bcachefs-tools/linux/string_helpers.c
2023-02-09 18:36:24 -05:00

131 lines
3.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Helpers for formatting and printing strings
*
* Copyright 31 August 2008 James Bottomley
* Copyright (C) 2013, Intel Corporation
*/
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/export.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/limits.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/string_helpers.h>
/**
* string_get_size - get the size in the specified units
* @size: The size to be converted in blocks
* @blk_size: Size of the block (use 1 for size in bytes)
* @units: units to use (powers of 1000 or 1024)
* @buf: buffer to format to
* @len: length of buffer
*
* This function returns a string formatted to 3 significant figures
* giving the size in the required units. @buf should have room for
* at least 9 bytes and will always be zero terminated.
*
*/
int string_get_size(u64 size, u64 blk_size, const enum string_size_units units,
char *buf, int len)
{
static const char *const units_10[] = {
"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
};
static const char *const units_2[] = {
"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
};
static const char *const *const units_str[] = {
[STRING_UNITS_10] = units_10,
[STRING_UNITS_2] = units_2,
};
static const unsigned int divisor[] = {
[STRING_UNITS_10] = 1000,
[STRING_UNITS_2] = 1024,
};
static const unsigned int rounding[] = { 500, 50, 5 };
int i = 0, j;
u32 remainder = 0, sf_cap;
char tmp[12];
const char *unit;
tmp[0] = '\0';
if (blk_size == 0)
size = 0;
if (size == 0)
goto out;
/* This is Napier's algorithm. Reduce the original block size to
*
* coefficient * divisor[units]^i
*
* we do the reduction so both coefficients are just under 32 bits so
* that multiplying them together won't overflow 64 bits and we keep
* as much precision as possible in the numbers.
*
* Note: it's safe to throw away the remainders here because all the
* precision is in the coefficients.
*/
while (blk_size >> 32) {
do_div(blk_size, divisor[units]);
i++;
}
while (size >> 32) {
do_div(size, divisor[units]);
i++;
}
/* now perform the actual multiplication keeping i as the sum of the
* two logarithms */
size *= blk_size;
/* and logarithmically reduce it until it's just under the divisor */
while (size >= divisor[units]) {
remainder = do_div(size, divisor[units]);
i++;
}
/* work out in j how many digits of precision we need from the
* remainder */
sf_cap = size;
for (j = 0; sf_cap*10 < 1000; j++)
sf_cap *= 10;
if (units == STRING_UNITS_2) {
/* express the remainder as a decimal. It's currently the
* numerator of a fraction whose denominator is
* divisor[units], which is 1 << 10 for STRING_UNITS_2 */
remainder *= 1000;
remainder >>= 10;
}
/* add a 5 to the digit below what will be printed to ensure
* an arithmetical round up and carry it through to size */
remainder += rounding[j];
if (remainder >= 1000) {
remainder -= 1000;
size += 1;
}
if (j) {
snprintf(tmp, sizeof(tmp), ".%03u", remainder);
tmp[j+1] = '\0';
}
out:
if (i >= ARRAY_SIZE(units_2))
unit = "UNK";
else
unit = units_str[units][i];
return snprintf(buf, len, "%u%s %s", (u32)size, tmp, unit);
}
EXPORT_SYMBOL(string_get_size);