {
|
|
do_div(blk_size, divisor[units]);
|
|
i++;
|
|
}
|
|
|
|
while (size >> 32) {
|
|
do_div(size, divisor[units]);
|
|
i++;
|
|
}
|
|
|
|
/* now perform the actual multiplication keeping i as the sum of the
|
|
* two logarithms */
|
|
size *= blk_size;
|
|
|
|
/* and logarithmically reduce it until it's just under the divisor */
|
|
while (size >= divisor[units]) {
|
|
remainder = do_div(size, divisor[units]);
|
|
i++;
|
|
}
|
|
|
|
/* work out in j how many digits of precision we need from the
|
|
* remainder */
|
|
sf_cap = size;
|
|
for (j = 0; sf_cap*10 < 1000; j++)
|
|
sf_cap *= 10;
|
|
|
|
if (units == STRING_UNITS_2) {
|
|
/* express the remainder as a decimal. It's currently the
|
|
* numerator of a fraction whose denominator is
|
|
* divisor[units], which is 1 << 10 for STRING_UNITS_2 */
|
|
remainder *= 1000;
|
|
remainder >>= 10;
|
|
}
|
|
|
|
/* add a 5 to the digit below what will be printed to ensure
|
|
* an arithmetical round up and carry it through to size */
|
|
remainder += rounding[j];
|
|
if (remainder >= 1000) {
|
|
remainder -= 1000;
|
|
size += 1;
|
|
}
|
|
|
|
if (j) {
|
|
snprintf(tmp, sizeof(tmp), ".%03u", remainder);
|
|
tmp[j+1] = '\0';
|
|
}
|
|
|
|
out:
|
|
if (i >= ARRAY_SIZE(units_2))
|
|
unit = "UNK";
|
|
else
|
|
unit = units_str[units][i];
|
|
|
|
return snprintf(buf, len, "%u%s %s", (u32)size, tmp, unit);
|
|
}
|
|
EXPORT_SYMBOL(string_get_size);
|