mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-02-02 00:00:03 +03:00
475 lines
11 KiB
C
475 lines
11 KiB
C
#ifndef _BCACHEFS_BTREE_TYPES_H
|
|
#define _BCACHEFS_BTREE_TYPES_H
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/rhashtable.h>
|
|
|
|
#include "bkey_methods.h"
|
|
#include "journal_types.h"
|
|
#include "six.h"
|
|
|
|
struct open_bucket;
|
|
struct btree_update;
|
|
|
|
#define MAX_BSETS 3U
|
|
|
|
struct btree_nr_keys {
|
|
|
|
/*
|
|
* Amount of live metadata (i.e. size of node after a compaction) in
|
|
* units of u64s
|
|
*/
|
|
u16 live_u64s;
|
|
u16 bset_u64s[MAX_BSETS];
|
|
|
|
/* live keys only: */
|
|
u16 packed_keys;
|
|
u16 unpacked_keys;
|
|
};
|
|
|
|
struct bset_tree {
|
|
/*
|
|
* We construct a binary tree in an array as if the array
|
|
* started at 1, so that things line up on the same cachelines
|
|
* better: see comments in bset.c at cacheline_to_bkey() for
|
|
* details
|
|
*/
|
|
|
|
/* size of the binary tree and prev array */
|
|
u16 size;
|
|
|
|
/* function of size - precalculated for to_inorder() */
|
|
u16 extra;
|
|
|
|
u16 data_offset;
|
|
u16 aux_data_offset;
|
|
u16 end_offset;
|
|
|
|
struct bpos max_key;
|
|
};
|
|
|
|
struct btree_write {
|
|
struct journal_entry_pin journal;
|
|
struct closure_waitlist wait;
|
|
};
|
|
|
|
struct btree_ob_ref {
|
|
u8 nr;
|
|
u8 refs[BCH_REPLICAS_MAX];
|
|
};
|
|
|
|
struct btree_alloc {
|
|
struct btree_ob_ref ob;
|
|
BKEY_PADDED(k);
|
|
};
|
|
|
|
struct btree {
|
|
/* Hottest entries first */
|
|
struct rhash_head hash;
|
|
|
|
/* Key/pointer for this btree node */
|
|
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
|
|
|
|
struct six_lock lock;
|
|
|
|
unsigned long flags;
|
|
u16 written;
|
|
u8 level;
|
|
u8 btree_id;
|
|
u8 nsets;
|
|
u8 nr_key_bits;
|
|
|
|
struct bkey_format format;
|
|
|
|
struct btree_node *data;
|
|
void *aux_data;
|
|
|
|
/*
|
|
* Sets of sorted keys - the real btree node - plus a binary search tree
|
|
*
|
|
* set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
|
|
* to the memory we have allocated for this btree node. Additionally,
|
|
* set[0]->data points to the entire btree node as it exists on disk.
|
|
*/
|
|
struct bset_tree set[MAX_BSETS];
|
|
|
|
struct btree_nr_keys nr;
|
|
u16 sib_u64s[2];
|
|
u16 whiteout_u64s;
|
|
u16 uncompacted_whiteout_u64s;
|
|
u8 page_order;
|
|
u8 unpack_fn_len;
|
|
|
|
/*
|
|
* XXX: add a delete sequence number, so when bch2_btree_node_relock()
|
|
* fails because the lock sequence number has changed - i.e. the
|
|
* contents were modified - we can still relock the node if it's still
|
|
* the one we want, without redoing the traversal
|
|
*/
|
|
|
|
/*
|
|
* For asynchronous splits/interior node updates:
|
|
* When we do a split, we allocate new child nodes and update the parent
|
|
* node to point to them: we update the parent in memory immediately,
|
|
* but then we must wait until the children have been written out before
|
|
* the update to the parent can be written - this is a list of the
|
|
* btree_updates that are blocking this node from being
|
|
* written:
|
|
*/
|
|
struct list_head write_blocked;
|
|
|
|
/*
|
|
* Also for asynchronous splits/interior node updates:
|
|
* If a btree node isn't reachable yet, we don't want to kick off
|
|
* another write - because that write also won't yet be reachable and
|
|
* marking it as completed before it's reachable would be incorrect:
|
|
*/
|
|
unsigned long will_make_reachable;
|
|
|
|
struct btree_ob_ref ob;
|
|
|
|
/* lru list */
|
|
struct list_head list;
|
|
|
|
struct btree_write writes[2];
|
|
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
bool *expensive_debug_checks;
|
|
#endif
|
|
};
|
|
|
|
struct btree_cache {
|
|
struct rhashtable table;
|
|
bool table_init_done;
|
|
/*
|
|
* We never free a struct btree, except on shutdown - we just put it on
|
|
* the btree_cache_freed list and reuse it later. This simplifies the
|
|
* code, and it doesn't cost us much memory as the memory usage is
|
|
* dominated by buffers that hold the actual btree node data and those
|
|
* can be freed - and the number of struct btrees allocated is
|
|
* effectively bounded.
|
|
*
|
|
* btree_cache_freeable effectively is a small cache - we use it because
|
|
* high order page allocations can be rather expensive, and it's quite
|
|
* common to delete and allocate btree nodes in quick succession. It
|
|
* should never grow past ~2-3 nodes in practice.
|
|
*/
|
|
struct mutex lock;
|
|
struct list_head live;
|
|
struct list_head freeable;
|
|
struct list_head freed;
|
|
|
|
/* Number of elements in live + freeable lists */
|
|
unsigned used;
|
|
unsigned reserve;
|
|
struct shrinker shrink;
|
|
|
|
/*
|
|
* If we need to allocate memory for a new btree node and that
|
|
* allocation fails, we can cannibalize another node in the btree cache
|
|
* to satisfy the allocation - lock to guarantee only one thread does
|
|
* this at a time:
|
|
*/
|
|
struct task_struct *alloc_lock;
|
|
struct closure_waitlist alloc_wait;
|
|
};
|
|
|
|
struct btree_node_iter {
|
|
struct btree_node_iter_set {
|
|
u16 k, end;
|
|
} data[MAX_BSETS];
|
|
};
|
|
|
|
enum btree_iter_type {
|
|
BTREE_ITER_KEYS,
|
|
BTREE_ITER_SLOTS,
|
|
BTREE_ITER_NODES,
|
|
};
|
|
|
|
#define BTREE_ITER_TYPE ((1 << 2) - 1)
|
|
|
|
#define BTREE_ITER_INTENT (1 << 2)
|
|
#define BTREE_ITER_PREFETCH (1 << 3)
|
|
/*
|
|
* Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
|
|
* @pos or the first key strictly greater than @pos
|
|
*/
|
|
#define BTREE_ITER_IS_EXTENTS (1 << 4)
|
|
#define BTREE_ITER_ERROR (1 << 5)
|
|
|
|
enum btree_iter_uptodate {
|
|
BTREE_ITER_UPTODATE = 0,
|
|
BTREE_ITER_NEED_PEEK = 1,
|
|
BTREE_ITER_NEED_RELOCK = 2,
|
|
BTREE_ITER_NEED_TRAVERSE = 3,
|
|
};
|
|
|
|
/*
|
|
* @pos - iterator's current position
|
|
* @level - current btree depth
|
|
* @locks_want - btree level below which we start taking intent locks
|
|
* @nodes_locked - bitmask indicating which nodes in @nodes are locked
|
|
* @nodes_intent_locked - bitmask indicating which locks are intent locks
|
|
*/
|
|
struct btree_iter {
|
|
struct bch_fs *c;
|
|
struct bpos pos;
|
|
|
|
u8 flags;
|
|
enum btree_iter_uptodate uptodate:4;
|
|
enum btree_id btree_id:4;
|
|
unsigned level:4,
|
|
locks_want:4,
|
|
nodes_locked:4,
|
|
nodes_intent_locked:4;
|
|
|
|
struct btree_iter_level {
|
|
struct btree *b;
|
|
struct btree_node_iter iter;
|
|
u32 lock_seq;
|
|
} l[BTREE_MAX_DEPTH];
|
|
|
|
/*
|
|
* Current unpacked key - so that bch2_btree_iter_next()/
|
|
* bch2_btree_iter_next_slot() can correctly advance pos.
|
|
*/
|
|
struct bkey k;
|
|
|
|
/*
|
|
* Circular linked list of linked iterators: linked iterators share
|
|
* locks (e.g. two linked iterators may have the same node intent
|
|
* locked, or read and write locked, at the same time), and insertions
|
|
* through one iterator won't invalidate the other linked iterators.
|
|
*/
|
|
|
|
/* Must come last: */
|
|
struct btree_iter *next;
|
|
};
|
|
|
|
#define BTREE_ITER_MAX 8
|
|
|
|
struct btree_insert_entry {
|
|
struct btree_iter *iter;
|
|
struct bkey_i *k;
|
|
};
|
|
|
|
struct btree_trans {
|
|
struct bch_fs *c;
|
|
size_t nr_restarts;
|
|
|
|
u8 nr_iters;
|
|
u8 iters_live;
|
|
u8 iters_linked;
|
|
u8 nr_updates;
|
|
|
|
unsigned mem_top;
|
|
unsigned mem_bytes;
|
|
void *mem;
|
|
|
|
struct btree_iter *iters;
|
|
u64 iter_ids[BTREE_ITER_MAX];
|
|
|
|
struct btree_insert_entry updates[BTREE_ITER_MAX];
|
|
|
|
struct btree_iter iters_onstack[2];
|
|
};
|
|
|
|
#define BTREE_FLAG(flag) \
|
|
static inline bool btree_node_ ## flag(struct btree *b) \
|
|
{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \
|
|
\
|
|
static inline void set_btree_node_ ## flag(struct btree *b) \
|
|
{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \
|
|
\
|
|
static inline void clear_btree_node_ ## flag(struct btree *b) \
|
|
{ clear_bit(BTREE_NODE_ ## flag, &b->flags); }
|
|
|
|
enum btree_flags {
|
|
BTREE_NODE_read_in_flight,
|
|
BTREE_NODE_read_error,
|
|
BTREE_NODE_dirty,
|
|
BTREE_NODE_need_write,
|
|
BTREE_NODE_noevict,
|
|
BTREE_NODE_write_idx,
|
|
BTREE_NODE_accessed,
|
|
BTREE_NODE_write_in_flight,
|
|
BTREE_NODE_just_written,
|
|
BTREE_NODE_dying,
|
|
BTREE_NODE_fake,
|
|
};
|
|
|
|
BTREE_FLAG(read_in_flight);
|
|
BTREE_FLAG(read_error);
|
|
BTREE_FLAG(dirty);
|
|
BTREE_FLAG(need_write);
|
|
BTREE_FLAG(noevict);
|
|
BTREE_FLAG(write_idx);
|
|
BTREE_FLAG(accessed);
|
|
BTREE_FLAG(write_in_flight);
|
|
BTREE_FLAG(just_written);
|
|
BTREE_FLAG(dying);
|
|
BTREE_FLAG(fake);
|
|
|
|
static inline struct btree_write *btree_current_write(struct btree *b)
|
|
{
|
|
return b->writes + btree_node_write_idx(b);
|
|
}
|
|
|
|
static inline struct btree_write *btree_prev_write(struct btree *b)
|
|
{
|
|
return b->writes + (btree_node_write_idx(b) ^ 1);
|
|
}
|
|
|
|
static inline struct bset_tree *bset_tree_last(struct btree *b)
|
|
{
|
|
EBUG_ON(!b->nsets);
|
|
return b->set + b->nsets - 1;
|
|
}
|
|
|
|
static inline void *
|
|
__btree_node_offset_to_ptr(const struct btree *b, u16 offset)
|
|
{
|
|
return (void *) ((u64 *) b->data + 1 + offset);
|
|
}
|
|
|
|
static inline u16
|
|
__btree_node_ptr_to_offset(const struct btree *b, const void *p)
|
|
{
|
|
u16 ret = (u64 *) p - 1 - (u64 *) b->data;
|
|
|
|
EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
|
|
return ret;
|
|
}
|
|
|
|
static inline struct bset *bset(const struct btree *b,
|
|
const struct bset_tree *t)
|
|
{
|
|
return __btree_node_offset_to_ptr(b, t->data_offset);
|
|
}
|
|
|
|
static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
|
|
{
|
|
t->end_offset =
|
|
__btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
|
|
}
|
|
|
|
static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
|
|
const struct bset *i)
|
|
{
|
|
t->data_offset = __btree_node_ptr_to_offset(b, i);
|
|
set_btree_bset_end(b, t);
|
|
}
|
|
|
|
static inline struct bset *btree_bset_first(struct btree *b)
|
|
{
|
|
return bset(b, b->set);
|
|
}
|
|
|
|
static inline struct bset *btree_bset_last(struct btree *b)
|
|
{
|
|
return bset(b, bset_tree_last(b));
|
|
}
|
|
|
|
static inline u16
|
|
__btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
|
|
{
|
|
return __btree_node_ptr_to_offset(b, k);
|
|
}
|
|
|
|
static inline struct bkey_packed *
|
|
__btree_node_offset_to_key(const struct btree *b, u16 k)
|
|
{
|
|
return __btree_node_offset_to_ptr(b, k);
|
|
}
|
|
|
|
static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
|
|
{
|
|
return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
|
|
}
|
|
|
|
#define btree_bkey_first(_b, _t) \
|
|
({ \
|
|
EBUG_ON(bset(_b, _t)->start != \
|
|
__btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
|
|
\
|
|
bset(_b, _t)->start; \
|
|
})
|
|
|
|
#define btree_bkey_last(_b, _t) \
|
|
({ \
|
|
EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \
|
|
vstruct_last(bset(_b, _t))); \
|
|
\
|
|
__btree_node_offset_to_key(_b, (_t)->end_offset); \
|
|
})
|
|
|
|
static inline unsigned bset_byte_offset(struct btree *b, void *i)
|
|
{
|
|
return i - (void *) b->data;
|
|
}
|
|
|
|
/* Type of keys @b contains: */
|
|
static inline enum bkey_type btree_node_type(struct btree *b)
|
|
{
|
|
return b->level ? BKEY_TYPE_BTREE : b->btree_id;
|
|
}
|
|
|
|
static inline const struct bkey_ops *btree_node_ops(struct btree *b)
|
|
{
|
|
return &bch2_bkey_ops[btree_node_type(b)];
|
|
}
|
|
|
|
static inline bool btree_node_has_ptrs(struct btree *b)
|
|
{
|
|
return btree_type_has_ptrs(btree_node_type(b));
|
|
}
|
|
|
|
static inline bool btree_node_is_extents(struct btree *b)
|
|
{
|
|
return btree_node_type(b) == BKEY_TYPE_EXTENTS;
|
|
}
|
|
|
|
struct btree_root {
|
|
struct btree *b;
|
|
|
|
struct btree_update *as;
|
|
|
|
/* On disk root - see async splits: */
|
|
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
|
|
u8 level;
|
|
u8 alive;
|
|
};
|
|
|
|
/*
|
|
* Optional hook that will be called just prior to a btree node update, when
|
|
* we're holding the write lock and we know what key is about to be overwritten:
|
|
*/
|
|
|
|
enum btree_insert_ret {
|
|
BTREE_INSERT_OK,
|
|
/* extent spanned multiple leaf nodes: have to traverse to next node: */
|
|
BTREE_INSERT_NEED_TRAVERSE,
|
|
/* write lock held for too long */
|
|
/* leaf node needs to be split */
|
|
BTREE_INSERT_BTREE_NODE_FULL,
|
|
BTREE_INSERT_ENOSPC,
|
|
BTREE_INSERT_NEED_GC_LOCK,
|
|
};
|
|
|
|
enum btree_gc_coalesce_fail_reason {
|
|
BTREE_GC_COALESCE_FAIL_RESERVE_GET,
|
|
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
|
|
BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
|
|
};
|
|
|
|
enum btree_node_sibling {
|
|
btree_prev_sib,
|
|
btree_next_sib,
|
|
};
|
|
|
|
typedef struct btree_nr_keys (*sort_fix_overlapping_fn)(struct bset *,
|
|
struct btree *,
|
|
struct btree_node_iter *);
|
|
|
|
#endif /* _BCACHEFS_BTREE_TYPES_H */
|