mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-01-23 00:07:07 +03:00
156 lines
3.3 KiB
C
156 lines
3.3 KiB
C
/*
|
|
* Copyright (C) 2013 Andrea Mazzoleni
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#ifndef __RAID_COMBO_H
|
|
#define __RAID_COMBO_H
|
|
|
|
#include <assert.h>
|
|
|
|
/**
|
|
* Get the first permutation with repetition of r of n elements.
|
|
*
|
|
* Typical use is with permutation_next() in the form :
|
|
*
|
|
* int i[R];
|
|
* permutation_first(R, N, i);
|
|
* do {
|
|
* code using i[0], i[1], ..., i[R-1]
|
|
* } while (permutation_next(R, N, i));
|
|
*
|
|
* It's equivalent at the code :
|
|
*
|
|
* for(i[0]=0;i[0]<N;++i[0])
|
|
* for(i[1]=0;i[1]<N;++i[1])
|
|
* ...
|
|
* for(i[R-2]=0;i[R-2]<N;++i[R-2])
|
|
* for(i[R-1]=0;i[R-1]<N;++i[R-1])
|
|
* code using i[0], i[1], ..., i[R-1]
|
|
*/
|
|
static __always_inline void permutation_first(int r, int n, int *c)
|
|
{
|
|
int i;
|
|
|
|
(void)n; /* unused, but kept for clarity */
|
|
assert(0 < r && r <= n);
|
|
|
|
for (i = 0; i < r; ++i)
|
|
c[i] = 0;
|
|
}
|
|
|
|
/**
|
|
* Get the next permutation with repetition of r of n elements.
|
|
* Return ==0 when finished.
|
|
*/
|
|
static __always_inline int permutation_next(int r, int n, int *c)
|
|
{
|
|
int i = r - 1; /* present position */
|
|
|
|
recurse:
|
|
/* next element at position i */
|
|
++c[i];
|
|
|
|
/* if the position has reached the max */
|
|
if (c[i] >= n) {
|
|
|
|
/* if we are at the first level, we have finished */
|
|
if (i == 0)
|
|
return 0;
|
|
|
|
/* increase the previous position */
|
|
--i;
|
|
goto recurse;
|
|
}
|
|
|
|
++i;
|
|
|
|
/* initialize all the next positions, if any */
|
|
while (i < r) {
|
|
c[i] = 0;
|
|
++i;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Get the first combination without repetition of r of n elements.
|
|
*
|
|
* Typical use is with combination_next() in the form :
|
|
*
|
|
* int i[R];
|
|
* combination_first(R, N, i);
|
|
* do {
|
|
* code using i[0], i[1], ..., i[R-1]
|
|
* } while (combination_next(R, N, i));
|
|
*
|
|
* It's equivalent at the code :
|
|
*
|
|
* for(i[0]=0;i[0]<N-(R-1);++i[0])
|
|
* for(i[1]=i[0]+1;i[1]<N-(R-2);++i[1])
|
|
* ...
|
|
* for(i[R-2]=i[R-3]+1;i[R-2]<N-1;++i[R-2])
|
|
* for(i[R-1]=i[R-2]+1;i[R-1]<N;++i[R-1])
|
|
* code using i[0], i[1], ..., i[R-1]
|
|
*/
|
|
static __always_inline void combination_first(int r, int n, int *c)
|
|
{
|
|
int i;
|
|
|
|
(void)n; /* unused, but kept for clarity */
|
|
assert(0 < r && r <= n);
|
|
|
|
for (i = 0; i < r; ++i)
|
|
c[i] = i;
|
|
}
|
|
|
|
/**
|
|
* Get the next combination without repetition of r of n elements.
|
|
* Return ==0 when finished.
|
|
*/
|
|
static __always_inline int combination_next(int r, int n, int *c)
|
|
{
|
|
int i = r - 1; /* present position */
|
|
int h = n; /* high limit for this position */
|
|
|
|
recurse:
|
|
/* next element at position i */
|
|
++c[i];
|
|
|
|
/* if the position has reached the max */
|
|
if (c[i] >= h) {
|
|
|
|
/* if we are at the first level, we have finished */
|
|
if (i == 0)
|
|
return 0;
|
|
|
|
/* increase the previous position */
|
|
--i;
|
|
--h;
|
|
goto recurse;
|
|
}
|
|
|
|
++i;
|
|
|
|
/* initialize all the next positions, if any */
|
|
while (i < r) {
|
|
/* each position start at the next value of the previous one */
|
|
c[i] = c[i - 1] + 1;
|
|
++i;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|