bcachefs-tools/libbcache/btree_gc.c
2017-03-10 12:40:01 -09:00

956 lines
23 KiB
C

/*
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright (C) 2014 Datera Inc.
*/
#include "bcache.h"
#include "alloc.h"
#include "bkey_methods.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "btree_io.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "super-io.h"
#include "writeback.h"
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/rcupdate.h>
#include <trace/events/bcache.h>
struct range_checks {
struct range_level {
struct bpos min;
struct bpos max;
} l[BTREE_MAX_DEPTH];
unsigned depth;
};
static void btree_node_range_checks_init(struct range_checks *r, unsigned depth)
{
unsigned i;
for (i = 0; i < BTREE_MAX_DEPTH; i++)
r->l[i].min = r->l[i].max = POS_MIN;
r->depth = depth;
}
static void btree_node_range_checks(struct bch_fs *c, struct btree *b,
struct range_checks *r)
{
struct range_level *l = &r->l[b->level];
struct bpos expected_min = bkey_cmp(l->min, l->max)
? btree_type_successor(b->btree_id, l->max)
: l->max;
bch_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c,
"btree node has incorrect min key: %llu:%llu != %llu:%llu",
b->data->min_key.inode,
b->data->min_key.offset,
expected_min.inode,
expected_min.offset);
l->max = b->data->max_key;
if (b->level > r->depth) {
l = &r->l[b->level - 1];
bch_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c,
"btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu",
b->data->min_key.inode,
b->data->min_key.offset,
l->min.inode,
l->min.offset);
bch_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c,
"btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu",
b->data->max_key.inode,
b->data->max_key.offset,
l->max.inode,
l->max.offset);
if (bkey_cmp(b->data->max_key, POS_MAX))
l->min = l->max =
btree_type_successor(b->btree_id,
b->data->max_key);
}
}
u8 bch_btree_key_recalc_oldest_gen(struct bch_fs *c, struct bkey_s_c k)
{
const struct bch_extent_ptr *ptr;
u8 max_stale = 0;
if (bkey_extent_is_data(k.k)) {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
extent_for_each_ptr(e, ptr) {
struct bch_dev *ca = c->devs[ptr->dev];
size_t b = PTR_BUCKET_NR(ca, ptr);
if (__gen_after(ca->oldest_gens[b], ptr->gen))
ca->oldest_gens[b] = ptr->gen;
max_stale = max(max_stale, ptr_stale(ca, ptr));
}
}
return max_stale;
}
/*
* For runtime mark and sweep:
*/
static u8 bch_btree_mark_key(struct bch_fs *c, enum bkey_type type,
struct bkey_s_c k)
{
switch (type) {
case BKEY_TYPE_BTREE:
bch_gc_mark_key(c, k, c->sb.btree_node_size, true);
return 0;
case BKEY_TYPE_EXTENTS:
bch_gc_mark_key(c, k, k.k->size, false);
return bch_btree_key_recalc_oldest_gen(c, k);
default:
BUG();
}
}
u8 bch_btree_mark_key_initial(struct bch_fs *c, enum bkey_type type,
struct bkey_s_c k)
{
atomic64_set(&c->key_version,
max_t(u64, k.k->version.lo,
atomic64_read(&c->key_version)));
return bch_btree_mark_key(c, type, k);
}
static bool btree_gc_mark_node(struct bch_fs *c, struct btree *b)
{
if (btree_node_has_ptrs(b)) {
struct btree_node_iter iter;
struct bkey unpacked;
struct bkey_s_c k;
u8 stale = 0;
for_each_btree_node_key_unpack(b, k, &iter,
btree_node_is_extents(b),
&unpacked) {
bkey_debugcheck(c, b, k);
stale = max(stale, bch_btree_mark_key(c,
btree_node_type(b), k));
}
if (btree_gc_rewrite_disabled(c))
return false;
if (stale > 10)
return true;
}
if (btree_gc_always_rewrite(c))
return true;
return false;
}
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
write_seqcount_begin(&c->gc_pos_lock);
c->gc_pos = new_pos;
write_seqcount_end(&c->gc_pos_lock);
}
static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
__gc_pos_set(c, new_pos);
}
static int bch_gc_btree(struct bch_fs *c, enum btree_id btree_id)
{
struct btree_iter iter;
struct btree *b;
bool should_rewrite;
struct range_checks r;
unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1;
int ret;
/*
* if expensive_debug_checks is on, run range_checks on all leaf nodes:
*/
if (expensive_debug_checks(c))
depth = 0;
btree_node_range_checks_init(&r, depth);
for_each_btree_node(&iter, c, btree_id, POS_MIN, depth, b) {
btree_node_range_checks(c, b, &r);
bch_verify_btree_nr_keys(b);
should_rewrite = btree_gc_mark_node(c, b);
gc_pos_set(c, gc_pos_btree_node(b));
if (should_rewrite)
bch_btree_node_rewrite(&iter, b, NULL);
bch_btree_iter_cond_resched(&iter);
}
ret = bch_btree_iter_unlock(&iter);
if (ret)
return ret;
mutex_lock(&c->btree_root_lock);
b = c->btree_roots[btree_id].b;
bch_btree_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key));
gc_pos_set(c, gc_pos_btree_root(b->btree_id));
mutex_unlock(&c->btree_root_lock);
return 0;
}
static void bch_mark_allocator_buckets(struct bch_fs *c)
{
struct bch_dev *ca;
struct open_bucket *ob;
size_t i, j, iter;
unsigned ci;
for_each_member_device(ca, c, ci) {
spin_lock(&ca->freelist_lock);
fifo_for_each_entry(i, &ca->free_inc, iter)
bch_mark_alloc_bucket(ca, &ca->buckets[i], true);
for (j = 0; j < RESERVE_NR; j++)
fifo_for_each_entry(i, &ca->free[j], iter)
bch_mark_alloc_bucket(ca, &ca->buckets[i], true);
spin_unlock(&ca->freelist_lock);
}
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
const struct bch_extent_ptr *ptr;
mutex_lock(&ob->lock);
open_bucket_for_each_ptr(ob, ptr) {
ca = c->devs[ptr->dev];
bch_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), true);
}
mutex_unlock(&ob->lock);
}
}
static void mark_metadata_sectors(struct bch_dev *ca, u64 start, u64 end,
enum bucket_data_type type)
{
u64 b = start >> ca->bucket_bits;
do {
bch_mark_metadata_bucket(ca, ca->buckets + b, type, true);
b++;
} while (b < end >> ca->bucket_bits);
}
static void bch_dev_mark_superblocks(struct bch_dev *ca)
{
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
unsigned i;
for (i = 0; i < layout->nr_superblocks; i++) {
if (layout->sb_offset[i] == BCH_SB_SECTOR)
mark_metadata_sectors(ca, 0, BCH_SB_SECTOR,
BUCKET_SB);
mark_metadata_sectors(ca,
layout->sb_offset[i],
layout->sb_offset[i] +
(1 << layout->sb_max_size_bits),
BUCKET_SB);
}
}
/*
* Mark non btree metadata - prios, journal
*/
void bch_mark_dev_metadata(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
u64 b;
lockdep_assert_held(&c->sb_lock);
bch_dev_mark_superblocks(ca);
spin_lock(&c->journal.lock);
for (i = 0; i < ca->journal.nr; i++) {
b = ca->journal.buckets[i];
bch_mark_metadata_bucket(ca, ca->buckets + b,
BUCKET_JOURNAL, true);
}
spin_unlock(&c->journal.lock);
spin_lock(&ca->prio_buckets_lock);
for (i = 0; i < prio_buckets(ca) * 2; i++) {
b = ca->prio_buckets[i];
if (b)
bch_mark_metadata_bucket(ca, ca->buckets + b,
BUCKET_PRIOS, true);
}
spin_unlock(&ca->prio_buckets_lock);
}
static void bch_mark_metadata(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
mutex_lock(&c->sb_lock);
gc_pos_set(c, gc_phase(GC_PHASE_SB_METADATA));
for_each_online_member(ca, c, i)
bch_mark_dev_metadata(c, ca);
mutex_unlock(&c->sb_lock);
}
/* Also see bch_pending_btree_node_free_insert_done() */
static void bch_mark_pending_btree_node_frees(struct bch_fs *c)
{
struct bch_fs_usage stats = { 0 };
struct btree_interior_update *as;
struct pending_btree_node_free *d;
mutex_lock(&c->btree_interior_update_lock);
gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
for_each_pending_btree_node_free(c, as, d)
if (d->index_update_done)
__bch_gc_mark_key(c, bkey_i_to_s_c(&d->key),
c->sb.btree_node_size, true,
&stats);
/*
* Don't apply stats - pending deletes aren't tracked in
* bch_alloc_stats:
*/
mutex_unlock(&c->btree_interior_update_lock);
}
/**
* bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes
*/
void bch_gc(struct bch_fs *c)
{
struct bch_dev *ca;
struct bucket *g;
struct bucket_mark new;
u64 start_time = local_clock();
unsigned i;
int cpu;
/*
* Walk _all_ references to buckets, and recompute them:
*
* Order matters here:
* - Concurrent GC relies on the fact that we have a total ordering for
* everything that GC walks - see gc_will_visit_node(),
* gc_will_visit_root()
*
* - also, references move around in the course of index updates and
* various other crap: everything needs to agree on the ordering
* references are allowed to move around in - e.g., we're allowed to
* start with a reference owned by an open_bucket (the allocator) and
* move it to the btree, but not the reverse.
*
* This is necessary to ensure that gc doesn't miss references that
* move around - if references move backwards in the ordering GC
* uses, GC could skip past them
*/
if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
return;
trace_bcache_gc_start(c);
/*
* Do this before taking gc_lock - bch_disk_reservation_get() blocks on
* gc_lock if sectors_available goes to 0:
*/
bch_recalc_sectors_available(c);
down_write(&c->gc_lock);
lg_global_lock(&c->usage_lock);
/*
* Indicates to buckets code that gc is now in progress - done under
* usage_lock to avoid racing with bch_mark_key():
*/
__gc_pos_set(c, GC_POS_MIN);
/* Save a copy of the existing bucket stats while we recompute them: */
for_each_member_device(ca, c, i) {
ca->usage_cached = __bch_dev_usage_read(ca);
for_each_possible_cpu(cpu) {
struct bch_dev_usage *p =
per_cpu_ptr(ca->usage_percpu, cpu);
memset(p, 0, sizeof(*p));
}
}
c->usage_cached = __bch_fs_usage_read(c);
for_each_possible_cpu(cpu) {
struct bch_fs_usage *p =
per_cpu_ptr(c->usage_percpu, cpu);
memset(p->s, 0, sizeof(p->s));
p->persistent_reserved = 0;
}
lg_global_unlock(&c->usage_lock);
/* Clear bucket marks: */
for_each_member_device(ca, c, i)
for_each_bucket(g, ca) {
bucket_cmpxchg(g, new, ({
new.owned_by_allocator = 0;
new.data_type = 0;
new.cached_sectors = 0;
new.dirty_sectors = 0;
}));
ca->oldest_gens[g - ca->buckets] = new.gen;
}
/* Walk allocator's references: */
bch_mark_allocator_buckets(c);
/* Walk btree: */
while (c->gc_pos.phase < (int) BTREE_ID_NR) {
int ret = c->btree_roots[c->gc_pos.phase].b
? bch_gc_btree(c, (int) c->gc_pos.phase)
: 0;
if (ret) {
bch_err(c, "btree gc failed: %d", ret);
set_bit(BCH_FS_GC_FAILURE, &c->flags);
up_write(&c->gc_lock);
return;
}
gc_pos_set(c, gc_phase(c->gc_pos.phase + 1));
}
bch_mark_metadata(c);
bch_mark_pending_btree_node_frees(c);
bch_writeback_recalc_oldest_gens(c);
for_each_member_device(ca, c, i)
atomic_long_set(&ca->saturated_count, 0);
/* Indicates that gc is no longer in progress: */
gc_pos_set(c, gc_phase(GC_PHASE_DONE));
up_write(&c->gc_lock);
trace_bcache_gc_end(c);
bch_time_stats_update(&c->btree_gc_time, start_time);
/*
* Wake up allocator in case it was waiting for buckets
* because of not being able to inc gens
*/
for_each_member_device(ca, c, i)
bch_wake_allocator(ca);
}
/* Btree coalescing */
static void recalc_packed_keys(struct btree *b)
{
struct bkey_packed *k;
memset(&b->nr, 0, sizeof(b->nr));
BUG_ON(b->nsets != 1);
for (k = btree_bkey_first(b, b->set);
k != btree_bkey_last(b, b->set);
k = bkey_next(k))
btree_keys_account_key_add(&b->nr, 0, k);
}
static void bch_coalesce_nodes(struct btree *old_nodes[GC_MERGE_NODES],
struct btree_iter *iter)
{
struct btree *parent = iter->nodes[old_nodes[0]->level + 1];
struct bch_fs *c = iter->c;
unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
unsigned blocks = btree_blocks(c) * 2 / 3;
struct btree *new_nodes[GC_MERGE_NODES];
struct btree_interior_update *as;
struct btree_reserve *res;
struct keylist keylist;
struct bkey_format_state format_state;
struct bkey_format new_format;
memset(new_nodes, 0, sizeof(new_nodes));
bch_keylist_init(&keylist, NULL, 0);
/* Count keys that are not deleted */
for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
u64s += old_nodes[i]->nr.live_u64s;
nr_old_nodes = nr_new_nodes = i;
/* Check if all keys in @old_nodes could fit in one fewer node */
if (nr_old_nodes <= 1 ||
__vstruct_blocks(struct btree_node, c->block_bits,
DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
return;
res = bch_btree_reserve_get(c, parent, nr_old_nodes,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE,
NULL);
if (IS_ERR(res)) {
trace_bcache_btree_gc_coalesce_fail(c,
BTREE_GC_COALESCE_FAIL_RESERVE_GET);
return;
}
if (bch_keylist_realloc(&keylist, NULL, 0,
(BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
trace_bcache_btree_gc_coalesce_fail(c,
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
goto out;
}
/* Find a format that all keys in @old_nodes can pack into */
bch_bkey_format_init(&format_state);
for (i = 0; i < nr_old_nodes; i++)
__bch_btree_calc_format(&format_state, old_nodes[i]);
new_format = bch_bkey_format_done(&format_state);
/* Check if repacking would make any nodes too big to fit */
for (i = 0; i < nr_old_nodes; i++)
if (!bch_btree_node_format_fits(c, old_nodes[i], &new_format)) {
trace_bcache_btree_gc_coalesce_fail(c,
BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
goto out;
}
trace_bcache_btree_gc_coalesce(c, parent, nr_old_nodes);
as = bch_btree_interior_update_alloc(c);
for (i = 0; i < nr_old_nodes; i++)
bch_btree_interior_update_will_free_node(c, as, old_nodes[i]);
/* Repack everything with @new_format and sort down to one bset */
for (i = 0; i < nr_old_nodes; i++)
new_nodes[i] = __btree_node_alloc_replacement(c, old_nodes[i],
new_format, res);
/*
* Conceptually we concatenate the nodes together and slice them
* up at different boundaries.
*/
for (i = nr_new_nodes - 1; i > 0; --i) {
struct btree *n1 = new_nodes[i];
struct btree *n2 = new_nodes[i - 1];
struct bset *s1 = btree_bset_first(n1);
struct bset *s2 = btree_bset_first(n2);
struct bkey_packed *k, *last = NULL;
/* Calculate how many keys from @n2 we could fit inside @n1 */
u64s = 0;
for (k = s2->start;
k < vstruct_last(s2) &&
vstruct_blocks_plus(n1->data, c->block_bits,
u64s + k->u64s) <= blocks;
k = bkey_next(k)) {
last = k;
u64s += k->u64s;
}
if (u64s == le16_to_cpu(s2->u64s)) {
/* n2 fits entirely in n1 */
n1->key.k.p = n1->data->max_key = n2->data->max_key;
memcpy_u64s(vstruct_last(s1),
s2->start,
le16_to_cpu(s2->u64s));
le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
set_btree_bset_end(n1, n1->set);
six_unlock_write(&n2->lock);
bch_btree_node_free_never_inserted(c, n2);
six_unlock_intent(&n2->lock);
memmove(new_nodes + i - 1,
new_nodes + i,
sizeof(new_nodes[0]) * (nr_new_nodes - i));
new_nodes[--nr_new_nodes] = NULL;
} else if (u64s) {
/* move part of n2 into n1 */
n1->key.k.p = n1->data->max_key =
bkey_unpack_pos(n1, last);
n2->data->min_key =
btree_type_successor(iter->btree_id,
n1->data->max_key);
memcpy_u64s(vstruct_last(s1),
s2->start, u64s);
le16_add_cpu(&s1->u64s, u64s);
memmove(s2->start,
vstruct_idx(s2, u64s),
(le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
set_btree_bset_end(n1, n1->set);
set_btree_bset_end(n2, n2->set);
}
}
for (i = 0; i < nr_new_nodes; i++) {
struct btree *n = new_nodes[i];
recalc_packed_keys(n);
btree_node_reset_sib_u64s(n);
bch_btree_build_aux_trees(n);
six_unlock_write(&n->lock);
bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
}
/*
* The keys for the old nodes get deleted. We don't want to insert keys
* that compare equal to the keys for the new nodes we'll also be
* inserting - we can't because keys on a keylist must be strictly
* greater than the previous keys, and we also don't need to since the
* key for the new node will serve the same purpose (overwriting the key
* for the old node).
*/
for (i = 0; i < nr_old_nodes; i++) {
struct bkey_i delete;
unsigned j;
for (j = 0; j < nr_new_nodes; j++)
if (!bkey_cmp(old_nodes[i]->key.k.p,
new_nodes[j]->key.k.p))
goto next;
bkey_init(&delete.k);
delete.k.p = old_nodes[i]->key.k.p;
bch_keylist_add_in_order(&keylist, &delete);
next:
i = i;
}
/*
* Keys for the new nodes get inserted: bch_btree_insert_keys() only
* does the lookup once and thus expects the keys to be in sorted order
* so we have to make sure the new keys are correctly ordered with
* respect to the deleted keys added in the previous loop
*/
for (i = 0; i < nr_new_nodes; i++)
bch_keylist_add_in_order(&keylist, &new_nodes[i]->key);
/* Insert the newly coalesced nodes */
bch_btree_insert_node(parent, iter, &keylist, res, as);
BUG_ON(!bch_keylist_empty(&keylist));
BUG_ON(iter->nodes[old_nodes[0]->level] != old_nodes[0]);
BUG_ON(!bch_btree_iter_node_replace(iter, new_nodes[0]));
for (i = 0; i < nr_new_nodes; i++)
btree_open_bucket_put(c, new_nodes[i]);
/* Free the old nodes and update our sliding window */
for (i = 0; i < nr_old_nodes; i++) {
bch_btree_node_free_inmem(iter, old_nodes[i]);
six_unlock_intent(&old_nodes[i]->lock);
/*
* the index update might have triggered a split, in which case
* the nodes we coalesced - the new nodes we just created -
* might not be sibling nodes anymore - don't add them to the
* sliding window (except the first):
*/
if (!i) {
old_nodes[i] = new_nodes[i];
} else {
old_nodes[i] = NULL;
if (new_nodes[i])
six_unlock_intent(&new_nodes[i]->lock);
}
}
out:
bch_keylist_free(&keylist, NULL);
bch_btree_reserve_put(c, res);
}
static int bch_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
{
struct btree_iter iter;
struct btree *b;
unsigned i;
/* Sliding window of adjacent btree nodes */
struct btree *merge[GC_MERGE_NODES];
u32 lock_seq[GC_MERGE_NODES];
/*
* XXX: We don't have a good way of positively matching on sibling nodes
* that have the same parent - this code works by handling the cases
* where they might not have the same parent, and is thus fragile. Ugh.
*
* Perhaps redo this to use multiple linked iterators?
*/
memset(merge, 0, sizeof(merge));
__for_each_btree_node(&iter, c, btree_id, POS_MIN, 0, b, U8_MAX) {
memmove(merge + 1, merge,
sizeof(merge) - sizeof(merge[0]));
memmove(lock_seq + 1, lock_seq,
sizeof(lock_seq) - sizeof(lock_seq[0]));
merge[0] = b;
for (i = 1; i < GC_MERGE_NODES; i++) {
if (!merge[i] ||
!six_relock_intent(&merge[i]->lock, lock_seq[i]))
break;
if (merge[i]->level != merge[0]->level) {
six_unlock_intent(&merge[i]->lock);
break;
}
}
memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
bch_coalesce_nodes(merge, &iter);
for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
lock_seq[i] = merge[i]->lock.state.seq;
six_unlock_intent(&merge[i]->lock);
}
lock_seq[0] = merge[0]->lock.state.seq;
if (test_bit(BCH_FS_GC_STOPPING, &c->flags)) {
bch_btree_iter_unlock(&iter);
return -ESHUTDOWN;
}
bch_btree_iter_cond_resched(&iter);
/*
* If the parent node wasn't relocked, it might have been split
* and the nodes in our sliding window might not have the same
* parent anymore - blow away the sliding window:
*/
if (iter.nodes[iter.level + 1] &&
!btree_node_intent_locked(&iter, iter.level + 1))
memset(merge + 1, 0,
(GC_MERGE_NODES - 1) * sizeof(merge[0]));
}
return bch_btree_iter_unlock(&iter);
}
/**
* bch_coalesce - coalesce adjacent nodes with low occupancy
*/
void bch_coalesce(struct bch_fs *c)
{
u64 start_time;
enum btree_id id;
if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
return;
down_read(&c->gc_lock);
trace_bcache_gc_coalesce_start(c);
start_time = local_clock();
for (id = 0; id < BTREE_ID_NR; id++) {
int ret = c->btree_roots[id].b
? bch_coalesce_btree(c, id)
: 0;
if (ret) {
if (ret != -ESHUTDOWN)
bch_err(c, "btree coalescing failed: %d", ret);
set_bit(BCH_FS_GC_FAILURE, &c->flags);
return;
}
}
bch_time_stats_update(&c->btree_coalesce_time, start_time);
trace_bcache_gc_coalesce_end(c);
up_read(&c->gc_lock);
}
static int bch_gc_thread(void *arg)
{
struct bch_fs *c = arg;
struct io_clock *clock = &c->io_clock[WRITE];
unsigned long last = atomic_long_read(&clock->now);
unsigned last_kick = atomic_read(&c->kick_gc);
set_freezable();
while (1) {
unsigned long next = last + c->capacity / 16;
while (atomic_long_read(&clock->now) < next) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
return 0;
}
if (atomic_read(&c->kick_gc) != last_kick) {
__set_current_state(TASK_RUNNING);
break;
}
bch_io_clock_schedule_timeout(clock, next);
try_to_freeze();
}
last = atomic_long_read(&clock->now);
last_kick = atomic_read(&c->kick_gc);
bch_gc(c);
if (!btree_gc_coalesce_disabled(c))
bch_coalesce(c);
debug_check_no_locks_held();
}
return 0;
}
void bch_gc_thread_stop(struct bch_fs *c)
{
set_bit(BCH_FS_GC_STOPPING, &c->flags);
if (c->gc_thread)
kthread_stop(c->gc_thread);
c->gc_thread = NULL;
clear_bit(BCH_FS_GC_STOPPING, &c->flags);
}
int bch_gc_thread_start(struct bch_fs *c)
{
struct task_struct *p;
BUG_ON(c->gc_thread);
p = kthread_create(bch_gc_thread, c, "bcache_gc");
if (IS_ERR(p))
return PTR_ERR(p);
c->gc_thread = p;
wake_up_process(c->gc_thread);
return 0;
}
/* Initial GC computes bucket marks during startup */
static void bch_initial_gc_btree(struct bch_fs *c, enum btree_id id)
{
struct btree_iter iter;
struct btree *b;
struct range_checks r;
btree_node_range_checks_init(&r, 0);
if (!c->btree_roots[id].b)
return;
/*
* We have to hit every btree node before starting journal replay, in
* order for the journal seq blacklist machinery to work:
*/
for_each_btree_node(&iter, c, id, POS_MIN, 0, b) {
btree_node_range_checks(c, b, &r);
if (btree_node_has_ptrs(b)) {
struct btree_node_iter node_iter;
struct bkey unpacked;
struct bkey_s_c k;
for_each_btree_node_key_unpack(b, k, &node_iter,
btree_node_is_extents(b),
&unpacked)
bch_btree_mark_key_initial(c, btree_node_type(b), k);
}
bch_btree_iter_cond_resched(&iter);
}
bch_btree_iter_unlock(&iter);
bch_btree_mark_key(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(&c->btree_roots[id].b->key));
}
int bch_initial_gc(struct bch_fs *c, struct list_head *journal)
{
enum btree_id id;
bch_mark_metadata(c);
for (id = 0; id < BTREE_ID_NR; id++)
bch_initial_gc_btree(c, id);
if (journal)
bch_journal_mark(c, journal);
/*
* Skip past versions that might have possibly been used (as nonces),
* but hadn't had their pointers written:
*/
if (c->sb.encryption_type)
atomic64_add(1 << 16, &c->key_version);
gc_pos_set(c, gc_phase(GC_PHASE_DONE));
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
return 0;
}