bcachefs-tools/linux/printbuf.c

358 lines
8.4 KiB
C

// SPDX-License-Identifier: LGPL-2.1+
/* Copyright (C) 2022 Kent Overstreet */
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/printbuf.h>
#include <linux/slab.h>
#ifdef __KERNEL__
#include <linux/export.h>
#include <linux/kernel.h>
#else
#ifndef EXPORT_SYMBOL
#define EXPORT_SYMBOL(x)
#endif
#endif
static inline size_t printbuf_linelen(struct printbuf *buf)
{
return buf->pos - buf->last_newline;
}
int printbuf_make_room(struct printbuf *out, unsigned extra)
{
unsigned new_size;
char *buf;
if (!out->heap_allocated)
return 0;
/* Reserved space for terminating nul: */
extra += 1;
if (out->pos + extra < out->size)
return 0;
new_size = roundup_pow_of_two(out->size + extra);
buf = krealloc(out->buf, new_size, !out->atomic ? GFP_KERNEL : GFP_NOWAIT);
if (!buf) {
out->allocation_failure = true;
return -ENOMEM;
}
out->buf = buf;
out->size = new_size;
return 0;
}
EXPORT_SYMBOL(printbuf_make_room);
/**
* printbuf_str - returns printbuf's buf as a C string, guaranteed to be null
* terminated
*/
const char *printbuf_str(const struct printbuf *buf)
{
/*
* If we've written to a printbuf then it's guaranteed to be a null
* terminated string - but if we haven't, then we might not have
* allocated a buffer at all:
*/
return buf->pos
? buf->buf
: "";
}
EXPORT_SYMBOL(printbuf_str);
/**
* printbuf_exit - exit a printbuf, freeing memory it owns and poisoning it
* against accidental use.
*/
void printbuf_exit(struct printbuf *buf)
{
if (buf->heap_allocated) {
kfree(buf->buf);
buf->buf = ERR_PTR(-EINTR); /* poison value */
}
}
EXPORT_SYMBOL(printbuf_exit);
void prt_newline(struct printbuf *buf)
{
unsigned i;
printbuf_make_room(buf, 1 + buf->indent);
__prt_char(buf, '\n');
buf->last_newline = buf->pos;
for (i = 0; i < buf->indent; i++)
__prt_char(buf, ' ');
printbuf_nul_terminate(buf);
buf->last_field = buf->pos;
buf->tabstop = 0;
}
EXPORT_SYMBOL(prt_newline);
/**
* printbuf_indent_add - add to the current indent level
*
* @buf: printbuf to control
* @spaces: number of spaces to add to the current indent level
*
* Subsequent lines, and the current line if the output position is at the start
* of the current line, will be indented by @spaces more spaces.
*/
void printbuf_indent_add(struct printbuf *buf, unsigned spaces)
{
if (WARN_ON_ONCE(buf->indent + spaces < buf->indent))
spaces = 0;
buf->indent += spaces;
while (spaces--)
prt_char(buf, ' ');
}
EXPORT_SYMBOL(printbuf_indent_add);
/**
* printbuf_indent_sub - subtract from the current indent level
*
* @buf: printbuf to control
* @spaces: number of spaces to subtract from the current indent level
*
* Subsequent lines, and the current line if the output position is at the start
* of the current line, will be indented by @spaces less spaces.
*/
void printbuf_indent_sub(struct printbuf *buf, unsigned spaces)
{
if (WARN_ON_ONCE(spaces > buf->indent))
spaces = buf->indent;
if (buf->last_newline + buf->indent == buf->pos) {
buf->pos -= spaces;
printbuf_nul_terminate(buf);
}
buf->indent -= spaces;
}
EXPORT_SYMBOL(printbuf_indent_sub);
/**
* prt_tab - Advance printbuf to the next tabstop
*
* @buf: printbuf to control
*
* Advance output to the next tabstop by printing spaces.
*/
void prt_tab(struct printbuf *out)
{
int spaces = max_t(int, 0, out->tabstops[out->tabstop] - printbuf_linelen(out));
BUG_ON(out->tabstop > ARRAY_SIZE(out->tabstops));
prt_chars(out, ' ', spaces);
out->last_field = out->pos;
out->tabstop++;
}
EXPORT_SYMBOL(prt_tab);
/**
* prt_tab_rjust - Advance printbuf to the next tabstop, right justifying
* previous output
*
* @buf: printbuf to control
*
* Advance output to the next tabstop by inserting spaces immediately after the
* previous tabstop, right justifying previously outputted text.
*/
void prt_tab_rjust(struct printbuf *buf)
{
BUG_ON(buf->tabstop > ARRAY_SIZE(buf->tabstops));
if (printbuf_linelen(buf) < buf->tabstops[buf->tabstop]) {
unsigned move = buf->pos - buf->last_field;
unsigned shift = buf->tabstops[buf->tabstop] -
printbuf_linelen(buf);
printbuf_make_room(buf, shift);
if (buf->last_field + shift < buf->size)
memmove(buf->buf + buf->last_field + shift,
buf->buf + buf->last_field,
min(move, buf->size - 1 - buf->last_field - shift));
if (buf->last_field < buf->size)
memset(buf->buf + buf->last_field, ' ',
min(shift, buf->size - buf->last_field));
buf->pos += shift;
printbuf_nul_terminate(buf);
}
buf->last_field = buf->pos;
buf->tabstop++;
}
EXPORT_SYMBOL(prt_tab_rjust);
enum string_size_units {
STRING_UNITS_10, /* use powers of 10^3 (standard SI) */
STRING_UNITS_2, /* use binary powers of 2^10 */
};
static int string_get_size(u64 size, u64 blk_size,
const enum string_size_units units,
char *buf, int len)
{
static const char *const units_10[] = {
"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
};
static const char *const units_2[] = {
"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
};
static const char *const *const units_str[] = {
[STRING_UNITS_10] = units_10,
[STRING_UNITS_2] = units_2,
};
static const unsigned int divisor[] = {
[STRING_UNITS_10] = 1000,
[STRING_UNITS_2] = 1024,
};
static const unsigned int rounding[] = { 500, 50, 5 };
int i = 0, j;
u32 remainder = 0, sf_cap;
char tmp[13];
const char *unit;
tmp[0] = '\0';
if (blk_size == 0)
size = 0;
if (size == 0)
goto out;
/* This is Napier's algorithm. Reduce the original block size to
*
* coefficient * divisor[units]^i
*
* we do the reduction so both coefficients are just under 32 bits so
* that multiplying them together won't overflow 64 bits and we keep
* as much precision as possible in the numbers.
*
* Note: it's safe to throw away the remainders here because all the
* precision is in the coefficients.
*/
while (blk_size >> 32) {
do_div(blk_size, divisor[units]);
i++;
}
while (size >> 32) {
do_div(size, divisor[units]);
i++;
}
/* now perform the actual multiplication keeping i as the sum of the
* two logarithms */
size *= blk_size;
/* and logarithmically reduce it until it's just under the divisor */
while (size >= divisor[units]) {
remainder = do_div(size, divisor[units]);
i++;
}
/* work out in j how many digits of precision we need from the
* remainder */
sf_cap = size;
for (j = 0; sf_cap*10 < 1000; j++)
sf_cap *= 10;
if (units == STRING_UNITS_2) {
/* express the remainder as a decimal. It's currently the
* numerator of a fraction whose denominator is
* divisor[units], which is 1 << 10 for STRING_UNITS_2 */
remainder *= 1000;
remainder >>= 10;
}
/* add a 5 to the digit below what will be printed to ensure
* an arithmetical round up and carry it through to size */
remainder += rounding[j];
if (remainder >= 1000) {
remainder -= 1000;
size += 1;
}
if (j) {
snprintf(tmp, sizeof(tmp), ".%03u", remainder);
tmp[j+1] = '\0';
}
out:
if (i >= ARRAY_SIZE(units_2))
unit = "UNK";
else
unit = units_str[units][i];
return snprintf(buf, len, "%u%s %s", (u32)size, tmp, unit);
}
/**
* prt_human_readable_u64 - Print out a u64 in human readable units
*
* Units of 2^10 (default) or 10^3 are controlled via @buf->si_units
*/
void prt_human_readable_u64(struct printbuf *buf, u64 v)
{
printbuf_make_room(buf, 10);
buf->pos += string_get_size(v, 1, !buf->si_units,
buf->buf + buf->pos,
printbuf_remaining_size(buf));
}
EXPORT_SYMBOL(prt_human_readable_u64);
/**
* prt_human_readable_s64 - Print out a s64 in human readable units
*
* Units of 2^10 (default) or 10^3 are controlled via @buf->si_units
*/
void prt_human_readable_s64(struct printbuf *buf, s64 v)
{
if (v < 0)
prt_char(buf, '-');
prt_human_readable_u64(buf, abs(v));
}
EXPORT_SYMBOL(prt_human_readable_s64);
/**
* prt_units_u64 - Print out a u64 according to printbuf unit options
*
* Units are either raw (default), or human reabable units (controlled via
* @buf->human_readable_units)
*/
void prt_units_u64(struct printbuf *out, u64 v)
{
if (out->human_readable_units)
prt_human_readable_u64(out, v);
else
prt_printf(out, "%llu", v);
}
EXPORT_SYMBOL(prt_units_u64);
/**
* prt_units_s64 - Print out a s64 according to printbuf unit options
*
* Units are either raw (default), or human reabable units (controlled via
* @buf->human_readable_units)
*/
void prt_units_s64(struct printbuf *out, s64 v)
{
if (v < 0)
prt_char(out, '-');
prt_units_u64(out, abs(v));
}
EXPORT_SYMBOL(prt_units_s64);