bcachefs-tools/libbcache/btree_update.c
2017-02-28 03:05:38 -09:00

2345 lines
60 KiB
C

#include "bcache.h"
#include "alloc.h"
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "extents.h"
#include "journal.h"
#include "keylist.h"
#include "super-io.h"
#include <linux/random.h>
#include <linux/sort.h>
#include <trace/events/bcache.h>
static void btree_interior_update_updated_root(struct cache_set *,
struct btree_interior_update *,
enum btree_id);
/* Calculate ideal packed bkey format for new btree nodes: */
void __bch_btree_calc_format(struct bkey_format_state *s, struct btree *b)
{
struct bkey_packed *k;
struct bset_tree *t;
struct bkey uk;
bch_bkey_format_add_pos(s, b->data->min_key);
for_each_bset(b, t)
for (k = btree_bkey_first(b, t);
k != btree_bkey_last(b, t);
k = bkey_next(k))
if (!bkey_whiteout(k)) {
uk = bkey_unpack_key(b, k);
bch_bkey_format_add_key(s, &uk);
}
}
static struct bkey_format bch_btree_calc_format(struct btree *b)
{
struct bkey_format_state s;
bch_bkey_format_init(&s);
__bch_btree_calc_format(&s, b);
return bch_bkey_format_done(&s);
}
static size_t btree_node_u64s_with_format(struct btree *b,
struct bkey_format *new_f)
{
struct bkey_format *old_f = &b->format;
/* stupid integer promotion rules */
ssize_t delta =
(((int) new_f->key_u64s - old_f->key_u64s) *
(int) b->nr.packed_keys) +
(((int) new_f->key_u64s - BKEY_U64s) *
(int) b->nr.unpacked_keys);
BUG_ON(delta + b->nr.live_u64s < 0);
return b->nr.live_u64s + delta;
}
/**
* btree_node_format_fits - check if we could rewrite node with a new format
*
* This assumes all keys can pack with the new format -- it just checks if
* the re-packed keys would fit inside the node itself.
*/
bool bch_btree_node_format_fits(struct cache_set *c, struct btree *b,
struct bkey_format *new_f)
{
size_t u64s = btree_node_u64s_with_format(b, new_f);
return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
}
/* Btree node freeing/allocation: */
/*
* We're doing the index update that makes @b unreachable, update stuff to
* reflect that:
*
* Must be called _before_ btree_interior_update_updated_root() or
* btree_interior_update_updated_btree:
*/
static void bch_btree_node_free_index(struct cache_set *c, struct btree *b,
enum btree_id id, struct bkey_s_c k,
struct bucket_stats_cache_set *stats)
{
struct btree_interior_update *as;
struct pending_btree_node_free *d;
mutex_lock(&c->btree_interior_update_lock);
for_each_pending_btree_node_free(c, as, d)
if (!bkey_cmp(k.k->p, d->key.k.p) &&
bkey_val_bytes(k.k) == bkey_val_bytes(&d->key.k) &&
!memcmp(k.v, &d->key.v, bkey_val_bytes(k.k)))
goto found;
BUG();
found:
d->index_update_done = true;
/*
* Btree nodes are accounted as freed in cache_set_stats when they're
* freed from the index:
*/
stats->s[S_COMPRESSED][S_META] -= c->sb.btree_node_size;
stats->s[S_UNCOMPRESSED][S_META] -= c->sb.btree_node_size;
/*
* We're dropping @k from the btree, but it's still live until the
* index update is persistent so we need to keep a reference around for
* mark and sweep to find - that's primarily what the
* btree_node_pending_free list is for.
*
* So here (when we set index_update_done = true), we're moving an
* existing reference to a different part of the larger "gc keyspace" -
* and the new position comes after the old position, since GC marks
* the pending free list after it walks the btree.
*
* If we move the reference while mark and sweep is _between_ the old
* and the new position, mark and sweep will see the reference twice
* and it'll get double accounted - so check for that here and subtract
* to cancel out one of mark and sweep's markings if necessary:
*/
/*
* bch_mark_key() compares the current gc pos to the pos we're
* moving this reference from, hence one comparison here:
*/
if (gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) {
struct bucket_stats_cache_set tmp = { 0 };
bch_mark_key(c, bkey_i_to_s_c(&d->key),
-c->sb.btree_node_size, true, b
? gc_pos_btree_node(b)
: gc_pos_btree_root(id),
&tmp, 0);
/*
* Don't apply tmp - pending deletes aren't tracked in
* cache_set_stats:
*/
}
mutex_unlock(&c->btree_interior_update_lock);
}
static void __btree_node_free(struct cache_set *c, struct btree *b,
struct btree_iter *iter)
{
trace_bcache_btree_node_free(c, b);
BUG_ON(b == btree_node_root(c, b));
BUG_ON(b->ob);
BUG_ON(!list_empty(&b->write_blocked));
six_lock_write(&b->lock);
if (btree_node_dirty(b))
bch_btree_complete_write(c, b, btree_current_write(b));
clear_btree_node_dirty(b);
mca_hash_remove(c, b);
mutex_lock(&c->btree_cache_lock);
list_move(&b->list, &c->btree_cache_freeable);
mutex_unlock(&c->btree_cache_lock);
/*
* By using six_unlock_write() directly instead of
* btree_node_unlock_write(), we don't update the iterator's sequence
* numbers and cause future btree_node_relock() calls to fail:
*/
six_unlock_write(&b->lock);
}
void bch_btree_node_free_never_inserted(struct cache_set *c, struct btree *b)
{
struct open_bucket *ob = b->ob;
b->ob = NULL;
__btree_node_free(c, b, NULL);
bch_open_bucket_put(c, ob);
}
void bch_btree_node_free_inmem(struct btree_iter *iter, struct btree *b)
{
bch_btree_iter_node_drop_linked(iter, b);
__btree_node_free(iter->c, b, iter);
bch_btree_iter_node_drop(iter, b);
}
static void bch_btree_node_free_ondisk(struct cache_set *c,
struct pending_btree_node_free *pending)
{
struct bucket_stats_cache_set stats = { 0 };
BUG_ON(!pending->index_update_done);
bch_mark_key(c, bkey_i_to_s_c(&pending->key),
-c->sb.btree_node_size, true,
gc_phase(GC_PHASE_PENDING_DELETE),
&stats, 0);
/*
* Don't apply stats - pending deletes aren't tracked in
* cache_set_stats:
*/
}
void btree_open_bucket_put(struct cache_set *c, struct btree *b)
{
bch_open_bucket_put(c, b->ob);
b->ob = NULL;
}
static struct btree *__bch_btree_node_alloc(struct cache_set *c,
bool use_reserve,
struct disk_reservation *res,
struct closure *cl)
{
BKEY_PADDED(k) tmp;
struct open_bucket *ob;
struct btree *b;
unsigned reserve = use_reserve ? 0 : BTREE_NODE_RESERVE;
mutex_lock(&c->btree_reserve_cache_lock);
if (c->btree_reserve_cache_nr > reserve) {
struct btree_alloc *a =
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
ob = a->ob;
bkey_copy(&tmp.k, &a->k);
mutex_unlock(&c->btree_reserve_cache_lock);
goto mem_alloc;
}
mutex_unlock(&c->btree_reserve_cache_lock);
retry:
/* alloc_sectors is weird, I suppose */
bkey_extent_init(&tmp.k);
tmp.k.k.size = c->sb.btree_node_size,
ob = bch_alloc_sectors(c, &c->btree_write_point,
bkey_i_to_extent(&tmp.k),
res->nr_replicas,
use_reserve ? RESERVE_BTREE : RESERVE_NONE,
cl);
if (IS_ERR(ob))
return ERR_CAST(ob);
if (tmp.k.k.size < c->sb.btree_node_size) {
bch_open_bucket_put(c, ob);
goto retry;
}
mem_alloc:
b = mca_alloc(c);
/* we hold cannibalize_lock: */
BUG_ON(IS_ERR(b));
BUG_ON(b->ob);
bkey_copy(&b->key, &tmp.k);
b->key.k.size = 0;
b->ob = ob;
return b;
}
static struct btree *bch_btree_node_alloc(struct cache_set *c,
unsigned level, enum btree_id id,
struct btree_reserve *reserve)
{
struct btree *b;
BUG_ON(!reserve->nr);
b = reserve->b[--reserve->nr];
BUG_ON(mca_hash_insert(c, b, level, id));
set_btree_node_accessed(b);
set_btree_node_dirty(b);
bch_bset_init_first(b, &b->data->keys);
memset(&b->nr, 0, sizeof(b->nr));
b->data->magic = cpu_to_le64(bset_magic(c));
b->data->flags = 0;
SET_BTREE_NODE_ID(b->data, id);
SET_BTREE_NODE_LEVEL(b->data, level);
b->data->ptr = bkey_i_to_extent(&b->key)->v.start->ptr;
bch_btree_build_aux_trees(b);
bch_check_mark_super(c, &b->key, true);
trace_bcache_btree_node_alloc(c, b);
return b;
}
struct btree *__btree_node_alloc_replacement(struct cache_set *c,
struct btree *b,
struct bkey_format format,
struct btree_reserve *reserve)
{
struct btree *n;
n = bch_btree_node_alloc(c, b->level, b->btree_id, reserve);
n->data->min_key = b->data->min_key;
n->data->max_key = b->data->max_key;
n->data->format = format;
btree_node_set_format(n, format);
bch_btree_sort_into(c, n, b);
btree_node_reset_sib_u64s(n);
n->key.k.p = b->key.k.p;
trace_bcache_btree_node_alloc_replacement(c, b, n);
return n;
}
struct btree *btree_node_alloc_replacement(struct cache_set *c,
struct btree *b,
struct btree_reserve *reserve)
{
struct bkey_format new_f = bch_btree_calc_format(b);
/*
* The keys might expand with the new format - if they wouldn't fit in
* the btree node anymore, use the old format for now:
*/
if (!bch_btree_node_format_fits(c, b, &new_f))
new_f = b->format;
return __btree_node_alloc_replacement(c, b, new_f, reserve);
}
static void bch_btree_set_root_inmem(struct cache_set *c, struct btree *b,
struct btree_reserve *btree_reserve)
{
struct btree *old = btree_node_root(c, b);
/* Root nodes cannot be reaped */
mutex_lock(&c->btree_cache_lock);
list_del_init(&b->list);
mutex_unlock(&c->btree_cache_lock);
mutex_lock(&c->btree_root_lock);
btree_node_root(c, b) = b;
mutex_unlock(&c->btree_root_lock);
if (btree_reserve) {
/*
* New allocation (we're not being called because we're in
* bch_btree_root_read()) - do marking while holding
* btree_root_lock:
*/
struct bucket_stats_cache_set stats = { 0 };
bch_mark_key(c, bkey_i_to_s_c(&b->key),
c->sb.btree_node_size, true,
gc_pos_btree_root(b->btree_id),
&stats, 0);
if (old)
bch_btree_node_free_index(c, NULL, old->btree_id,
bkey_i_to_s_c(&old->key),
&stats);
bch_cache_set_stats_apply(c, &stats, &btree_reserve->disk_res,
gc_pos_btree_root(b->btree_id));
}
bch_recalc_btree_reserve(c);
}
static void bch_btree_set_root_ondisk(struct cache_set *c, struct btree *b)
{
struct btree_root *r = &c->btree_roots[b->btree_id];
mutex_lock(&c->btree_root_lock);
BUG_ON(b != r->b);
bkey_copy(&r->key, &b->key);
r->level = b->level;
r->alive = true;
mutex_unlock(&c->btree_root_lock);
}
/*
* Only for cache set bringup, when first reading the btree roots or allocating
* btree roots when initializing a new cache set:
*/
void bch_btree_set_root_initial(struct cache_set *c, struct btree *b,
struct btree_reserve *btree_reserve)
{
BUG_ON(btree_node_root(c, b));
bch_btree_set_root_inmem(c, b, btree_reserve);
bch_btree_set_root_ondisk(c, b);
}
/**
* bch_btree_set_root - update the root in memory and on disk
*
* To ensure forward progress, the current task must not be holding any
* btree node write locks. However, you must hold an intent lock on the
* old root.
*
* Note: This allocates a journal entry but doesn't add any keys to
* it. All the btree roots are part of every journal write, so there
* is nothing new to be done. This just guarantees that there is a
* journal write.
*/
static void bch_btree_set_root(struct btree_iter *iter, struct btree *b,
struct btree_interior_update *as,
struct btree_reserve *btree_reserve)
{
struct cache_set *c = iter->c;
struct btree *old;
trace_bcache_btree_set_root(c, b);
BUG_ON(!b->written);
old = btree_node_root(c, b);
/*
* Ensure no one is using the old root while we switch to the
* new root:
*/
btree_node_lock_write(old, iter);
bch_btree_set_root_inmem(c, b, btree_reserve);
btree_interior_update_updated_root(c, as, iter->btree_id);
/*
* Unlock old root after new root is visible:
*
* The new root isn't persistent, but that's ok: we still have
* an intent lock on the new root, and any updates that would
* depend on the new root would have to update the new root.
*/
btree_node_unlock_write(old, iter);
}
static struct btree *__btree_root_alloc(struct cache_set *c, unsigned level,
enum btree_id id,
struct btree_reserve *reserve)
{
struct btree *b = bch_btree_node_alloc(c, level, id, reserve);
b->data->min_key = POS_MIN;
b->data->max_key = POS_MAX;
b->data->format = bch_btree_calc_format(b);
b->key.k.p = POS_MAX;
btree_node_set_format(b, b->data->format);
bch_btree_build_aux_trees(b);
six_unlock_write(&b->lock);
return b;
}
void bch_btree_reserve_put(struct cache_set *c, struct btree_reserve *reserve)
{
bch_disk_reservation_put(c, &reserve->disk_res);
mutex_lock(&c->btree_reserve_cache_lock);
while (reserve->nr) {
struct btree *b = reserve->b[--reserve->nr];
six_unlock_write(&b->lock);
if (c->btree_reserve_cache_nr <
ARRAY_SIZE(c->btree_reserve_cache)) {
struct btree_alloc *a =
&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
a->ob = b->ob;
b->ob = NULL;
bkey_copy(&a->k, &b->key);
} else {
bch_open_bucket_put(c, b->ob);
b->ob = NULL;
}
__btree_node_free(c, b, NULL);
six_unlock_intent(&b->lock);
}
mutex_unlock(&c->btree_reserve_cache_lock);
mempool_free(reserve, &c->btree_reserve_pool);
}
static struct btree_reserve *__bch_btree_reserve_get(struct cache_set *c,
unsigned nr_nodes,
unsigned flags,
struct closure *cl)
{
struct btree_reserve *reserve;
struct btree *b;
struct disk_reservation disk_res = { 0, 0 };
unsigned sectors = nr_nodes * c->sb.btree_node_size;
int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD|
BCH_DISK_RESERVATION_METADATA;
if (flags & BTREE_INSERT_NOFAIL)
disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL;
/*
* This check isn't necessary for correctness - it's just to potentially
* prevent us from doing a lot of work that'll end up being wasted:
*/
ret = bch_journal_error(&c->journal);
if (ret)
return ERR_PTR(ret);
if (bch_disk_reservation_get(c, &disk_res, sectors, disk_res_flags))
return ERR_PTR(-ENOSPC);
BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
/*
* Protects reaping from the btree node cache and using the btree node
* open bucket reserve:
*/
ret = mca_cannibalize_lock(c, cl);
if (ret) {
bch_disk_reservation_put(c, &disk_res);
return ERR_PTR(ret);
}
reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO);
reserve->disk_res = disk_res;
reserve->nr = 0;
while (reserve->nr < nr_nodes) {
b = __bch_btree_node_alloc(c, flags & BTREE_INSERT_USE_RESERVE,
&disk_res, cl);
if (IS_ERR(b)) {
ret = PTR_ERR(b);
goto err_free;
}
reserve->b[reserve->nr++] = b;
}
mca_cannibalize_unlock(c);
return reserve;
err_free:
bch_btree_reserve_put(c, reserve);
mca_cannibalize_unlock(c);
trace_bcache_btree_reserve_get_fail(c, nr_nodes, cl);
return ERR_PTR(ret);
}
struct btree_reserve *bch_btree_reserve_get(struct cache_set *c,
struct btree *b,
unsigned extra_nodes,
unsigned flags,
struct closure *cl)
{
unsigned depth = btree_node_root(c, b)->level - b->level;
unsigned nr_nodes = btree_reserve_required_nodes(depth) + extra_nodes;
return __bch_btree_reserve_get(c, nr_nodes, flags, cl);
}
int bch_btree_root_alloc(struct cache_set *c, enum btree_id id,
struct closure *writes)
{
struct closure cl;
struct btree_reserve *reserve;
struct btree *b;
closure_init_stack(&cl);
while (1) {
/* XXX haven't calculated capacity yet :/ */
reserve = __bch_btree_reserve_get(c, 1, 0, &cl);
if (!IS_ERR(reserve))
break;
if (PTR_ERR(reserve) == -ENOSPC)
return PTR_ERR(reserve);
closure_sync(&cl);
}
b = __btree_root_alloc(c, 0, id, reserve);
bch_btree_node_write(c, b, writes, SIX_LOCK_intent, -1);
bch_btree_set_root_initial(c, b, reserve);
btree_open_bucket_put(c, b);
six_unlock_intent(&b->lock);
bch_btree_reserve_put(c, reserve);
return 0;
}
static void bch_insert_fixup_btree_ptr(struct btree_iter *iter,
struct btree *b,
struct bkey_i *insert,
struct btree_node_iter *node_iter,
struct disk_reservation *disk_res)
{
struct cache_set *c = iter->c;
struct bucket_stats_cache_set stats = { 0 };
struct bkey_packed *k;
struct bkey tmp;
if (bkey_extent_is_data(&insert->k))
bch_mark_key(c, bkey_i_to_s_c(insert),
c->sb.btree_node_size, true,
gc_pos_btree_node(b), &stats, 0);
while ((k = bch_btree_node_iter_peek_all(node_iter, b)) &&
!btree_iter_pos_cmp_packed(b, &insert->k.p, k, false))
bch_btree_node_iter_advance(node_iter, b);
/*
* If we're overwriting, look up pending delete and mark so that gc
* marks it on the pending delete list:
*/
if (k && !bkey_cmp_packed(b, k, &insert->k))
bch_btree_node_free_index(c, b, iter->btree_id,
bkey_disassemble(b, k, &tmp),
&stats);
bch_cache_set_stats_apply(c, &stats, disk_res, gc_pos_btree_node(b));
bch_btree_bset_insert_key(iter, b, node_iter, insert);
set_btree_node_dirty(b);
}
/* Inserting into a given leaf node (last stage of insert): */
/* Handle overwrites and do insert, for non extents: */
bool bch_btree_bset_insert_key(struct btree_iter *iter,
struct btree *b,
struct btree_node_iter *node_iter,
struct bkey_i *insert)
{
const struct bkey_format *f = &b->format;
struct bkey_packed *k;
struct bset_tree *t;
unsigned clobber_u64s;
EBUG_ON(btree_node_just_written(b));
EBUG_ON(bset_written(b, btree_bset_last(b)));
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
bkey_cmp(insert->k.p, b->data->max_key) > 0);
BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(iter->c, b));
k = bch_btree_node_iter_peek_all(node_iter, b);
if (k && !bkey_cmp_packed(b, k, &insert->k)) {
BUG_ON(bkey_whiteout(k));
t = bch_bkey_to_bset(b, k);
if (bset_unwritten(b, bset(b, t)) &&
bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k)) {
BUG_ON(bkey_whiteout(k) != bkey_whiteout(&insert->k));
k->type = insert->k.type;
memcpy_u64s(bkeyp_val(f, k), &insert->v,
bkey_val_u64s(&insert->k));
return true;
}
insert->k.needs_whiteout = k->needs_whiteout;
btree_keys_account_key_drop(&b->nr, t - b->set, k);
if (t == bset_tree_last(b)) {
clobber_u64s = k->u64s;
/*
* If we're deleting, and the key we're deleting doesn't
* need a whiteout (it wasn't overwriting a key that had
* been written to disk) - just delete it:
*/
if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
bch_bset_delete(b, k, clobber_u64s);
bch_btree_node_iter_fix(iter, b, node_iter, t,
k, clobber_u64s, 0);
return true;
}
goto overwrite;
}
k->type = KEY_TYPE_DELETED;
bch_btree_node_iter_fix(iter, b, node_iter, t, k,
k->u64s, k->u64s);
if (bkey_whiteout(&insert->k)) {
reserve_whiteout(b, t, k);
return true;
} else {
k->needs_whiteout = false;
}
} else {
/*
* Deleting, but the key to delete wasn't found - nothing to do:
*/
if (bkey_whiteout(&insert->k))
return false;
insert->k.needs_whiteout = false;
}
t = bset_tree_last(b);
k = bch_btree_node_iter_bset_pos(node_iter, b, t);
clobber_u64s = 0;
overwrite:
bch_bset_insert(b, node_iter, k, insert, clobber_u64s);
if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
bch_btree_node_iter_fix(iter, b, node_iter, t, k,
clobber_u64s, k->u64s);
return true;
}
static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
unsigned i)
{
struct cache_set *c = container_of(j, struct cache_set, journal);
struct btree_write *w = container_of(pin, struct btree_write, journal);
struct btree *b = container_of(w, struct btree, writes[i]);
six_lock_read(&b->lock);
/*
* Reusing a btree node can race with the journal reclaim code calling
* the journal pin flush fn, and there's no good fix for this: we don't
* really want journal_pin_drop() to block until the flush fn is no
* longer running, because journal_pin_drop() is called from the btree
* node write endio function, and we can't wait on the flush fn to
* finish running in mca_reap() - where we make reused btree nodes ready
* to use again - because there, we're holding the lock this function
* needs - deadlock.
*
* So, the b->level check is a hack so we don't try to write nodes we
* shouldn't:
*/
if (!b->level)
bch_btree_node_write(c, b, NULL, SIX_LOCK_read, i);
six_unlock_read(&b->lock);
}
static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin)
{
return __btree_node_flush(j, pin, 0);
}
static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin)
{
return __btree_node_flush(j, pin, 1);
}
void bch_btree_journal_key(struct btree_insert *trans,
struct btree_iter *iter,
struct bkey_i *insert)
{
struct cache_set *c = trans->c;
struct journal *j = &c->journal;
struct btree *b = iter->nodes[0];
struct btree_write *w = btree_current_write(b);
EBUG_ON(iter->level || b->level);
EBUG_ON(!trans->journal_res.ref &&
test_bit(JOURNAL_REPLAY_DONE, &j->flags));
if (!journal_pin_active(&w->journal))
bch_journal_pin_add(j, &w->journal,
btree_node_write_idx(b) == 0
? btree_node_flush0
: btree_node_flush1);
if (trans->journal_res.ref) {
u64 seq = trans->journal_res.seq;
bool needs_whiteout = insert->k.needs_whiteout;
/*
* have a bug where we're seeing an extent with an invalid crc
* entry in the journal, trying to track it down:
*/
BUG_ON(bkey_invalid(c, b->btree_id, bkey_i_to_s_c(insert)));
/* ick */
insert->k.needs_whiteout = false;
bch_journal_add_keys(j, &trans->journal_res,
b->btree_id, insert);
insert->k.needs_whiteout = needs_whiteout;
if (trans->journal_seq)
*trans->journal_seq = seq;
btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
}
if (!btree_node_dirty(b))
set_btree_node_dirty(b);
}
static enum btree_insert_ret
bch_insert_fixup_key(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct btree_iter *iter = insert->iter;
BUG_ON(iter->level);
if (bch_btree_bset_insert_key(iter,
iter->nodes[0],
&iter->node_iters[0],
insert->k))
bch_btree_journal_key(trans, iter, insert->k);
trans->did_work = true;
return BTREE_INSERT_OK;
}
static void verify_keys_sorted(struct keylist *l)
{
#ifdef CONFIG_BCACHE_DEBUG
struct bkey_i *k;
for_each_keylist_key(l, k)
BUG_ON(bkey_next(k) != l->top &&
bkey_cmp(k->k.p, bkey_next(k)->k.p) >= 0);
#endif
}
static void btree_node_lock_for_insert(struct btree *b, struct btree_iter *iter)
{
struct cache_set *c = iter->c;
btree_node_lock_write(b, iter);
if (btree_node_just_written(b) &&
bch_btree_post_write_cleanup(c, b))
bch_btree_iter_reinit_node(iter, b);
/*
* If the last bset has been written, or if it's gotten too big - start
* a new bset to insert into:
*/
if (want_new_bset(c, b))
bch_btree_init_next(c, b, iter);
}
/* Asynchronous interior node update machinery */
struct btree_interior_update *
bch_btree_interior_update_alloc(struct cache_set *c)
{
struct btree_interior_update *as;
as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
memset(as, 0, sizeof(*as));
closure_init(&as->cl, &c->cl);
as->c = c;
as->mode = BTREE_INTERIOR_NO_UPDATE;
bch_keylist_init(&as->parent_keys, as->inline_keys,
ARRAY_SIZE(as->inline_keys));
mutex_lock(&c->btree_interior_update_lock);
list_add(&as->list, &c->btree_interior_update_list);
mutex_unlock(&c->btree_interior_update_lock);
return as;
}
static void btree_interior_update_free(struct closure *cl)
{
struct btree_interior_update *as = container_of(cl, struct btree_interior_update, cl);
mempool_free(as, &as->c->btree_interior_update_pool);
}
static void btree_interior_update_nodes_reachable(struct closure *cl)
{
struct btree_interior_update *as =
container_of(cl, struct btree_interior_update, cl);
struct cache_set *c = as->c;
unsigned i;
bch_journal_pin_drop(&c->journal, &as->journal);
mutex_lock(&c->btree_interior_update_lock);
for (i = 0; i < as->nr_pending; i++)
bch_btree_node_free_ondisk(c, &as->pending[i]);
as->nr_pending = 0;
mutex_unlock(&c->btree_interior_update_lock);
mutex_lock(&c->btree_interior_update_lock);
list_del(&as->list);
mutex_unlock(&c->btree_interior_update_lock);
closure_wake_up(&as->wait);
closure_return_with_destructor(cl, btree_interior_update_free);
}
static void btree_interior_update_nodes_written(struct closure *cl)
{
struct btree_interior_update *as =
container_of(cl, struct btree_interior_update, cl);
struct cache_set *c = as->c;
struct btree *b;
if (bch_journal_error(&c->journal)) {
/* XXX what? */
}
/* XXX: missing error handling, damnit */
/* check for journal error, bail out if we flushed */
/*
* We did an update to a parent node where the pointers we added pointed
* to child nodes that weren't written yet: now, the child nodes have
* been written so we can write out the update to the interior node.
*/
retry:
mutex_lock(&c->btree_interior_update_lock);
switch (as->mode) {
case BTREE_INTERIOR_NO_UPDATE:
BUG();
case BTREE_INTERIOR_UPDATING_NODE:
/* The usual case: */
b = READ_ONCE(as->b);
if (!six_trylock_read(&b->lock)) {
mutex_unlock(&c->btree_interior_update_lock);
six_lock_read(&b->lock);
six_unlock_read(&b->lock);
goto retry;
}
BUG_ON(!btree_node_dirty(b));
closure_wait(&btree_current_write(b)->wait, cl);
list_del(&as->write_blocked_list);
if (list_empty(&b->write_blocked))
bch_btree_node_write(c, b, NULL, SIX_LOCK_read, -1);
six_unlock_read(&b->lock);
break;
case BTREE_INTERIOR_UPDATING_AS:
/*
* The btree node we originally updated has been freed and is
* being rewritten - so we need to write anything here, we just
* need to signal to that btree_interior_update that it's ok to make the
* new replacement node visible:
*/
closure_put(&as->parent_as->cl);
/*
* and then we have to wait on that btree_interior_update to finish:
*/
closure_wait(&as->parent_as->wait, cl);
break;
case BTREE_INTERIOR_UPDATING_ROOT:
/* b is the new btree root: */
b = READ_ONCE(as->b);
if (!six_trylock_read(&b->lock)) {
mutex_unlock(&c->btree_interior_update_lock);
six_lock_read(&b->lock);
six_unlock_read(&b->lock);
goto retry;
}
BUG_ON(c->btree_roots[b->btree_id].as != as);
c->btree_roots[b->btree_id].as = NULL;
bch_btree_set_root_ondisk(c, b);
/*
* We don't have to wait anything anything here (before
* btree_interior_update_nodes_reachable frees the old nodes
* ondisk) - we've ensured that the very next journal write will
* have the pointer to the new root, and before the allocator
* can reuse the old nodes it'll have to do a journal commit:
*/
six_unlock_read(&b->lock);
}
mutex_unlock(&c->btree_interior_update_lock);
continue_at(cl, btree_interior_update_nodes_reachable, system_wq);
}
/*
* We're updating @b with pointers to nodes that haven't finished writing yet:
* block @b from being written until @as completes
*/
static void btree_interior_update_updated_btree(struct cache_set *c,
struct btree_interior_update *as,
struct btree *b)
{
mutex_lock(&c->btree_interior_update_lock);
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
BUG_ON(!btree_node_dirty(b));
as->mode = BTREE_INTERIOR_UPDATING_NODE;
as->b = b;
list_add(&as->write_blocked_list, &b->write_blocked);
mutex_unlock(&c->btree_interior_update_lock);
bch_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
continue_at(&as->cl, btree_interior_update_nodes_written,
system_freezable_wq);
}
static void btree_interior_update_updated_root(struct cache_set *c,
struct btree_interior_update *as,
enum btree_id btree_id)
{
struct btree_root *r = &c->btree_roots[btree_id];
mutex_lock(&c->btree_interior_update_lock);
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
/*
* Old root might not be persistent yet - if so, redirect its
* btree_interior_update operation to point to us:
*/
if (r->as) {
BUG_ON(r->as->mode != BTREE_INTERIOR_UPDATING_ROOT);
r->as->b = NULL;
r->as->mode = BTREE_INTERIOR_UPDATING_AS;
r->as->parent_as = as;
closure_get(&as->cl);
}
as->mode = BTREE_INTERIOR_UPDATING_ROOT;
as->b = r->b;
r->as = as;
mutex_unlock(&c->btree_interior_update_lock);
bch_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
continue_at(&as->cl, btree_interior_update_nodes_written,
system_freezable_wq);
}
static void interior_update_flush(struct journal *j, struct journal_entry_pin *pin)
{
struct btree_interior_update *as =
container_of(pin, struct btree_interior_update, journal);
bch_journal_flush_seq_async(j, as->journal_seq, NULL);
}
/*
* @b is being split/rewritten: it may have pointers to not-yet-written btree
* nodes and thus outstanding btree_interior_updates - redirect @b's
* btree_interior_updates to point to this btree_interior_update:
*/
void bch_btree_interior_update_will_free_node(struct cache_set *c,
struct btree_interior_update *as,
struct btree *b)
{
struct btree_interior_update *p, *n;
struct pending_btree_node_free *d;
struct bset_tree *t;
/*
* Does this node have data that hasn't been written in the journal?
*
* If so, we have to wait for the corresponding journal entry to be
* written before making the new nodes reachable - we can't just carry
* over the bset->journal_seq tracking, since we'll be mixing those keys
* in with keys that aren't in the journal anymore:
*/
for_each_bset(b, t)
as->journal_seq = max(as->journal_seq, bset(b, t)->journal_seq);
/*
* Does this node have unwritten data that has a pin on the journal?
*
* If so, transfer that pin to the btree_interior_update operation -
* note that if we're freeing multiple nodes, we only need to keep the
* oldest pin of any of the nodes we're freeing. We'll release the pin
* when the new nodes are persistent and reachable on disk:
*/
bch_journal_pin_add_if_older(&c->journal,
&b->writes[0].journal,
&as->journal, interior_update_flush);
bch_journal_pin_add_if_older(&c->journal,
&b->writes[1].journal,
&as->journal, interior_update_flush);
mutex_lock(&c->btree_interior_update_lock);
/*
* Does this node have any btree_interior_update operations preventing
* it from being written?
*
* If so, redirect them to point to this btree_interior_update: we can
* write out our new nodes, but we won't make them visible until those
* operations complete
*/
list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
BUG_ON(p->mode != BTREE_INTERIOR_UPDATING_NODE);
p->mode = BTREE_INTERIOR_UPDATING_AS;
list_del(&p->write_blocked_list);
p->b = NULL;
p->parent_as = as;
closure_get(&as->cl);
}
/* Add this node to the list of nodes being freed: */
BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending));
d = &as->pending[as->nr_pending++];
d->index_update_done = false;
d->seq = b->data->keys.seq;
d->btree_id = b->btree_id;
d->level = b->level;
bkey_copy(&d->key, &b->key);
mutex_unlock(&c->btree_interior_update_lock);
}
static void btree_node_interior_verify(struct btree *b)
{
struct btree_node_iter iter;
struct bkey_packed *k;
BUG_ON(!b->level);
bch_btree_node_iter_init(&iter, b, b->key.k.p, false, false);
#if 1
BUG_ON(!(k = bch_btree_node_iter_peek(&iter, b)) ||
bkey_cmp_left_packed(b, k, &b->key.k.p));
BUG_ON((bch_btree_node_iter_advance(&iter, b),
!bch_btree_node_iter_end(&iter)));
#else
const char *msg;
msg = "not found";
k = bch_btree_node_iter_peek(&iter, b);
if (!k)
goto err;
msg = "isn't what it should be";
if (bkey_cmp_left_packed(b, k, &b->key.k.p))
goto err;
bch_btree_node_iter_advance(&iter, b);
msg = "isn't last key";
if (!bch_btree_node_iter_end(&iter))
goto err;
return;
err:
bch_dump_btree_node(b);
printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode,
b->key.k.p.offset, msg);
BUG();
#endif
}
static enum btree_insert_ret
bch_btree_insert_keys_interior(struct btree *b,
struct btree_iter *iter,
struct keylist *insert_keys,
struct btree_interior_update *as,
struct btree_reserve *res)
{
struct cache_set *c = iter->c;
struct btree_iter *linked;
struct btree_node_iter node_iter;
struct bkey_i *insert = bch_keylist_front(insert_keys);
struct bkey_packed *k;
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
BUG_ON(!b->level);
BUG_ON(!as || as->b);
verify_keys_sorted(insert_keys);
btree_node_lock_for_insert(b, iter);
if (bch_keylist_u64s(insert_keys) >
bch_btree_keys_u64s_remaining(c, b)) {
btree_node_unlock_write(b, iter);
return BTREE_INSERT_BTREE_NODE_FULL;
}
/* Don't screw up @iter's position: */
node_iter = iter->node_iters[b->level];
/*
* btree_split(), btree_gc_coalesce() will insert keys before
* the iterator's current position - they know the keys go in
* the node the iterator points to:
*/
while ((k = bch_btree_node_iter_prev_all(&node_iter, b)) &&
(bkey_cmp_packed(b, k, &insert->k) >= 0))
;
while (!bch_keylist_empty(insert_keys)) {
insert = bch_keylist_front(insert_keys);
bch_insert_fixup_btree_ptr(iter, b, insert,
&node_iter, &res->disk_res);
bch_keylist_pop_front(insert_keys);
}
btree_interior_update_updated_btree(c, as, b);
for_each_linked_btree_node(iter, b, linked)
bch_btree_node_iter_peek(&linked->node_iters[b->level],
b);
bch_btree_node_iter_peek(&iter->node_iters[b->level], b);
bch_btree_iter_verify(iter, b);
if (bch_maybe_compact_whiteouts(c, b))
bch_btree_iter_reinit_node(iter, b);
btree_node_unlock_write(b, iter);
btree_node_interior_verify(b);
return BTREE_INSERT_OK;
}
/*
* Move keys from n1 (original replacement node, now lower node) to n2 (higher
* node)
*/
static struct btree *__btree_split_node(struct btree_iter *iter, struct btree *n1,
struct btree_reserve *reserve)
{
size_t nr_packed = 0, nr_unpacked = 0;
struct btree *n2;
struct bset *set1, *set2;
struct bkey_packed *k, *prev = NULL;
n2 = bch_btree_node_alloc(iter->c, n1->level, iter->btree_id, reserve);
n2->data->max_key = n1->data->max_key;
n2->data->format = n1->format;
n2->key.k.p = n1->key.k.p;
btree_node_set_format(n2, n2->data->format);
set1 = btree_bset_first(n1);
set2 = btree_bset_first(n2);
/*
* Has to be a linear search because we don't have an auxiliary
* search tree yet
*/
k = set1->start;
while (1) {
if (bkey_next(k) == vstruct_last(set1))
break;
if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
break;
if (bkey_packed(k))
nr_packed++;
else
nr_unpacked++;
prev = k;
k = bkey_next(k);
}
BUG_ON(!prev);
n1->key.k.p = bkey_unpack_pos(n1, prev);
n1->data->max_key = n1->key.k.p;
n2->data->min_key =
btree_type_successor(n1->btree_id, n1->key.k.p);
set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k);
set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
set_btree_bset_end(n1, n1->set);
set_btree_bset_end(n2, n2->set);
n2->nr.live_u64s = le16_to_cpu(set2->u64s);
n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s);
n2->nr.packed_keys = n1->nr.packed_keys - nr_packed;
n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked;
n1->nr.live_u64s = le16_to_cpu(set1->u64s);
n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
n1->nr.packed_keys = nr_packed;
n1->nr.unpacked_keys = nr_unpacked;
BUG_ON(!set1->u64s);
BUG_ON(!set2->u64s);
memcpy_u64s(set2->start,
vstruct_end(set1),
le16_to_cpu(set2->u64s));
btree_node_reset_sib_u64s(n1);
btree_node_reset_sib_u64s(n2);
bch_verify_btree_nr_keys(n1);
bch_verify_btree_nr_keys(n2);
if (n1->level) {
btree_node_interior_verify(n1);
btree_node_interior_verify(n2);
}
return n2;
}
/*
* For updates to interior nodes, we've got to do the insert before we split
* because the stuff we're inserting has to be inserted atomically. Post split,
* the keys might have to go in different nodes and the split would no longer be
* atomic.
*
* Worse, if the insert is from btree node coalescing, if we do the insert after
* we do the split (and pick the pivot) - the pivot we pick might be between
* nodes that were coalesced, and thus in the middle of a child node post
* coalescing:
*/
static void btree_split_insert_keys(struct btree_iter *iter, struct btree *b,
struct keylist *keys,
struct btree_reserve *res)
{
struct btree_node_iter node_iter;
struct bkey_i *k = bch_keylist_front(keys);
struct bkey_packed *p;
struct bset *i;
BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
bch_btree_node_iter_init(&node_iter, b, k->k.p, false, false);
while (!bch_keylist_empty(keys)) {
k = bch_keylist_front(keys);
BUG_ON(bch_keylist_u64s(keys) >
bch_btree_keys_u64s_remaining(iter->c, b));
BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0);
BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0);
bch_insert_fixup_btree_ptr(iter, b, k, &node_iter, &res->disk_res);
bch_keylist_pop_front(keys);
}
/*
* We can't tolerate whiteouts here - with whiteouts there can be
* duplicate keys, and it would be rather bad if we picked a duplicate
* for the pivot:
*/
i = btree_bset_first(b);
p = i->start;
while (p != vstruct_last(i))
if (bkey_deleted(p)) {
le16_add_cpu(&i->u64s, -p->u64s);
set_btree_bset_end(b, b->set);
memmove_u64s_down(p, bkey_next(p),
(u64 *) vstruct_last(i) -
(u64 *) p);
} else
p = bkey_next(p);
BUG_ON(b->nsets != 1 ||
b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
btree_node_interior_verify(b);
}
static void btree_split(struct btree *b, struct btree_iter *iter,
struct keylist *insert_keys,
struct btree_reserve *reserve,
struct btree_interior_update *as)
{
struct cache_set *c = iter->c;
struct btree *parent = iter->nodes[b->level + 1];
struct btree *n1, *n2 = NULL, *n3 = NULL;
u64 start_time = local_clock();
BUG_ON(!parent && (b != btree_node_root(c, b)));
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
bch_btree_interior_update_will_free_node(c, as, b);
n1 = btree_node_alloc_replacement(c, b, reserve);
if (b->level)
btree_split_insert_keys(iter, n1, insert_keys, reserve);
if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) {
trace_bcache_btree_node_split(c, b, b->nr.live_u64s);
n2 = __btree_split_node(iter, n1, reserve);
bch_btree_build_aux_trees(n2);
bch_btree_build_aux_trees(n1);
six_unlock_write(&n2->lock);
six_unlock_write(&n1->lock);
bch_btree_node_write(c, n2, &as->cl, SIX_LOCK_intent, -1);
/*
* Note that on recursive parent_keys == insert_keys, so we
* can't start adding new keys to parent_keys before emptying it
* out (which we did with btree_split_insert_keys() above)
*/
bch_keylist_add(&as->parent_keys, &n1->key);
bch_keylist_add(&as->parent_keys, &n2->key);
if (!parent) {
/* Depth increases, make a new root */
n3 = __btree_root_alloc(c, b->level + 1,
iter->btree_id,
reserve);
n3->sib_u64s[0] = U16_MAX;
n3->sib_u64s[1] = U16_MAX;
btree_split_insert_keys(iter, n3, &as->parent_keys,
reserve);
bch_btree_node_write(c, n3, &as->cl, SIX_LOCK_intent, -1);
}
} else {
trace_bcache_btree_node_compact(c, b, b->nr.live_u64s);
bch_btree_build_aux_trees(n1);
six_unlock_write(&n1->lock);
bch_keylist_add(&as->parent_keys, &n1->key);
}
bch_btree_node_write(c, n1, &as->cl, SIX_LOCK_intent, -1);
/* New nodes all written, now make them visible: */
if (parent) {
/* Split a non root node */
bch_btree_insert_node(parent, iter, &as->parent_keys,
reserve, as);
} else if (n3) {
bch_btree_set_root(iter, n3, as, reserve);
} else {
/* Root filled up but didn't need to be split */
bch_btree_set_root(iter, n1, as, reserve);
}
btree_open_bucket_put(c, n1);
if (n2)
btree_open_bucket_put(c, n2);
if (n3)
btree_open_bucket_put(c, n3);
/*
* Note - at this point other linked iterators could still have @b read
* locked; we're depending on the bch_btree_iter_node_replace() calls
* below removing all references to @b so we don't return with other
* iterators pointing to a node they have locked that's been freed.
*
* We have to free the node first because the bch_iter_node_replace()
* calls will drop _our_ iterator's reference - and intent lock - to @b.
*/
bch_btree_node_free_inmem(iter, b);
/* Successful split, update the iterator to point to the new nodes: */
if (n3)
bch_btree_iter_node_replace(iter, n3);
if (n2)
bch_btree_iter_node_replace(iter, n2);
bch_btree_iter_node_replace(iter, n1);
bch_time_stats_update(&c->btree_split_time, start_time);
}
/**
* bch_btree_insert_node - insert bkeys into a given btree node
*
* @iter: btree iterator
* @insert_keys: list of keys to insert
* @hook: insert callback
* @persistent: if not null, @persistent will wait on journal write
*
* Inserts as many keys as it can into a given btree node, splitting it if full.
* If a split occurred, this function will return early. This can only happen
* for leaf nodes -- inserts into interior nodes have to be atomic.
*/
void bch_btree_insert_node(struct btree *b,
struct btree_iter *iter,
struct keylist *insert_keys,
struct btree_reserve *reserve,
struct btree_interior_update *as)
{
BUG_ON(!b->level);
BUG_ON(!reserve || !as);
switch (bch_btree_insert_keys_interior(b, iter, insert_keys,
as, reserve)) {
case BTREE_INSERT_OK:
break;
case BTREE_INSERT_BTREE_NODE_FULL:
btree_split(b, iter, insert_keys, reserve, as);
break;
default:
BUG();
}
}
static int bch_btree_split_leaf(struct btree_iter *iter, unsigned flags)
{
struct cache_set *c = iter->c;
struct btree *b = iter->nodes[0];
struct btree_reserve *reserve;
struct btree_interior_update *as;
struct closure cl;
int ret = 0;
closure_init_stack(&cl);
/* Hack, because gc and splitting nodes doesn't mix yet: */
if (!down_read_trylock(&c->gc_lock)) {
bch_btree_iter_unlock(iter);
down_read(&c->gc_lock);
}
/*
* XXX: figure out how far we might need to split,
* instead of locking/reserving all the way to the root:
*/
if (!bch_btree_iter_set_locks_want(iter, U8_MAX)) {
ret = -EINTR;
goto out;
}
reserve = bch_btree_reserve_get(c, b, 0, flags, &cl);
if (IS_ERR(reserve)) {
ret = PTR_ERR(reserve);
if (ret == -EAGAIN) {
bch_btree_iter_unlock(iter);
up_read(&c->gc_lock);
closure_sync(&cl);
return -EINTR;
}
goto out;
}
as = bch_btree_interior_update_alloc(c);
btree_split(b, iter, NULL, reserve, as);
bch_btree_reserve_put(c, reserve);
bch_btree_iter_set_locks_want(iter, 1);
out:
up_read(&c->gc_lock);
return ret;
}
enum btree_node_sibling {
btree_prev_sib,
btree_next_sib,
};
static struct btree *btree_node_get_sibling(struct btree_iter *iter,
struct btree *b,
enum btree_node_sibling sib)
{
struct btree *parent;
struct btree_node_iter node_iter;
struct bkey_packed *k;
BKEY_PADDED(k) tmp;
struct btree *ret;
unsigned level = b->level;
parent = iter->nodes[level + 1];
if (!parent)
return NULL;
if (!btree_node_relock(iter, level + 1)) {
bch_btree_iter_set_locks_want(iter, level + 2);
return ERR_PTR(-EINTR);
}
node_iter = iter->node_iters[parent->level];
k = bch_btree_node_iter_peek_all(&node_iter, parent);
BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p));
do {
k = sib == btree_prev_sib
? bch_btree_node_iter_prev_all(&node_iter, parent)
: (bch_btree_node_iter_advance(&node_iter, parent),
bch_btree_node_iter_peek_all(&node_iter, parent));
if (!k)
return NULL;
} while (bkey_deleted(k));
bkey_unpack(parent, &tmp.k, k);
ret = bch_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent);
if (IS_ERR(ret) && PTR_ERR(ret) == -EINTR) {
btree_node_unlock(iter, level);
ret = bch_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent);
}
if (!IS_ERR(ret) && !btree_node_relock(iter, level)) {
six_unlock_intent(&ret->lock);
ret = ERR_PTR(-EINTR);
}
return ret;
}
static int __foreground_maybe_merge(struct btree_iter *iter,
enum btree_node_sibling sib)
{
struct cache_set *c = iter->c;
struct btree_reserve *reserve;
struct btree_interior_update *as;
struct bkey_format_state new_s;
struct bkey_format new_f;
struct bkey_i delete;
struct btree *b, *m, *n, *prev, *next, *parent;
struct closure cl;
size_t sib_u64s;
int ret = 0;
closure_init_stack(&cl);
retry:
if (!btree_node_relock(iter, iter->level))
return 0;
b = iter->nodes[iter->level];
parent = iter->nodes[b->level + 1];
if (!parent)
return 0;
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
return 0;
/* XXX: can't be holding read locks */
m = btree_node_get_sibling(iter, b, sib);
if (IS_ERR(m)) {
ret = PTR_ERR(m);
goto out;
}
/* NULL means no sibling: */
if (!m) {
b->sib_u64s[sib] = U16_MAX;
return 0;
}
if (sib == btree_prev_sib) {
prev = m;
next = b;
} else {
prev = b;
next = m;
}
bch_bkey_format_init(&new_s);
__bch_btree_calc_format(&new_s, b);
__bch_btree_calc_format(&new_s, m);
new_f = bch_bkey_format_done(&new_s);
sib_u64s = btree_node_u64s_with_format(b, &new_f) +
btree_node_u64s_with_format(m, &new_f);
if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
sib_u64s /= 2;
sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
}
sib_u64s = min(sib_u64s, btree_max_u64s(c));
b->sib_u64s[sib] = sib_u64s;
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
six_unlock_intent(&m->lock);
return 0;
}
/* We're changing btree topology, doesn't mix with gc: */
if (!down_read_trylock(&c->gc_lock)) {
six_unlock_intent(&m->lock);
bch_btree_iter_unlock(iter);
down_read(&c->gc_lock);
up_read(&c->gc_lock);
ret = -EINTR;
goto out;
}
if (!bch_btree_iter_set_locks_want(iter, U8_MAX)) {
ret = -EINTR;
goto out_unlock;
}
reserve = bch_btree_reserve_get(c, b, 0,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE,
&cl);
if (IS_ERR(reserve)) {
ret = PTR_ERR(reserve);
goto out_unlock;
}
as = bch_btree_interior_update_alloc(c);
bch_btree_interior_update_will_free_node(c, as, b);
bch_btree_interior_update_will_free_node(c, as, m);
n = bch_btree_node_alloc(c, b->level, b->btree_id, reserve);
n->data->min_key = prev->data->min_key;
n->data->max_key = next->data->max_key;
n->data->format = new_f;
n->key.k.p = next->key.k.p;
btree_node_set_format(n, new_f);
bch_btree_sort_into(c, n, prev);
bch_btree_sort_into(c, n, next);
bch_btree_build_aux_trees(n);
six_unlock_write(&n->lock);
bkey_init(&delete.k);
delete.k.p = prev->key.k.p;
bch_keylist_add(&as->parent_keys, &delete);
bch_keylist_add(&as->parent_keys, &n->key);
bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
bch_btree_insert_node(parent, iter, &as->parent_keys, reserve, as);
btree_open_bucket_put(c, n);
bch_btree_node_free_inmem(iter, b);
bch_btree_node_free_inmem(iter, m);
bch_btree_iter_node_replace(iter, n);
bch_btree_iter_verify(iter, n);
bch_btree_reserve_put(c, reserve);
out_unlock:
if (ret != -EINTR && ret != -EAGAIN)
bch_btree_iter_set_locks_want(iter, 1);
six_unlock_intent(&m->lock);
up_read(&c->gc_lock);
out:
if (ret == -EAGAIN || ret == -EINTR) {
bch_btree_iter_unlock(iter);
ret = -EINTR;
}
closure_sync(&cl);
if (ret == -EINTR) {
ret = bch_btree_iter_traverse(iter);
if (!ret)
goto retry;
}
return ret;
}
static int inline foreground_maybe_merge(struct btree_iter *iter,
enum btree_node_sibling sib)
{
struct cache_set *c = iter->c;
struct btree *b;
if (!btree_node_locked(iter, iter->level))
return 0;
b = iter->nodes[iter->level];
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
return 0;
return __foreground_maybe_merge(iter, sib);
}
/**
* btree_insert_key - insert a key one key into a leaf node
*/
static enum btree_insert_ret
btree_insert_key(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct cache_set *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree *b = iter->nodes[0];
enum btree_insert_ret ret;
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
ret = !btree_node_is_extents(b)
? bch_insert_fixup_key(trans, insert)
: bch_insert_fixup_extent(trans, insert);
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch_maybe_compact_whiteouts(iter->c, b))
bch_btree_iter_reinit_node(iter, b);
trace_bcache_btree_insert_key(c, b, insert->k);
return ret;
}
static bool same_leaf_as_prev(struct btree_insert *trans,
struct btree_insert_entry *i)
{
/*
* Because we sorted the transaction entries, if multiple iterators
* point to the same leaf node they'll always be adjacent now:
*/
return i != trans->entries &&
i[0].iter->nodes[0] == i[-1].iter->nodes[0];
}
#define trans_for_each_entry(trans, i) \
for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
static void multi_lock_write(struct btree_insert *trans)
{
struct btree_insert_entry *i;
trans_for_each_entry(trans, i)
if (!same_leaf_as_prev(trans, i))
btree_node_lock_for_insert(i->iter->nodes[0], i->iter);
}
static void multi_unlock_write(struct btree_insert *trans)
{
struct btree_insert_entry *i;
trans_for_each_entry(trans, i)
if (!same_leaf_as_prev(trans, i))
btree_node_unlock_write(i->iter->nodes[0], i->iter);
}
static int btree_trans_entry_cmp(const void *_l, const void *_r)
{
const struct btree_insert_entry *l = _l;
const struct btree_insert_entry *r = _r;
return btree_iter_cmp(l->iter, r->iter);
}
/* Normal update interface: */
/**
* __bch_btree_insert_at - insert keys at given iterator positions
*
* This is main entry point for btree updates.
*
* Return values:
* -EINTR: locking changed, this function should be called again. Only returned
* if passed BTREE_INSERT_ATOMIC.
* -EROFS: cache set read only
* -EIO: journal or btree node IO error
*/
int __bch_btree_insert_at(struct btree_insert *trans)
{
struct cache_set *c = trans->c;
struct btree_insert_entry *i;
struct btree_iter *split = NULL;
bool cycle_gc_lock = false;
unsigned u64s;
int ret;
trans_for_each_entry(trans, i) {
EBUG_ON(i->iter->level);
EBUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
}
sort(trans->entries, trans->nr, sizeof(trans->entries[0]),
btree_trans_entry_cmp, NULL);
if (unlikely(!percpu_ref_tryget(&c->writes)))
return -EROFS;
retry_locks:
ret = -EINTR;
trans_for_each_entry(trans, i)
if (!bch_btree_iter_set_locks_want(i->iter, 1))
goto err;
retry:
trans->did_work = false;
u64s = 0;
trans_for_each_entry(trans, i)
if (!i->done)
u64s += jset_u64s(i->k->k.u64s + i->extra_res);
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
? bch_journal_res_get(&c->journal,
&trans->journal_res,
u64s, u64s)
: 0;
if (ret)
goto err;
multi_lock_write(trans);
u64s = 0;
trans_for_each_entry(trans, i) {
/* Multiple inserts might go to same leaf: */
if (!same_leaf_as_prev(trans, i))
u64s = 0;
/*
* bch_btree_node_insert_fits() must be called under write lock:
* with only an intent lock, another thread can still call
* bch_btree_node_write(), converting an unwritten bset to a
* written one
*/
if (!i->done) {
u64s += i->k->k.u64s + i->extra_res;
if (!bch_btree_node_insert_fits(c,
i->iter->nodes[0], u64s)) {
split = i->iter;
goto unlock;
}
}
}
ret = 0;
split = NULL;
cycle_gc_lock = false;
trans_for_each_entry(trans, i) {
if (i->done)
continue;
switch (btree_insert_key(trans, i)) {
case BTREE_INSERT_OK:
i->done = true;
break;
case BTREE_INSERT_JOURNAL_RES_FULL:
case BTREE_INSERT_NEED_TRAVERSE:
ret = -EINTR;
break;
case BTREE_INSERT_NEED_RESCHED:
ret = -EAGAIN;
break;
case BTREE_INSERT_BTREE_NODE_FULL:
split = i->iter;
break;
case BTREE_INSERT_ENOSPC:
ret = -ENOSPC;
break;
case BTREE_INSERT_NEED_GC_LOCK:
cycle_gc_lock = true;
ret = -EINTR;
break;
default:
BUG();
}
if (!trans->did_work && (ret || split))
break;
}
unlock:
multi_unlock_write(trans);
bch_journal_res_put(&c->journal, &trans->journal_res);
if (split)
goto split;
if (ret)
goto err;
/*
* hack: iterators are inconsistent when they hit end of leaf, until
* traversed again
*/
trans_for_each_entry(trans, i)
if (i->iter->at_end_of_leaf)
goto out;
trans_for_each_entry(trans, i)
if (!same_leaf_as_prev(trans, i)) {
foreground_maybe_merge(i->iter, btree_prev_sib);
foreground_maybe_merge(i->iter, btree_next_sib);
}
out:
/* make sure we didn't lose an error: */
if (!ret && IS_ENABLED(CONFIG_BCACHE_DEBUG))
trans_for_each_entry(trans, i)
BUG_ON(!i->done);
percpu_ref_put(&c->writes);
return ret;
split:
/*
* have to drop journal res before splitting, because splitting means
* allocating new btree nodes, and holding a journal reservation
* potentially blocks the allocator:
*/
ret = bch_btree_split_leaf(split, trans->flags);
if (ret)
goto err;
/*
* if the split didn't have to drop locks the insert will still be
* atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked()
* and is overwriting won't have changed)
*/
goto retry_locks;
err:
if (cycle_gc_lock) {
down_read(&c->gc_lock);
up_read(&c->gc_lock);
}
if (ret == -EINTR) {
trans_for_each_entry(trans, i) {
int ret2 = bch_btree_iter_traverse(i->iter);
if (ret2) {
ret = ret2;
goto out;
}
}
/*
* BTREE_ITER_ATOMIC means we have to return -EINTR if we
* dropped locks:
*/
if (!(trans->flags & BTREE_INSERT_ATOMIC))
goto retry;
}
goto out;
}
int bch_btree_insert_list_at(struct btree_iter *iter,
struct keylist *keys,
struct disk_reservation *disk_res,
struct extent_insert_hook *hook,
u64 *journal_seq, unsigned flags)
{
BUG_ON(flags & BTREE_INSERT_ATOMIC);
BUG_ON(bch_keylist_empty(keys));
verify_keys_sorted(keys);
while (!bch_keylist_empty(keys)) {
/* need to traverse between each insert */
int ret = bch_btree_iter_traverse(iter);
if (ret)
return ret;
ret = bch_btree_insert_at(iter->c, disk_res, hook,
journal_seq, flags,
BTREE_INSERT_ENTRY(iter, bch_keylist_front(keys)));
if (ret)
return ret;
bch_keylist_pop_front(keys);
}
return 0;
}
/**
* bch_btree_insert_check_key - insert dummy key into btree
*
* We insert a random key on a cache miss, then compare exchange on it
* once the cache promotion or backing device read completes. This
* ensures that if this key is written to after the read, the read will
* lose and not overwrite the key with stale data.
*
* Return values:
* -EAGAIN: @iter->cl was put on a waitlist waiting for btree node allocation
* -EINTR: btree node was changed while upgrading to write lock
*/
int bch_btree_insert_check_key(struct btree_iter *iter,
struct bkey_i *check_key)
{
struct bpos saved_pos = iter->pos;
struct bkey_i_cookie *cookie;
BKEY_PADDED(key) tmp;
int ret;
BUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&check_key->k)));
check_key->k.type = KEY_TYPE_COOKIE;
set_bkey_val_bytes(&check_key->k, sizeof(struct bch_cookie));
cookie = bkey_i_to_cookie(check_key);
get_random_bytes(&cookie->v, sizeof(cookie->v));
bkey_copy(&tmp.key, check_key);
ret = bch_btree_insert_at(iter->c, NULL, NULL, NULL,
BTREE_INSERT_ATOMIC,
BTREE_INSERT_ENTRY(iter, &tmp.key));
bch_btree_iter_rewind(iter, saved_pos);
return ret;
}
/**
* bch_btree_insert - insert keys into the extent btree
* @c: pointer to struct cache_set
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch_btree_insert(struct cache_set *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
struct extent_insert_hook *hook,
u64 *journal_seq, int flags)
{
struct btree_iter iter;
int ret, ret2;
bch_btree_iter_init_intent(&iter, c, id, bkey_start_pos(&k->k));
ret = bch_btree_iter_traverse(&iter);
if (unlikely(ret))
goto out;
ret = bch_btree_insert_at(c, disk_res, hook, journal_seq, flags,
BTREE_INSERT_ENTRY(&iter, k));
out: ret2 = bch_btree_iter_unlock(&iter);
return ret ?: ret2;
}
/**
* bch_btree_update - like bch_btree_insert(), but asserts that we're
* overwriting an existing key
*/
int bch_btree_update(struct cache_set *c, enum btree_id id,
struct bkey_i *k, u64 *journal_seq)
{
struct btree_iter iter;
struct bkey_s_c u;
int ret;
EBUG_ON(id == BTREE_ID_EXTENTS);
bch_btree_iter_init_intent(&iter, c, id, k->k.p);
u = bch_btree_iter_peek_with_holes(&iter);
ret = btree_iter_err(u);
if (ret)
return ret;
if (bkey_deleted(u.k)) {
bch_btree_iter_unlock(&iter);
return -ENOENT;
}
ret = bch_btree_insert_at(c, NULL, NULL, journal_seq, 0,
BTREE_INSERT_ENTRY(&iter, k));
bch_btree_iter_unlock(&iter);
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch_btree_delete_range(struct cache_set *c, enum btree_id id,
struct bpos start,
struct bpos end,
struct bversion version,
struct disk_reservation *disk_res,
struct extent_insert_hook *hook,
u64 *journal_seq)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch_btree_iter_init_intent(&iter, c, id, start);
while ((k = bch_btree_iter_peek(&iter)).k &&
!(ret = btree_iter_err(k))) {
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
/* really shouldn't be using a bare, unpadded bkey_i */
struct bkey_i delete;
if (bkey_cmp(iter.pos, end) >= 0)
break;
bkey_init(&delete.k);
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
delete.k.version = version;
if (iter.is_extents) {
/*
* The extents btree is special - KEY_TYPE_DISCARD is
* used for deletions, not KEY_TYPE_DELETED. This is an
* internal implementation detail that probably
* shouldn't be exposed (internally, KEY_TYPE_DELETED is
* used as a proxy for k->size == 0):
*/
delete.k.type = KEY_TYPE_DISCARD;
/* create the biggest key we can */
bch_key_resize(&delete.k, max_sectors);
bch_cut_back(end, &delete.k);
}
ret = bch_btree_insert_at(c, disk_res, hook, journal_seq,
BTREE_INSERT_NOFAIL,
BTREE_INSERT_ENTRY(&iter, &delete));
if (ret)
break;
bch_btree_iter_cond_resched(&iter);
}
bch_btree_iter_unlock(&iter);
return ret;
}
/**
* bch_btree_node_rewrite - Rewrite/move a btree node
*
* Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
* btree_check_reserve() has to wait)
*/
int bch_btree_node_rewrite(struct btree_iter *iter, struct btree *b,
struct closure *cl)
{
struct cache_set *c = iter->c;
struct btree *n, *parent = iter->nodes[b->level + 1];
struct btree_reserve *reserve;
struct btree_interior_update *as;
unsigned flags = BTREE_INSERT_NOFAIL;
/*
* if caller is going to wait if allocating reserve fails, then this is
* a rewrite that must succeed:
*/
if (cl)
flags |= BTREE_INSERT_USE_RESERVE;
if (!bch_btree_iter_set_locks_want(iter, U8_MAX))
return -EINTR;
reserve = bch_btree_reserve_get(c, b, 0, flags, cl);
if (IS_ERR(reserve)) {
trace_bcache_btree_gc_rewrite_node_fail(c, b);
return PTR_ERR(reserve);
}
as = bch_btree_interior_update_alloc(c);
bch_btree_interior_update_will_free_node(c, as, b);
n = btree_node_alloc_replacement(c, b, reserve);
bch_btree_build_aux_trees(n);
six_unlock_write(&n->lock);
trace_bcache_btree_gc_rewrite_node(c, b);
bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
if (parent) {
bch_btree_insert_node(parent, iter,
&keylist_single(&n->key),
reserve, as);
} else {
bch_btree_set_root(iter, n, as, reserve);
}
btree_open_bucket_put(c, n);
bch_btree_node_free_inmem(iter, b);
BUG_ON(!bch_btree_iter_node_replace(iter, n));
bch_btree_reserve_put(c, reserve);
return 0;
}