bcachefs-tools/libbcache/btree_io.c
2017-03-10 12:40:01 -09:00

1739 lines
41 KiB
C

#include "bcache.h"
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_update.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "checksum.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal.h"
#include "super-io.h"
#include <trace/events/bcache.h>
static void verify_no_dups(struct btree *b,
struct bkey_packed *start,
struct bkey_packed *end)
{
#ifdef CONFIG_BCACHE_DEBUG
struct bkey_packed *k;
for (k = start; k != end && bkey_next(k) != end; k = bkey_next(k)) {
struct bkey l = bkey_unpack_key(b, k);
struct bkey r = bkey_unpack_key(b, bkey_next(k));
BUG_ON(btree_node_is_extents(b)
? bkey_cmp(l.p, bkey_start_pos(&r)) > 0
: bkey_cmp(l.p, bkey_start_pos(&r)) >= 0);
//BUG_ON(bkey_cmp_packed(&b->format, k, bkey_next(k)) >= 0);
}
#endif
}
static void clear_needs_whiteout(struct bset *i)
{
struct bkey_packed *k;
for (k = i->start; k != vstruct_last(i); k = bkey_next(k))
k->needs_whiteout = false;
}
static void set_needs_whiteout(struct bset *i)
{
struct bkey_packed *k;
for (k = i->start; k != vstruct_last(i); k = bkey_next(k))
k->needs_whiteout = true;
}
static void btree_bounce_free(struct bch_fs *c, unsigned order,
bool used_mempool, void *p)
{
if (used_mempool)
mempool_free(virt_to_page(p), &c->btree_bounce_pool);
else
free_pages((unsigned long) p, order);
}
static void *btree_bounce_alloc(struct bch_fs *c, unsigned order,
bool *used_mempool)
{
void *p;
BUG_ON(1 << order > btree_pages(c));
*used_mempool = false;
p = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order);
if (p)
return p;
*used_mempool = true;
return page_address(mempool_alloc(&c->btree_bounce_pool, GFP_NOIO));
}
typedef int (*sort_cmp_fn)(struct btree *,
struct bkey_packed *,
struct bkey_packed *);
struct sort_iter {
struct btree *b;
unsigned used;
struct sort_iter_set {
struct bkey_packed *k, *end;
} data[MAX_BSETS + 1];
};
static void sort_iter_init(struct sort_iter *iter, struct btree *b)
{
memset(iter, 0, sizeof(*iter));
iter->b = b;
}
static inline void __sort_iter_sift(struct sort_iter *iter,
unsigned from,
sort_cmp_fn cmp)
{
unsigned i;
for (i = from;
i + 1 < iter->used &&
cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0;
i++)
swap(iter->data[i], iter->data[i + 1]);
}
static inline void sort_iter_sift(struct sort_iter *iter, sort_cmp_fn cmp)
{
__sort_iter_sift(iter, 0, cmp);
}
static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp)
{
unsigned i = iter->used;
while (i--)
__sort_iter_sift(iter, i, cmp);
}
static void sort_iter_add(struct sort_iter *iter,
struct bkey_packed *k,
struct bkey_packed *end)
{
BUG_ON(iter->used >= ARRAY_SIZE(iter->data));
if (k != end)
iter->data[iter->used++] = (struct sort_iter_set) { k, end };
}
static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter)
{
return iter->used ? iter->data->k : NULL;
}
static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp)
{
iter->data->k = bkey_next(iter->data->k);
BUG_ON(iter->data->k > iter->data->end);
if (iter->data->k == iter->data->end)
memmove(&iter->data[0],
&iter->data[1],
sizeof(iter->data[0]) * --iter->used);
else
sort_iter_sift(iter, cmp);
}
static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter,
sort_cmp_fn cmp)
{
struct bkey_packed *ret = sort_iter_peek(iter);
if (ret)
sort_iter_advance(iter, cmp);
return ret;
}
static inline int sort_key_whiteouts_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
return bkey_cmp_packed(b, l, r);
}
static unsigned sort_key_whiteouts(struct bkey_packed *dst,
struct sort_iter *iter)
{
struct bkey_packed *in, *out = dst;
sort_iter_sort(iter, sort_key_whiteouts_cmp);
while ((in = sort_iter_next(iter, sort_key_whiteouts_cmp))) {
bkey_copy(out, in);
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static inline int sort_extent_whiteouts_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
struct bkey ul = bkey_unpack_key(b, l);
struct bkey ur = bkey_unpack_key(b, r);
return bkey_cmp(bkey_start_pos(&ul), bkey_start_pos(&ur));
}
static unsigned sort_extent_whiteouts(struct bkey_packed *dst,
struct sort_iter *iter)
{
const struct bkey_format *f = &iter->b->format;
struct bkey_packed *in, *out = dst;
struct bkey_i l, r;
bool prev = false, l_packed = false;
u64 max_packed_size = bkey_field_max(f, BKEY_FIELD_SIZE);
u64 max_packed_offset = bkey_field_max(f, BKEY_FIELD_OFFSET);
u64 new_size;
max_packed_size = min_t(u64, max_packed_size, KEY_SIZE_MAX);
sort_iter_sort(iter, sort_extent_whiteouts_cmp);
while ((in = sort_iter_next(iter, sort_extent_whiteouts_cmp))) {
EBUG_ON(bkeyp_val_u64s(f, in));
EBUG_ON(in->type != KEY_TYPE_DISCARD);
r.k = bkey_unpack_key(iter->b, in);
if (prev &&
bkey_cmp(l.k.p, bkey_start_pos(&r.k)) >= 0) {
if (bkey_cmp(l.k.p, r.k.p) >= 0)
continue;
new_size = l_packed
? min(max_packed_size, max_packed_offset -
bkey_start_offset(&l.k))
: KEY_SIZE_MAX;
new_size = min(new_size, r.k.p.offset -
bkey_start_offset(&l.k));
BUG_ON(new_size < l.k.size);
bch_key_resize(&l.k, new_size);
if (bkey_cmp(l.k.p, r.k.p) >= 0)
continue;
bch_cut_front(l.k.p, &r);
}
if (prev) {
if (!bkey_pack(out, &l, f)) {
BUG_ON(l_packed);
bkey_copy(out, &l);
}
out = bkey_next(out);
}
l = r;
prev = true;
l_packed = bkey_packed(in);
}
if (prev) {
if (!bkey_pack(out, &l, f)) {
BUG_ON(l_packed);
bkey_copy(out, &l);
}
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static unsigned should_compact_bset(struct btree *b, struct bset_tree *t,
bool compacting,
enum compact_mode mode)
{
unsigned live_u64s = b->nr.bset_u64s[t - b->set];
unsigned bset_u64s = le16_to_cpu(bset(b, t)->u64s);
if (live_u64s == bset_u64s)
return 0;
if (mode == COMPACT_LAZY) {
if (live_u64s * 4 < bset_u64s * 3 ||
(compacting && bset_unwritten(b, bset(b, t))))
return bset_u64s - live_u64s;
} else {
if (bset_written(b, bset(b, t)))
return bset_u64s - live_u64s;
}
return 0;
}
bool __bch_compact_whiteouts(struct bch_fs *c, struct btree *b,
enum compact_mode mode)
{
const struct bkey_format *f = &b->format;
struct bset_tree *t;
struct bkey_packed *whiteouts = NULL;
struct bkey_packed *u_start, *u_pos;
struct sort_iter sort_iter;
unsigned order, whiteout_u64s = 0, u64s;
bool used_mempool, compacting = false;
for_each_bset(b, t)
whiteout_u64s += should_compact_bset(b, t,
whiteout_u64s != 0, mode);
if (!whiteout_u64s)
return false;
sort_iter_init(&sort_iter, b);
whiteout_u64s += b->whiteout_u64s;
order = get_order(whiteout_u64s * sizeof(u64));
whiteouts = btree_bounce_alloc(c, order, &used_mempool);
u_start = u_pos = whiteouts;
memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b),
b->whiteout_u64s);
u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64);
sort_iter_add(&sort_iter, u_start, u_pos);
for_each_bset(b, t) {
struct bset *i = bset(b, t);
struct bkey_packed *k, *n, *out, *start, *end;
struct btree_node_entry *src = NULL, *dst = NULL;
if (t != b->set && bset_unwritten(b, i)) {
src = container_of(i, struct btree_node_entry, keys);
dst = max(write_block(b),
(void *) btree_bkey_last(b, t -1));
}
if (!should_compact_bset(b, t, compacting, mode)) {
if (src != dst) {
memmove(dst, src, sizeof(*src) +
le16_to_cpu(src->keys.u64s) *
sizeof(u64));
i = &dst->keys;
set_btree_bset(b, t, i);
}
continue;
}
compacting = true;
u_start = u_pos;
start = i->start;
end = vstruct_last(i);
if (src != dst) {
memmove(dst, src, sizeof(*src));
i = &dst->keys;
set_btree_bset(b, t, i);
}
out = i->start;
for (k = start; k != end; k = n) {
n = bkey_next(k);
if (bkey_deleted(k) && btree_node_is_extents(b))
continue;
if (bkey_whiteout(k) && !k->needs_whiteout)
continue;
if (bkey_whiteout(k)) {
unreserve_whiteout(b, t, k);
memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k));
set_bkeyp_val_u64s(f, u_pos, 0);
u_pos = bkey_next(u_pos);
} else if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
bkey_copy(out, k);
out = bkey_next(out);
}
}
sort_iter_add(&sort_iter, u_start, u_pos);
if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
i->u64s = cpu_to_le16((u64 *) out - i->_data);
set_btree_bset_end(b, t);
bch_bset_set_no_aux_tree(b, t);
}
}
b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts;
BUG_ON((void *) unwritten_whiteouts_start(c, b) <
(void *) btree_bkey_last(b, bset_tree_last(b)));
u64s = btree_node_is_extents(b)
? sort_extent_whiteouts(unwritten_whiteouts_start(c, b),
&sort_iter)
: sort_key_whiteouts(unwritten_whiteouts_start(c, b),
&sort_iter);
BUG_ON(u64s > b->whiteout_u64s);
BUG_ON(u64s != b->whiteout_u64s && !btree_node_is_extents(b));
BUG_ON(u_pos != whiteouts && !u64s);
if (u64s != b->whiteout_u64s) {
void *src = unwritten_whiteouts_start(c, b);
b->whiteout_u64s = u64s;
memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s);
}
verify_no_dups(b,
unwritten_whiteouts_start(c, b),
unwritten_whiteouts_end(c, b));
btree_bounce_free(c, order, used_mempool, whiteouts);
if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK)
bch_btree_build_aux_trees(b);
bch_btree_keys_u64s_remaining(c, b);
bch_verify_btree_nr_keys(b);
return true;
}
static bool bch_drop_whiteouts(struct btree *b)
{
struct bset_tree *t;
bool ret = false;
for_each_bset(b, t) {
struct bset *i = bset(b, t);
struct bkey_packed *k, *n, *out, *start, *end;
if (!should_compact_bset(b, t, true, true))
continue;
start = btree_bkey_first(b, t);
end = btree_bkey_last(b, t);
if (bset_unwritten(b, i) &&
t != b->set) {
struct bset *dst =
max_t(struct bset *, write_block(b),
(void *) btree_bkey_last(b, t -1));
memmove(dst, i, sizeof(struct bset));
i = dst;
set_btree_bset(b, t, i);
}
out = i->start;
for (k = start; k != end; k = n) {
n = bkey_next(k);
if (!bkey_whiteout(k)) {
bkey_copy(out, k);
out = bkey_next(out);
}
}
i->u64s = cpu_to_le16((u64 *) out - i->_data);
bch_bset_set_no_aux_tree(b, t);
ret = true;
}
bch_verify_btree_nr_keys(b);
return ret;
}
static inline int sort_keys_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
return bkey_cmp_packed(b, l, r) ?:
(int) bkey_whiteout(r) - (int) bkey_whiteout(l) ?:
(int) l->needs_whiteout - (int) r->needs_whiteout;
}
static unsigned sort_keys(struct bkey_packed *dst,
struct sort_iter *iter,
bool filter_whiteouts)
{
const struct bkey_format *f = &iter->b->format;
struct bkey_packed *in, *next, *out = dst;
sort_iter_sort(iter, sort_keys_cmp);
while ((in = sort_iter_next(iter, sort_keys_cmp))) {
if (bkey_whiteout(in) &&
(filter_whiteouts || !in->needs_whiteout))
continue;
if (bkey_whiteout(in) &&
(next = sort_iter_peek(iter)) &&
!bkey_cmp_packed(iter->b, in, next)) {
BUG_ON(in->needs_whiteout &&
next->needs_whiteout);
/*
* XXX racy, called with read lock from write path
*
* leads to spurious BUG_ON() in bkey_unpack_key() in
* debug mode
*/
next->needs_whiteout |= in->needs_whiteout;
continue;
}
if (bkey_whiteout(in)) {
memcpy_u64s(out, in, bkeyp_key_u64s(f, in));
set_bkeyp_val_u64s(f, out, 0);
} else {
bkey_copy(out, in);
}
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static inline int sort_extents_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
return bkey_cmp_packed(b, l, r) ?:
(int) bkey_deleted(l) - (int) bkey_deleted(r);
}
static unsigned sort_extents(struct bkey_packed *dst,
struct sort_iter *iter,
bool filter_whiteouts)
{
struct bkey_packed *in, *out = dst;
sort_iter_sort(iter, sort_extents_cmp);
while ((in = sort_iter_next(iter, sort_extents_cmp))) {
if (bkey_deleted(in))
continue;
if (bkey_whiteout(in) &&
(filter_whiteouts || !in->needs_whiteout))
continue;
bkey_copy(out, in);
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static void btree_node_sort(struct bch_fs *c, struct btree *b,
struct btree_iter *iter,
unsigned start_idx,
unsigned end_idx,
bool filter_whiteouts)
{
struct btree_node *out;
struct sort_iter sort_iter;
struct bset_tree *t;
struct bset *start_bset = bset(b, &b->set[start_idx]);
bool used_mempool = false;
u64 start_time;
unsigned i, u64s = 0, order, shift = end_idx - start_idx - 1;
bool sorting_entire_node = start_idx == 0 &&
end_idx == b->nsets;
sort_iter_init(&sort_iter, b);
for (t = b->set + start_idx;
t < b->set + end_idx;
t++) {
u64s += le16_to_cpu(bset(b, t)->u64s);
sort_iter_add(&sort_iter,
btree_bkey_first(b, t),
btree_bkey_last(b, t));
}
order = sorting_entire_node
? btree_page_order(c)
: get_order(__vstruct_bytes(struct btree_node, u64s));
out = btree_bounce_alloc(c, order, &used_mempool);
start_time = local_clock();
if (btree_node_is_extents(b))
filter_whiteouts = bset_written(b, start_bset);
u64s = btree_node_is_extents(b)
? sort_extents(out->keys.start, &sort_iter, filter_whiteouts)
: sort_keys(out->keys.start, &sort_iter, filter_whiteouts);
out->keys.u64s = cpu_to_le16(u64s);
BUG_ON(vstruct_end(&out->keys) > (void *) out + (PAGE_SIZE << order));
if (sorting_entire_node)
bch_time_stats_update(&c->btree_sort_time, start_time);
/* Make sure we preserve bset journal_seq: */
for (t = b->set + start_idx + 1;
t < b->set + end_idx;
t++)
start_bset->journal_seq =
max(start_bset->journal_seq,
bset(b, t)->journal_seq);
if (sorting_entire_node) {
unsigned u64s = le16_to_cpu(out->keys.u64s);
BUG_ON(order != btree_page_order(c));
/*
* Our temporary buffer is the same size as the btree node's
* buffer, we can just swap buffers instead of doing a big
* memcpy()
*/
*out = *b->data;
out->keys.u64s = cpu_to_le16(u64s);
swap(out, b->data);
set_btree_bset(b, b->set, &b->data->keys);
} else {
start_bset->u64s = out->keys.u64s;
memcpy_u64s(start_bset->start,
out->keys.start,
le16_to_cpu(out->keys.u64s));
}
for (i = start_idx + 1; i < end_idx; i++)
b->nr.bset_u64s[start_idx] +=
b->nr.bset_u64s[i];
b->nsets -= shift;
for (i = start_idx + 1; i < b->nsets; i++) {
b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift];
b->set[i] = b->set[i + shift];
}
for (i = b->nsets; i < MAX_BSETS; i++)
b->nr.bset_u64s[i] = 0;
set_btree_bset_end(b, &b->set[start_idx]);
bch_bset_set_no_aux_tree(b, &b->set[start_idx]);
btree_bounce_free(c, order, used_mempool, out);
bch_verify_btree_nr_keys(b);
}
/* Sort + repack in a new format: */
static struct btree_nr_keys sort_repack(struct bset *dst,
struct btree *src,
struct btree_node_iter *src_iter,
struct bkey_format *out_f,
bool filter_whiteouts)
{
struct bkey_format *in_f = &src->format;
struct bkey_packed *in, *out = vstruct_last(dst);
struct btree_nr_keys nr;
memset(&nr, 0, sizeof(nr));
while ((in = bch_btree_node_iter_next_all(src_iter, src))) {
if (filter_whiteouts && bkey_whiteout(in))
continue;
if (bch_bkey_transform(out_f, out, bkey_packed(in)
? in_f : &bch_bkey_format_current, in))
out->format = KEY_FORMAT_LOCAL_BTREE;
else
bkey_unpack(src, (void *) out, in);
btree_keys_account_key_add(&nr, 0, out);
out = bkey_next(out);
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
/* Sort, repack, and merge: */
static struct btree_nr_keys sort_repack_merge(struct bch_fs *c,
struct bset *dst,
struct btree *src,
struct btree_node_iter *iter,
struct bkey_format *out_f,
bool filter_whiteouts,
key_filter_fn filter,
key_merge_fn merge)
{
struct bkey_packed *k, *prev = NULL, *out;
struct btree_nr_keys nr;
BKEY_PADDED(k) tmp;
memset(&nr, 0, sizeof(nr));
while ((k = bch_btree_node_iter_next_all(iter, src))) {
if (filter_whiteouts && bkey_whiteout(k))
continue;
/*
* The filter might modify pointers, so we have to unpack the
* key and values to &tmp.k:
*/
bkey_unpack(src, &tmp.k, k);
if (filter && filter(c, src, bkey_i_to_s(&tmp.k)))
continue;
/* prev is always unpacked, for key merging: */
if (prev &&
merge &&
merge(c, src, (void *) prev, &tmp.k) == BCH_MERGE_MERGE)
continue;
/*
* the current key becomes the new prev: advance prev, then
* copy the current key - but first pack prev (in place):
*/
if (prev) {
bkey_pack(prev, (void *) prev, out_f);
btree_keys_account_key_add(&nr, 0, prev);
prev = bkey_next(prev);
} else {
prev = vstruct_last(dst);
}
bkey_copy(prev, &tmp.k);
}
if (prev) {
bkey_pack(prev, (void *) prev, out_f);
btree_keys_account_key_add(&nr, 0, prev);
out = bkey_next(prev);
} else {
out = vstruct_last(dst);
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
void bch_btree_sort_into(struct bch_fs *c,
struct btree *dst,
struct btree *src)
{
struct btree_nr_keys nr;
struct btree_node_iter src_iter;
u64 start_time = local_clock();
BUG_ON(dst->nsets != 1);
bch_bset_set_no_aux_tree(dst, dst->set);
bch_btree_node_iter_init_from_start(&src_iter, src,
btree_node_is_extents(src));
if (btree_node_ops(src)->key_normalize ||
btree_node_ops(src)->key_merge)
nr = sort_repack_merge(c, btree_bset_first(dst),
src, &src_iter,
&dst->format,
true,
btree_node_ops(src)->key_normalize,
btree_node_ops(src)->key_merge);
else
nr = sort_repack(btree_bset_first(dst),
src, &src_iter,
&dst->format,
true);
bch_time_stats_update(&c->btree_sort_time, start_time);
set_btree_bset_end(dst, dst->set);
dst->nr.live_u64s += nr.live_u64s;
dst->nr.bset_u64s[0] += nr.bset_u64s[0];
dst->nr.packed_keys += nr.packed_keys;
dst->nr.unpacked_keys += nr.unpacked_keys;
bch_verify_btree_nr_keys(dst);
}
#define SORT_CRIT (4096 / sizeof(u64))
/*
* We're about to add another bset to the btree node, so if there's currently
* too many bsets - sort some of them together:
*/
static bool btree_node_compact(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
unsigned unwritten_idx;
bool ret = false;
for (unwritten_idx = 0;
unwritten_idx < b->nsets;
unwritten_idx++)
if (bset_unwritten(b, bset(b, &b->set[unwritten_idx])))
break;
if (b->nsets - unwritten_idx > 1) {
btree_node_sort(c, b, iter, unwritten_idx,
b->nsets, false);
ret = true;
}
if (unwritten_idx > 1) {
btree_node_sort(c, b, iter, 0, unwritten_idx, false);
ret = true;
}
return ret;
}
void bch_btree_build_aux_trees(struct btree *b)
{
struct bset_tree *t;
for_each_bset(b, t)
bch_bset_build_aux_tree(b, t,
bset_unwritten(b, bset(b, t)) &&
t == bset_tree_last(b));
}
/*
* @bch_btree_init_next - initialize a new (unwritten) bset that can then be
* inserted into
*
* Safe to call if there already is an unwritten bset - will only add a new bset
* if @b doesn't already have one.
*
* Returns true if we sorted (i.e. invalidated iterators
*/
void bch_btree_init_next(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
struct btree_node_entry *bne;
bool did_sort;
EBUG_ON(!(b->lock.state.seq & 1));
EBUG_ON(iter && iter->nodes[b->level] != b);
did_sort = btree_node_compact(c, b, iter);
bne = want_new_bset(c, b);
if (bne)
bch_bset_init_next(b, &bne->keys);
bch_btree_build_aux_trees(b);
if (iter && did_sort)
bch_btree_iter_reinit_node(iter, b);
}
static struct nonce btree_nonce(struct btree *b,
struct bset *i,
unsigned offset)
{
return (struct nonce) {{
[0] = cpu_to_le32(offset),
[1] = ((__le32 *) &i->seq)[0],
[2] = ((__le32 *) &i->seq)[1],
[3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE,
}};
}
static void bset_encrypt(struct bch_fs *c, struct bset *i, struct nonce nonce)
{
bch_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data,
vstruct_end(i) - (void *) i->_data);
}
#define btree_node_error(b, c, ptr, fmt, ...) \
bch_fs_inconsistent(c, \
"btree node error at btree %u level %u/%u bucket %zu block %u u64s %u: " fmt,\
(b)->btree_id, (b)->level, btree_node_root(c, b) \
? btree_node_root(c, b)->level : -1, \
PTR_BUCKET_NR(ca, ptr), (b)->written, \
le16_to_cpu((i)->u64s), ##__VA_ARGS__)
static const char *validate_bset(struct bch_fs *c, struct btree *b,
struct bch_dev *ca,
const struct bch_extent_ptr *ptr,
struct bset *i, unsigned sectors,
unsigned *whiteout_u64s)
{
struct bkey_packed *k, *prev = NULL;
struct bpos prev_pos = POS_MIN;
bool seen_non_whiteout = false;
if (le16_to_cpu(i->version) != BCACHE_BSET_VERSION)
return "unsupported bset version";
if (b->written + sectors > c->sb.btree_node_size)
return "bset past end of btree node";
if (i != &b->data->keys && !i->u64s)
btree_node_error(b, c, ptr, "empty set");
if (!BSET_SEPARATE_WHITEOUTS(i)) {
seen_non_whiteout = true;
whiteout_u64s = 0;
}
for (k = i->start;
k != vstruct_last(i);) {
struct bkey_s_c u;
struct bkey tmp;
const char *invalid;
if (!k->u64s) {
btree_node_error(b, c, ptr,
"KEY_U64s 0: %zu bytes of metadata lost",
vstruct_end(i) - (void *) k);
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (bkey_next(k) > vstruct_last(i)) {
btree_node_error(b, c, ptr,
"key extends past end of bset");
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (k->format > KEY_FORMAT_CURRENT) {
btree_node_error(b, c, ptr,
"invalid bkey format %u", k->format);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN)
bch_bkey_swab(btree_node_type(b), &b->format, k);
u = bkey_disassemble(b, k, &tmp);
invalid = btree_bkey_invalid(c, b, u);
if (invalid) {
char buf[160];
bch_bkey_val_to_text(c, btree_node_type(b),
buf, sizeof(buf), u);
btree_node_error(b, c, ptr,
"invalid bkey %s: %s", buf, invalid);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
/*
* with the separate whiteouts thing (used for extents), the
* second set of keys actually can have whiteouts too, so we
* can't solely go off bkey_whiteout()...
*/
if (!seen_non_whiteout &&
(!bkey_whiteout(k) ||
(bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0))) {
*whiteout_u64s = k->_data - i->_data;
seen_non_whiteout = true;
} else if (bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0) {
btree_node_error(b, c, ptr,
"keys out of order: %llu:%llu > %llu:%llu",
prev_pos.inode,
prev_pos.offset,
u.k->p.inode,
bkey_start_offset(u.k));
/* XXX: repair this */
}
prev_pos = u.k->p;
prev = k;
k = bkey_next(k);
}
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
return NULL;
}
static bool extent_contains_ptr(struct bkey_s_c_extent e,
struct bch_extent_ptr match)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr)
if (!memcmp(ptr, &match, sizeof(*ptr)))
return true;
return false;
}
void bch_btree_node_read_done(struct bch_fs *c, struct btree *b,
struct bch_dev *ca,
const struct bch_extent_ptr *ptr)
{
struct btree_node_entry *bne;
struct bset *i = &b->data->keys;
struct btree_node_iter *iter;
struct btree_node *sorted;
bool used_mempool;
unsigned u64s;
const char *err;
struct bch_csum csum;
struct nonce nonce;
int ret;
iter = mempool_alloc(&c->fill_iter, GFP_NOIO);
__bch_btree_node_iter_init(iter, btree_node_is_extents(b));
err = "dynamic fault";
if (bch_meta_read_fault("btree"))
goto err;
while (b->written < c->sb.btree_node_size) {
unsigned sectors, whiteout_u64s = 0;
if (!b->written) {
i = &b->data->keys;
err = "bad magic";
if (le64_to_cpu(b->data->magic) != bset_magic(c))
goto err;
err = "bad btree header";
if (!b->data->keys.seq)
goto err;
err = "unknown checksum type";
if (!bch_checksum_type_valid(c, BSET_CSUM_TYPE(i)))
goto err;
/* XXX: retry checksum errors */
nonce = btree_nonce(b, i, b->written << 9);
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
err = "bad checksum";
if (bch_crc_cmp(csum, b->data->csum))
goto err;
bch_encrypt(c, BSET_CSUM_TYPE(i), nonce,
&b->data->flags,
(void *) &b->data->keys -
(void *) &b->data->flags);
nonce = nonce_add(nonce,
round_up((void *) &b->data->keys -
(void *) &b->data->flags,
CHACHA20_BLOCK_SIZE));
bset_encrypt(c, i, nonce);
sectors = vstruct_sectors(b->data, c->block_bits);
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) {
u64 *p = (u64 *) &b->data->ptr;
*p = swab64(*p);
bch_bpos_swab(&b->data->min_key);
bch_bpos_swab(&b->data->max_key);
}
err = "incorrect btree id";
if (BTREE_NODE_ID(b->data) != b->btree_id)
goto err;
err = "incorrect level";
if (BTREE_NODE_LEVEL(b->data) != b->level)
goto err;
err = "incorrect max key";
if (bkey_cmp(b->data->max_key, b->key.k.p))
goto err;
err = "incorrect backpointer";
if (!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key),
b->data->ptr))
goto err;
err = bch_bkey_format_validate(&b->data->format);
if (err)
goto err;
set_btree_bset(b, b->set, &b->data->keys);
btree_node_set_format(b, b->data->format);
} else {
bne = write_block(b);
i = &bne->keys;
if (i->seq != b->data->keys.seq)
break;
err = "unknown checksum type";
if (!bch_checksum_type_valid(c, BSET_CSUM_TYPE(i)))
goto err;
nonce = btree_nonce(b, i, b->written << 9);
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
err = "bad checksum";
if (memcmp(&csum, &bne->csum, sizeof(csum)))
goto err;
bset_encrypt(c, i, nonce);
sectors = vstruct_sectors(bne, c->block_bits);
}
err = validate_bset(c, b, ca, ptr, i, sectors, &whiteout_u64s);
if (err)
goto err;
b->written += sectors;
err = "insufficient memory";
ret = bch_journal_seq_should_ignore(c, le64_to_cpu(i->journal_seq), b);
if (ret < 0)
goto err;
if (ret)
continue;
__bch_btree_node_iter_push(iter, b,
i->start,
vstruct_idx(i, whiteout_u64s));
__bch_btree_node_iter_push(iter, b,
vstruct_idx(i, whiteout_u64s),
vstruct_last(i));
}
err = "corrupted btree";
for (bne = write_block(b);
bset_byte_offset(b, bne) < btree_bytes(c);
bne = (void *) bne + block_bytes(c))
if (bne->keys.seq == b->data->keys.seq)
goto err;
sorted = btree_bounce_alloc(c, ilog2(btree_pages(c)), &used_mempool);
sorted->keys.u64s = 0;
b->nr = btree_node_is_extents(b)
? bch_extent_sort_fix_overlapping(c, &sorted->keys, b, iter)
: bch_key_sort_fix_overlapping(&sorted->keys, b, iter);
u64s = le16_to_cpu(sorted->keys.u64s);
*sorted = *b->data;
sorted->keys.u64s = cpu_to_le16(u64s);
swap(sorted, b->data);
set_btree_bset(b, b->set, &b->data->keys);
b->nsets = 1;
BUG_ON(b->nr.live_u64s != u64s);
btree_bounce_free(c, ilog2(btree_pages(c)), used_mempool, sorted);
bch_bset_build_aux_tree(b, b->set, false);
set_needs_whiteout(btree_bset_first(b));
btree_node_reset_sib_u64s(b);
out:
mempool_free(iter, &c->fill_iter);
return;
err:
set_btree_node_read_error(b);
btree_node_error(b, c, ptr, "%s", err);
goto out;
}
static void btree_node_read_endio(struct bio *bio)
{
closure_put(bio->bi_private);
}
void bch_btree_node_read(struct bch_fs *c, struct btree *b)
{
uint64_t start_time = local_clock();
struct closure cl;
struct bio *bio;
struct extent_pick_ptr pick;
trace_bcache_btree_read(c, b);
closure_init_stack(&cl);
pick = bch_btree_pick_ptr(c, b);
if (bch_fs_fatal_err_on(!pick.ca, c,
"no cache device for btree node")) {
set_btree_node_read_error(b);
return;
}
bio = bio_alloc_bioset(GFP_NOIO, btree_pages(c), &c->btree_read_bio);
bio->bi_bdev = pick.ca->disk_sb.bdev;
bio->bi_iter.bi_sector = pick.ptr.offset;
bio->bi_iter.bi_size = btree_bytes(c);
bio->bi_end_io = btree_node_read_endio;
bio->bi_private = &cl;
bio_set_op_attrs(bio, REQ_OP_READ, REQ_META|READ_SYNC);
bch_bio_map(bio, b->data);
closure_get(&cl);
bch_generic_make_request(bio, c);
closure_sync(&cl);
if (bch_dev_fatal_io_err_on(bio->bi_error,
pick.ca, "IO error reading bucket %zu",
PTR_BUCKET_NR(pick.ca, &pick.ptr)) ||
bch_meta_read_fault("btree")) {
set_btree_node_read_error(b);
goto out;
}
bch_btree_node_read_done(c, b, pick.ca, &pick.ptr);
bch_time_stats_update(&c->btree_read_time, start_time);
out:
bio_put(bio);
percpu_ref_put(&pick.ca->io_ref);
}
int bch_btree_root_read(struct bch_fs *c, enum btree_id id,
const struct bkey_i *k, unsigned level)
{
struct closure cl;
struct btree *b;
int ret;
closure_init_stack(&cl);
do {
ret = mca_cannibalize_lock(c, &cl);
closure_sync(&cl);
} while (ret);
b = mca_alloc(c);
mca_cannibalize_unlock(c);
BUG_ON(IS_ERR(b));
bkey_copy(&b->key, k);
BUG_ON(mca_hash_insert(c, b, level, id));
bch_btree_node_read(c, b);
six_unlock_write(&b->lock);
if (btree_node_read_error(b)) {
six_unlock_intent(&b->lock);
return -EIO;
}
bch_btree_set_root_initial(c, b, NULL);
six_unlock_intent(&b->lock);
return 0;
}
void bch_btree_complete_write(struct bch_fs *c, struct btree *b,
struct btree_write *w)
{
bch_journal_pin_drop(&c->journal, &w->journal);
closure_wake_up(&w->wait);
}
static void btree_node_write_done(struct bch_fs *c, struct btree *b)
{
struct btree_write *w = btree_prev_write(b);
/*
* Before calling bch_btree_complete_write() - if the write errored, we
* have to halt new journal writes before they see this btree node
* write as completed:
*/
if (btree_node_write_error(b))
bch_journal_halt(&c->journal);
bch_btree_complete_write(c, b, w);
btree_node_io_unlock(b);
}
static void btree_node_write_endio(struct bio *bio)
{
struct btree *b = bio->bi_private;
struct bch_write_bio *wbio = to_wbio(bio);
struct bch_fs *c = wbio->c;
struct bio *orig = wbio->split ? wbio->orig : NULL;
struct closure *cl = !wbio->split ? wbio->cl : NULL;
struct bch_dev *ca = wbio->ca;
if (bch_dev_fatal_io_err_on(bio->bi_error, ca, "btree write") ||
bch_meta_write_fault("btree"))
set_btree_node_write_error(b);
if (wbio->bounce)
btree_bounce_free(c,
wbio->order,
wbio->used_mempool,
page_address(bio->bi_io_vec[0].bv_page));
if (wbio->put_bio)
bio_put(bio);
if (orig) {
bio_endio(orig);
} else {
btree_node_write_done(c, b);
if (cl)
closure_put(cl);
}
if (ca)
percpu_ref_put(&ca->io_ref);
}
void __bch_btree_node_write(struct bch_fs *c, struct btree *b,
struct closure *parent,
enum six_lock_type lock_type_held,
int idx_to_write)
{
struct bio *bio;
struct bch_write_bio *wbio;
struct bset_tree *t;
struct bset *i;
struct btree_node *bn = NULL;
struct btree_node_entry *bne = NULL;
BKEY_PADDED(key) k;
struct bkey_s_extent e;
struct bch_extent_ptr *ptr;
struct sort_iter sort_iter;
struct nonce nonce;
unsigned bytes_to_write, sectors_to_write, order, bytes, u64s;
u64 seq = 0;
bool used_mempool;
unsigned long old, new;
void *data;
/*
* We may only have a read lock on the btree node - the dirty bit is our
* "lock" against racing with other threads that may be trying to start
* a write, we do a write iff we clear the dirty bit. Since setting the
* dirty bit requires a write lock, we can't race with other threads
* redirtying it:
*/
do {
old = new = READ_ONCE(b->flags);
if (!(old & (1 << BTREE_NODE_dirty)))
return;
if (idx_to_write >= 0 &&
idx_to_write != !!(old & (1 << BTREE_NODE_write_idx)))
return;
if (old & (1 << BTREE_NODE_write_in_flight)) {
wait_on_bit_io(&b->flags,
BTREE_NODE_write_in_flight,
TASK_UNINTERRUPTIBLE);
continue;
}
new &= ~(1 << BTREE_NODE_dirty);
new |= (1 << BTREE_NODE_write_in_flight);
new |= (1 << BTREE_NODE_just_written);
new ^= (1 << BTREE_NODE_write_idx);
} while (cmpxchg_acquire(&b->flags, old, new) != old);
BUG_ON(!list_empty(&b->write_blocked));
BUG_ON(b->written >= c->sb.btree_node_size);
BUG_ON(bset_written(b, btree_bset_last(b)));
BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
if (lock_type_held == SIX_LOCK_intent) {
six_lock_write(&b->lock);
__bch_compact_whiteouts(c, b, COMPACT_WRITTEN);
six_unlock_write(&b->lock);
} else {
__bch_compact_whiteouts(c, b, COMPACT_WRITTEN_NO_WRITE_LOCK);
}
BUG_ON(b->uncompacted_whiteout_u64s);
sort_iter_init(&sort_iter, b);
bytes = !b->written
? sizeof(struct btree_node)
: sizeof(struct btree_node_entry);
bytes += b->whiteout_u64s * sizeof(u64);
for_each_bset(b, t) {
i = bset(b, t);
if (bset_written(b, i))
continue;
bytes += le16_to_cpu(i->u64s) * sizeof(u64);
sort_iter_add(&sort_iter,
btree_bkey_first(b, t),
btree_bkey_last(b, t));
seq = max(seq, le64_to_cpu(i->journal_seq));
}
order = get_order(bytes);
data = btree_bounce_alloc(c, order, &used_mempool);
if (!b->written) {
bn = data;
*bn = *b->data;
i = &bn->keys;
} else {
bne = data;
bne->keys = b->data->keys;
i = &bne->keys;
}
i->journal_seq = cpu_to_le64(seq);
i->u64s = 0;
if (!btree_node_is_extents(b)) {
sort_iter_add(&sort_iter,
unwritten_whiteouts_start(c, b),
unwritten_whiteouts_end(c, b));
SET_BSET_SEPARATE_WHITEOUTS(i, false);
} else {
memcpy_u64s(i->start,
unwritten_whiteouts_start(c, b),
b->whiteout_u64s);
i->u64s = cpu_to_le16(b->whiteout_u64s);
SET_BSET_SEPARATE_WHITEOUTS(i, true);
}
b->whiteout_u64s = 0;
u64s = btree_node_is_extents(b)
? sort_extents(vstruct_last(i), &sort_iter, false)
: sort_keys(i->start, &sort_iter, false);
le16_add_cpu(&i->u64s, u64s);
clear_needs_whiteout(i);
if (b->written && !i->u64s) {
/* Nothing to write: */
btree_bounce_free(c, order, used_mempool, data);
btree_node_write_done(c, b);
return;
}
BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
BUG_ON(i->seq != b->data->keys.seq);
i->version = cpu_to_le16(BCACHE_BSET_VERSION);
SET_BSET_CSUM_TYPE(i, bch_meta_checksum_type(c));
nonce = btree_nonce(b, i, b->written << 9);
if (bn) {
bch_encrypt(c, BSET_CSUM_TYPE(i), nonce,
&bn->flags,
(void *) &b->data->keys -
(void *) &b->data->flags);
nonce = nonce_add(nonce,
round_up((void *) &b->data->keys -
(void *) &b->data->flags,
CHACHA20_BLOCK_SIZE));
bset_encrypt(c, i, nonce);
nonce = btree_nonce(b, i, b->written << 9);
bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
} else {
bset_encrypt(c, i, nonce);
bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
}
bytes_to_write = vstruct_end(i) - data;
sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
memset(data + bytes_to_write, 0,
(sectors_to_write << 9) - bytes_to_write);
BUG_ON(b->written + sectors_to_write > c->sb.btree_node_size);
trace_bcache_btree_write(b, bytes_to_write, sectors_to_write);
/*
* We handle btree write errors by immediately halting the journal -
* after we've done that, we can't issue any subsequent btree writes
* because they might have pointers to new nodes that failed to write.
*
* Furthermore, there's no point in doing any more btree writes because
* with the journal stopped, we're never going to update the journal to
* reflect that those writes were done and the data flushed from the
* journal:
*
* Make sure to update b->written so bch_btree_init_next() doesn't
* break:
*/
if (bch_journal_error(&c->journal) ||
c->opts.nochanges) {
set_btree_node_noevict(b);
b->written += sectors_to_write;
btree_bounce_free(c, order, used_mempool, data);
btree_node_write_done(c, b);
return;
}
bio = bio_alloc_bioset(GFP_NOIO, 1 << order, &c->bio_write);
wbio = to_wbio(bio);
wbio->cl = parent;
wbio->bounce = true;
wbio->put_bio = true;
wbio->order = order;
wbio->used_mempool = used_mempool;
bio->bi_iter.bi_size = sectors_to_write << 9;
bio->bi_end_io = btree_node_write_endio;
bio->bi_private = b;
bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_META|WRITE_SYNC|REQ_FUA);
if (parent)
closure_get(parent);
bch_bio_map(bio, data);
/*
* If we're appending to a leaf node, we don't technically need FUA -
* this write just needs to be persisted before the next journal write,
* which will be marked FLUSH|FUA.
*
* Similarly if we're writing a new btree root - the pointer is going to
* be in the next journal entry.
*
* But if we're writing a new btree node (that isn't a root) or
* appending to a non leaf btree node, we need either FUA or a flush
* when we write the parent with the new pointer. FUA is cheaper than a
* flush, and writes appending to leaf nodes aren't blocking anything so
* just make all btree node writes FUA to keep things sane.
*/
bkey_copy(&k.key, &b->key);
e = bkey_i_to_s_extent(&k.key);
extent_for_each_ptr(e, ptr)
ptr->offset += b->written;
extent_for_each_ptr(e, ptr)
atomic64_add(sectors_to_write,
&c->devs[ptr->dev]->btree_sectors_written);
b->written += sectors_to_write;
bch_submit_wbio_replicas(wbio, c, &k.key, true);
}
/*
* Work that must be done with write lock held:
*/
bool bch_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
{
bool invalidated_iter = false;
struct btree_node_entry *bne;
struct bset_tree *t;
if (!btree_node_just_written(b))
return false;
BUG_ON(b->whiteout_u64s);
BUG_ON(b->uncompacted_whiteout_u64s);
clear_btree_node_just_written(b);
/*
* Note: immediately after write, bset_unwritten()/bset_written() don't
* work - the amount of data we had to write after compaction might have
* been smaller than the offset of the last bset.
*
* However, we know that all bsets have been written here, as long as
* we're still holding the write lock:
*/
/*
* XXX: decide if we really want to unconditionally sort down to a
* single bset:
*/
if (b->nsets > 1) {
btree_node_sort(c, b, NULL, 0, b->nsets, true);
invalidated_iter = true;
} else {
invalidated_iter = bch_drop_whiteouts(b);
}
for_each_bset(b, t)
set_needs_whiteout(bset(b, t));
bch_btree_verify(c, b);
/*
* If later we don't unconditionally sort down to a single bset, we have
* to ensure this is still true:
*/
BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
bne = want_new_bset(c, b);
if (bne)
bch_bset_init_next(b, &bne->keys);
bch_btree_build_aux_trees(b);
return invalidated_iter;
}
/*
* Use this one if the node is intent locked:
*/
void bch_btree_node_write(struct bch_fs *c, struct btree *b,
struct closure *parent,
enum six_lock_type lock_type_held,
int idx_to_write)
{
BUG_ON(lock_type_held == SIX_LOCK_write);
if (lock_type_held == SIX_LOCK_intent ||
six_trylock_convert(&b->lock, SIX_LOCK_read,
SIX_LOCK_intent)) {
__bch_btree_node_write(c, b, parent, SIX_LOCK_intent, idx_to_write);
six_lock_write(&b->lock);
bch_btree_post_write_cleanup(c, b);
six_unlock_write(&b->lock);
if (lock_type_held == SIX_LOCK_read)
six_lock_downgrade(&b->lock);
} else {
__bch_btree_node_write(c, b, parent, SIX_LOCK_read, idx_to_write);
}
}
static void bch_btree_node_write_dirty(struct bch_fs *c, struct btree *b,
struct closure *parent)
{
six_lock_read(&b->lock);
BUG_ON(b->level);
bch_btree_node_write(c, b, parent, SIX_LOCK_read, -1);
six_unlock_read(&b->lock);
}
/*
* Write all dirty btree nodes to disk, including roots
*/
void bch_btree_flush(struct bch_fs *c)
{
struct closure cl;
struct btree *b;
struct bucket_table *tbl;
struct rhash_head *pos;
bool dropped_lock;
unsigned i;
closure_init_stack(&cl);
rcu_read_lock();
do {
dropped_lock = false;
i = 0;
restart:
tbl = rht_dereference_rcu(c->btree_cache_table.tbl,
&c->btree_cache_table);
for (; i < tbl->size; i++)
rht_for_each_entry_rcu(b, pos, tbl, i, hash)
/*
* XXX - locking for b->level, when called from
* bch_journal_move()
*/
if (!b->level && btree_node_dirty(b)) {
rcu_read_unlock();
bch_btree_node_write_dirty(c, b, &cl);
dropped_lock = true;
rcu_read_lock();
goto restart;
}
} while (dropped_lock);
rcu_read_unlock();
closure_sync(&cl);
}
/**
* bch_btree_node_flush_journal - flush any journal entries that contain keys
* from this node
*
* The bset's journal sequence number is used for preserving ordering of index
* updates across unclean shutdowns - it's used to ignore bsets newer than the
* most recent journal entry.
*
* But when rewriting btree nodes we compact all the bsets in a btree node - and
* if we compacted a bset that should be ignored with bsets we do need, that
* would be bad. So to avoid that, prior to making the new node visible ensure
* that the journal has been flushed so that all the bsets we compacted should
* be visible.
*/
void bch_btree_node_flush_journal_entries(struct bch_fs *c,
struct btree *b,
struct closure *cl)
{
int i = b->nsets;
/*
* Journal sequence numbers in the different bsets will always be in
* ascending order, we only need to flush the highest - except that the
* most recent bset might not have a journal sequence number yet, so we
* need to loop:
*/
while (i--) {
u64 seq = le64_to_cpu(bset(b, &b->set[i])->journal_seq);
if (seq) {
bch_journal_flush_seq_async(&c->journal, seq, cl);
break;
}
}
}