bcachefs-tools/libbcache/btree_iter.c
2017-03-10 12:40:01 -09:00

1151 lines
29 KiB
C

#include "bcache.h"
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "debug.h"
#include "extents.h"
#include <trace/events/bcache.h>
#define BTREE_ITER_NOT_END ((struct btree *) 1)
static inline bool is_btree_node(struct btree_iter *iter, unsigned l)
{
return iter->nodes[l] && iter->nodes[l] != BTREE_ITER_NOT_END;
}
/* Btree node locking: */
/*
* Updates the saved lock sequence number, so that btree_node_relock() will
* succeed:
*/
void btree_node_unlock_write(struct btree *b, struct btree_iter *iter)
{
struct btree_iter *linked;
EBUG_ON(iter->nodes[b->level] != b);
EBUG_ON(iter->lock_seq[b->level] + 1 != b->lock.state.seq);
for_each_linked_btree_node(iter, b, linked)
linked->lock_seq[b->level] += 2;
iter->lock_seq[b->level] += 2;
six_unlock_write(&b->lock);
}
void btree_node_lock_write(struct btree *b, struct btree_iter *iter)
{
struct btree_iter *linked;
unsigned readers = 0;
EBUG_ON(iter->nodes[b->level] != b);
EBUG_ON(iter->lock_seq[b->level] != b->lock.state.seq);
if (six_trylock_write(&b->lock))
return;
for_each_linked_btree_iter(iter, linked)
if (linked->nodes[b->level] == b &&
btree_node_read_locked(linked, b->level))
readers++;
if (likely(!readers)) {
six_lock_write(&b->lock);
} else {
/*
* Must drop our read locks before calling six_lock_write() -
* six_unlock() won't do wakeups until the reader count
* goes to 0, and it's safe because we have the node intent
* locked:
*/
atomic64_sub(__SIX_VAL(read_lock, readers),
&b->lock.state.counter);
six_lock_write(&b->lock);
atomic64_add(__SIX_VAL(read_lock, readers),
&b->lock.state.counter);
}
}
/* versions that allow iter to be null: */
void __btree_node_unlock_write(struct btree *b, struct btree_iter *iter)
{
if (likely(iter))
btree_node_unlock_write(b, iter);
else
six_unlock_write(&b->lock);
}
void __btree_node_lock_write(struct btree *b, struct btree_iter *iter)
{
if (likely(iter))
btree_node_lock_write(b, iter);
else
six_lock_write(&b->lock);
}
bool btree_node_relock(struct btree_iter *iter, unsigned level)
{
struct btree_iter *linked;
struct btree *b = iter->nodes[level];
enum btree_node_locked_type want = btree_lock_want(iter, level);
enum btree_node_locked_type have = btree_node_locked_type(iter, level);
if (want == have)
return true;
if (!is_btree_node(iter, level))
return false;
if (race_fault())
return false;
if (have != BTREE_NODE_UNLOCKED
? six_trylock_convert(&b->lock, have, want)
: six_relock_type(&b->lock, want, iter->lock_seq[level]))
goto success;
for_each_linked_btree_iter(iter, linked)
if (linked->nodes[level] == b &&
btree_node_locked_type(linked, level) == want &&
iter->lock_seq[level] == b->lock.state.seq) {
btree_node_unlock(iter, level);
six_lock_increment(&b->lock, want);
goto success;
}
return false;
success:
mark_btree_node_unlocked(iter, level);
mark_btree_node_locked(iter, level, want);
return true;
}
/* Slowpath: */
bool __bch_btree_node_lock(struct btree *b, struct bpos pos,
unsigned level,
struct btree_iter *iter,
enum six_lock_type type)
{
struct btree_iter *linked;
/* Can't have children locked before ancestors: */
EBUG_ON(iter->nodes_locked && level > __ffs(iter->nodes_locked));
/*
* Can't hold any read locks while we block taking an intent lock - see
* below for reasoning, and we should have already dropped any read
* locks in the current iterator
*/
EBUG_ON(type == SIX_LOCK_intent &&
iter->nodes_locked != iter->nodes_intent_locked);
for_each_linked_btree_iter(iter, linked)
if (linked->nodes[level] == b &&
btree_node_locked_type(linked, level) == type) {
six_lock_increment(&b->lock, type);
return true;
}
/*
* Must lock btree nodes in key order - this case hapens when locking
* the prev sibling in btree node merging:
*/
if (iter->nodes_locked &&
__ffs(iter->nodes_locked) == level &&
__btree_iter_cmp(iter->btree_id, pos, iter))
return false;
for_each_linked_btree_iter(iter, linked) {
if (!linked->nodes_locked)
continue;
/*
* Can't block taking an intent lock if we have _any_ nodes read
* locked:
*
* - Our read lock blocks another thread with an intent lock on
* the same node from getting a write lock, and thus from
* dropping its intent lock
*
* - And the other thread may have multiple nodes intent locked:
* both the node we want to intent lock, and the node we
* already have read locked - deadlock:
*/
if (type == SIX_LOCK_intent &&
linked->nodes_locked != linked->nodes_intent_locked) {
linked->locks_want = max(linked->locks_want,
iter->locks_want);
return false;
}
/* We have to lock btree nodes in key order: */
if (__btree_iter_cmp(iter->btree_id, pos, linked) < 0)
return false;
/*
* Interior nodes must be locked before their descendants: if
* another iterator has possible descendants locked of the node
* we're about to lock, it must have the ancestors locked too:
*/
if (linked->btree_id == iter->btree_id &&
level > __fls(linked->nodes_locked)) {
linked->locks_want = max(linked->locks_want,
iter->locks_want);
return false;
}
}
six_lock_type(&b->lock, type);
return true;
}
/* Btree iterator locking: */
static void btree_iter_drop_extra_locks(struct btree_iter *iter)
{
unsigned l;
while (iter->nodes_locked &&
(l = __fls(iter->nodes_locked)) > iter->locks_want) {
if (!btree_node_locked(iter, l))
panic("l %u nodes_locked %u\n", l, iter->nodes_locked);
if (l > iter->level) {
btree_node_unlock(iter, l);
} else if (btree_node_intent_locked(iter, l)) {
six_lock_downgrade(&iter->nodes[l]->lock);
iter->nodes_intent_locked ^= 1 << l;
}
}
}
bool __bch_btree_iter_set_locks_want(struct btree_iter *iter,
unsigned new_locks_want)
{
struct btree_iter *linked;
unsigned l;
/* Drop locks we don't want anymore: */
if (new_locks_want < iter->locks_want)
for_each_linked_btree_iter(iter, linked)
if (linked->locks_want > new_locks_want) {
linked->locks_want = max_t(unsigned, 1,
new_locks_want);
btree_iter_drop_extra_locks(linked);
}
iter->locks_want = new_locks_want;
btree_iter_drop_extra_locks(iter);
for (l = iter->level; l < iter->locks_want && iter->nodes[l]; l++)
if (!btree_node_relock(iter, l))
goto fail;
return true;
fail:
/*
* Just an optimization: ancestor nodes must be locked before child
* nodes, so set locks_want on iterators that might lock ancestors
* before us to avoid getting -EINTR later:
*/
for_each_linked_btree_iter(iter, linked)
if (linked->btree_id == iter->btree_id &&
btree_iter_cmp(linked, iter) <= 0)
linked->locks_want = max_t(unsigned, linked->locks_want,
new_locks_want);
return false;
}
static int __bch_btree_iter_unlock(struct btree_iter *iter)
{
BUG_ON(iter->error == -EINTR);
while (iter->nodes_locked)
btree_node_unlock(iter, __ffs(iter->nodes_locked));
return iter->error;
}
int bch_btree_iter_unlock(struct btree_iter *iter)
{
struct btree_iter *linked;
for_each_linked_btree_iter(iter, linked)
__bch_btree_iter_unlock(linked);
return __bch_btree_iter_unlock(iter);
}
/* Btree iterator: */
#ifdef CONFIG_BCACHE_DEBUG
static void __bch_btree_iter_verify(struct btree_iter *iter,
struct btree *b)
{
struct btree_node_iter *node_iter = &iter->node_iters[b->level];
struct btree_node_iter tmp = *node_iter;
struct bkey_packed *k;
bch_btree_node_iter_verify(node_iter, b);
/*
* For interior nodes, the iterator will have skipped past
* deleted keys:
*/
k = b->level
? bch_btree_node_iter_prev(&tmp, b)
: bch_btree_node_iter_prev_all(&tmp, b);
if (k && btree_iter_pos_cmp_packed(b, &iter->pos, k,
iter->is_extents)) {
char buf[100];
struct bkey uk = bkey_unpack_key(b, k);
bch_bkey_to_text(buf, sizeof(buf), &uk);
panic("prev key should be before after pos:\n%s\n%llu:%llu\n",
buf, iter->pos.inode, iter->pos.offset);
}
k = bch_btree_node_iter_peek_all(node_iter, b);
if (k && !btree_iter_pos_cmp_packed(b, &iter->pos, k,
iter->is_extents)) {
char buf[100];
struct bkey uk = bkey_unpack_key(b, k);
bch_bkey_to_text(buf, sizeof(buf), &uk);
panic("next key should be before iter pos:\n%llu:%llu\n%s\n",
iter->pos.inode, iter->pos.offset, buf);
}
}
void bch_btree_iter_verify(struct btree_iter *iter, struct btree *b)
{
struct btree_iter *linked;
if (iter->nodes[b->level] == b)
__bch_btree_iter_verify(iter, b);
for_each_linked_btree_node(iter, b, linked)
__bch_btree_iter_verify(iter, b);
}
#endif
static void __bch_btree_node_iter_fix(struct btree_iter *iter,
struct btree *b,
struct btree_node_iter *node_iter,
struct bset_tree *t,
struct bkey_packed *where,
unsigned clobber_u64s,
unsigned new_u64s)
{
const struct bkey_packed *end = btree_bkey_last(b, t);
struct btree_node_iter_set *set;
unsigned offset = __btree_node_key_to_offset(b, where);
int shift = new_u64s - clobber_u64s;
unsigned old_end = (int) __btree_node_key_to_offset(b, end) - shift;
btree_node_iter_for_each(node_iter, set)
if (set->end == old_end)
goto found;
/* didn't find the bset in the iterator - might have to readd it: */
if (new_u64s &&
btree_iter_pos_cmp_packed(b, &iter->pos, where,
iter->is_extents))
bch_btree_node_iter_push(node_iter, b, where, end);
return;
found:
set->end = (int) set->end + shift;
/* Iterator hasn't gotten to the key that changed yet: */
if (set->k < offset)
return;
if (new_u64s &&
btree_iter_pos_cmp_packed(b, &iter->pos, where,
iter->is_extents)) {
set->k = offset;
bch_btree_node_iter_sort(node_iter, b);
} else if (set->k < offset + clobber_u64s) {
set->k = offset + new_u64s;
if (set->k == set->end)
*set = node_iter->data[--node_iter->used];
bch_btree_node_iter_sort(node_iter, b);
} else {
set->k = (int) set->k + shift;
}
/*
* Interior nodes are special because iterators for interior nodes don't
* obey the usual invariants regarding the iterator position:
*
* We may have whiteouts that compare greater than the iterator
* position, and logically should be in the iterator, but that we
* skipped past to find the first live key greater than the iterator
* position. This becomes an issue when we insert a new key that is
* greater than the current iterator position, but smaller than the
* whiteouts we've already skipped past - this happens in the course of
* a btree split.
*
* We have to rewind the iterator past to before those whiteouts here,
* else bkey_node_iter_prev() is not going to work and who knows what
* else would happen. And we have to do it manually, because here we've
* already done the insert and the iterator is currently inconsistent:
*
* We've got multiple competing invariants, here - we have to be careful
* about rewinding iterators for interior nodes, because they should
* always point to the key for the child node the btree iterator points
* to.
*/
if (b->level && new_u64s && !bkey_deleted(where) &&
btree_iter_pos_cmp_packed(b, &iter->pos, where,
iter->is_extents)) {
struct bset_tree *t;
struct bkey_packed *k;
for_each_bset(b, t) {
if (bch_bkey_to_bset(b, where) == t)
continue;
k = bkey_prev_all(b, t,
bch_btree_node_iter_bset_pos(node_iter, b, t));
if (k &&
__btree_node_iter_cmp(node_iter, b,
k, where) > 0) {
struct btree_node_iter_set *set;
unsigned offset =
__btree_node_key_to_offset(b, bkey_next(k));
btree_node_iter_for_each(node_iter, set)
if (set->k == offset) {
set->k = __btree_node_key_to_offset(b, k);
bch_btree_node_iter_sort(node_iter, b);
goto next_bset;
}
bch_btree_node_iter_push(node_iter, b, k,
btree_bkey_last(b, t));
}
next_bset:
t = t;
}
}
}
void bch_btree_node_iter_fix(struct btree_iter *iter,
struct btree *b,
struct btree_node_iter *node_iter,
struct bset_tree *t,
struct bkey_packed *where,
unsigned clobber_u64s,
unsigned new_u64s)
{
struct btree_iter *linked;
if (node_iter != &iter->node_iters[b->level])
__bch_btree_node_iter_fix(iter, b, node_iter, t,
where, clobber_u64s, new_u64s);
if (iter->nodes[b->level] == b)
__bch_btree_node_iter_fix(iter, b,
&iter->node_iters[b->level], t,
where, clobber_u64s, new_u64s);
for_each_linked_btree_node(iter, b, linked)
__bch_btree_node_iter_fix(linked, b,
&linked->node_iters[b->level], t,
where, clobber_u64s, new_u64s);
/* interior node iterators are... special... */
if (!b->level)
bch_btree_iter_verify(iter, b);
}
/* peek_all() doesn't skip deleted keys */
static inline struct bkey_s_c __btree_iter_peek_all(struct btree_iter *iter)
{
struct btree *b = iter->nodes[iter->level];
struct bkey_packed *k =
bch_btree_node_iter_peek_all(&iter->node_iters[iter->level], b);
struct bkey_s_c ret;
EBUG_ON(!btree_node_locked(iter, iter->level));
if (!k)
return bkey_s_c_null;
ret = bkey_disassemble(b, k, &iter->k);
if (debug_check_bkeys(iter->c))
bkey_debugcheck(iter->c, b, ret);
return ret;
}
static inline struct bkey_s_c __btree_iter_peek(struct btree_iter *iter)
{
struct btree *b = iter->nodes[iter->level];
struct bkey_packed *k =
bch_btree_node_iter_peek(&iter->node_iters[iter->level], b);
struct bkey_s_c ret;
EBUG_ON(!btree_node_locked(iter, iter->level));
if (!k)
return bkey_s_c_null;
ret = bkey_disassemble(b, k, &iter->k);
if (debug_check_bkeys(iter->c))
bkey_debugcheck(iter->c, b, ret);
return ret;
}
static inline void __btree_iter_advance(struct btree_iter *iter)
{
bch_btree_node_iter_advance(&iter->node_iters[iter->level],
iter->nodes[iter->level]);
}
/*
* Verify that iterator for parent node points to child node:
*/
static void btree_iter_verify_new_node(struct btree_iter *iter, struct btree *b)
{
bool parent_locked;
struct bkey_packed *k;
if (!IS_ENABLED(CONFIG_BCACHE_DEBUG) ||
!iter->nodes[b->level + 1])
return;
parent_locked = btree_node_locked(iter, b->level + 1);
if (!btree_node_relock(iter, b->level + 1))
return;
k = bch_btree_node_iter_peek_all(&iter->node_iters[b->level + 1],
iter->nodes[b->level + 1]);
if (!k ||
bkey_deleted(k) ||
bkey_cmp_left_packed(iter->nodes[b->level + 1],
k, &b->key.k.p)) {
char buf[100];
struct bkey uk = bkey_unpack_key(b, k);
bch_bkey_to_text(buf, sizeof(buf), &uk);
panic("parent iter doesn't point to new node:\n%s\n%llu:%llu\n",
buf, b->key.k.p.inode, b->key.k.p.offset);
}
if (!parent_locked)
btree_node_unlock(iter, b->level + 1);
}
static inline void __btree_iter_init(struct btree_iter *iter,
struct btree *b)
{
bch_btree_node_iter_init(&iter->node_iters[b->level], b,
iter->pos, iter->is_extents,
btree_node_is_extents(b));
/* Skip to first non whiteout: */
if (b->level)
bch_btree_node_iter_peek(&iter->node_iters[b->level], b);
}
static inline bool btree_iter_pos_in_node(struct btree_iter *iter,
struct btree *b)
{
return iter->btree_id == b->btree_id &&
bkey_cmp(iter->pos, b->data->min_key) >= 0 &&
btree_iter_pos_cmp(iter->pos, &b->key.k, iter->is_extents);
}
static inline void btree_iter_node_set(struct btree_iter *iter,
struct btree *b)
{
btree_iter_verify_new_node(iter, b);
EBUG_ON(!btree_iter_pos_in_node(iter, b));
EBUG_ON(b->lock.state.seq & 1);
iter->lock_seq[b->level] = b->lock.state.seq;
iter->nodes[b->level] = b;
__btree_iter_init(iter, b);
}
/*
* A btree node is being replaced - update the iterator to point to the new
* node:
*/
bool bch_btree_iter_node_replace(struct btree_iter *iter, struct btree *b)
{
struct btree_iter *linked;
for_each_linked_btree_iter(iter, linked)
if (btree_iter_pos_in_node(linked, b)) {
/*
* bch_btree_iter_node_drop() has already been called -
* the old node we're replacing has already been
* unlocked and the pointer invalidated
*/
BUG_ON(btree_node_locked(linked, b->level));
/*
* If @linked wants this node read locked, we don't want
* to actually take the read lock now because it's not
* legal to hold read locks on other nodes while we take
* write locks, so the journal can make forward
* progress...
*
* Instead, btree_iter_node_set() sets things up so
* btree_node_relock() will succeed:
*/
if (btree_want_intent(linked, b->level)) {
six_lock_increment(&b->lock, SIX_LOCK_intent);
mark_btree_node_intent_locked(linked, b->level);
}
btree_iter_node_set(linked, b);
}
if (!btree_iter_pos_in_node(iter, b)) {
six_unlock_intent(&b->lock);
return false;
}
mark_btree_node_intent_locked(iter, b->level);
btree_iter_node_set(iter, b);
return true;
}
void bch_btree_iter_node_drop_linked(struct btree_iter *iter, struct btree *b)
{
struct btree_iter *linked;
unsigned level = b->level;
for_each_linked_btree_iter(iter, linked)
if (linked->nodes[level] == b) {
btree_node_unlock(linked, level);
linked->nodes[level] = BTREE_ITER_NOT_END;
}
}
void bch_btree_iter_node_drop(struct btree_iter *iter, struct btree *b)
{
unsigned level = b->level;
if (iter->nodes[level] == b) {
BUG_ON(b->lock.state.intent_lock != 1);
btree_node_unlock(iter, level);
iter->nodes[level] = BTREE_ITER_NOT_END;
}
}
/*
* A btree node has been modified in such a way as to invalidate iterators - fix
* them:
*/
void bch_btree_iter_reinit_node(struct btree_iter *iter, struct btree *b)
{
struct btree_iter *linked;
for_each_linked_btree_node(iter, b, linked)
__btree_iter_init(linked, b);
__btree_iter_init(iter, b);
}
static inline int btree_iter_lock_root(struct btree_iter *iter,
unsigned depth_want)
{
struct bch_fs *c = iter->c;
struct btree *b;
enum six_lock_type lock_type;
unsigned i;
EBUG_ON(iter->nodes_locked);
while (1) {
b = READ_ONCE(c->btree_roots[iter->btree_id].b);
iter->level = READ_ONCE(b->level);
if (unlikely(iter->level < depth_want)) {
/*
* the root is at a lower depth than the depth we want:
* got to the end of the btree, or we're walking nodes
* greater than some depth and there are no nodes >=
* that depth
*/
iter->level = depth_want;
iter->nodes[iter->level] = NULL;
return 0;
}
lock_type = btree_lock_want(iter, iter->level);
if (unlikely(!btree_node_lock(b, POS_MAX, iter->level,
iter, lock_type)))
return -EINTR;
if (likely(b == c->btree_roots[iter->btree_id].b &&
b->level == iter->level &&
!race_fault())) {
for (i = 0; i < iter->level; i++)
iter->nodes[i] = BTREE_ITER_NOT_END;
iter->nodes[iter->level] = b;
mark_btree_node_locked(iter, iter->level, lock_type);
btree_iter_node_set(iter, b);
return 0;
}
six_unlock_type(&b->lock, lock_type);
}
}
static inline int btree_iter_down(struct btree_iter *iter)
{
struct btree *b;
struct bkey_s_c k = __btree_iter_peek(iter);
unsigned level = iter->level - 1;
enum six_lock_type lock_type = btree_lock_want(iter, level);
BKEY_PADDED(k) tmp;
bkey_reassemble(&tmp.k, k);
b = bch_btree_node_get(iter, &tmp.k, level, lock_type);
if (unlikely(IS_ERR(b)))
return PTR_ERR(b);
iter->level = level;
mark_btree_node_locked(iter, level, lock_type);
btree_iter_node_set(iter, b);
return 0;
}
static void btree_iter_up(struct btree_iter *iter)
{
btree_node_unlock(iter, iter->level++);
}
int __must_check __bch_btree_iter_traverse(struct btree_iter *);
static int btree_iter_traverse_error(struct btree_iter *iter, int ret)
{
struct bch_fs *c = iter->c;
struct btree_iter *linked, *sorted_iters, **i;
retry_all:
bch_btree_iter_unlock(iter);
if (ret != -ENOMEM && ret != -EINTR)
goto io_error;
if (ret == -ENOMEM) {
struct closure cl;
closure_init_stack(&cl);
do {
ret = mca_cannibalize_lock(c, &cl);
closure_sync(&cl);
} while (ret);
}
/*
* Linked iters are normally a circular singly linked list - break cycle
* while we sort them:
*/
linked = iter->next;
iter->next = NULL;
sorted_iters = NULL;
while (linked) {
iter = linked;
linked = linked->next;
i = &sorted_iters;
while (*i && btree_iter_cmp(iter, *i) > 0)
i = &(*i)->next;
iter->next = *i;
*i = iter;
}
/* Make list circular again: */
iter = sorted_iters;
while (iter->next)
iter = iter->next;
iter->next = sorted_iters;
/* Now, redo traversals in correct order: */
iter = sorted_iters;
do {
retry:
ret = __bch_btree_iter_traverse(iter);
if (unlikely(ret)) {
if (ret == -EINTR)
goto retry;
goto retry_all;
}
iter = iter->next;
} while (iter != sorted_iters);
ret = btree_iter_linked(iter) ? -EINTR : 0;
out:
mca_cannibalize_unlock(c);
return ret;
io_error:
BUG_ON(ret != -EIO);
iter->error = ret;
iter->nodes[iter->level] = NULL;
goto out;
}
/*
* This is the main state machine for walking down the btree - walks down to a
* specified depth
*
* Returns 0 on success, -EIO on error (error reading in a btree node).
*
* On error, caller (peek_node()/peek_key()) must return NULL; the error is
* stashed in the iterator and returned from bch_btree_iter_unlock().
*/
int __must_check __bch_btree_iter_traverse(struct btree_iter *iter)
{
unsigned depth_want = iter->level;
/* make sure we have all the intent locks we need - ugh */
if (unlikely(iter->nodes[iter->level] &&
iter->level + 1 < iter->locks_want)) {
unsigned i;
for (i = iter->level + 1;
i < iter->locks_want && iter->nodes[i];
i++)
if (!btree_node_relock(iter, i)) {
while (iter->nodes[iter->level] &&
iter->level + 1 < iter->locks_want)
btree_iter_up(iter);
break;
}
}
/*
* If the current node isn't locked, go up until we have a locked node
* or run out of nodes:
*/
while (iter->nodes[iter->level] &&
!(is_btree_node(iter, iter->level) &&
btree_node_relock(iter, iter->level) &&
btree_iter_pos_cmp(iter->pos,
&iter->nodes[iter->level]->key.k,
iter->is_extents)))
btree_iter_up(iter);
/*
* If we've got a btree node locked (i.e. we aren't about to relock the
* root) - advance its node iterator if necessary:
*/
if (iter->nodes[iter->level]) {
struct bkey_s_c k;
while ((k = __btree_iter_peek_all(iter)).k &&
!btree_iter_pos_cmp(iter->pos, k.k, iter->is_extents))
__btree_iter_advance(iter);
}
/*
* Note: iter->nodes[iter->level] may be temporarily NULL here - that
* would indicate to other code that we got to the end of the btree,
* here it indicates that relocking the root failed - it's critical that
* btree_iter_lock_root() comes next and that it can't fail
*/
while (iter->level > depth_want) {
int ret = iter->nodes[iter->level]
? btree_iter_down(iter)
: btree_iter_lock_root(iter, depth_want);
if (unlikely(ret)) {
iter->level = depth_want;
return ret;
}
}
return 0;
}
int __must_check bch_btree_iter_traverse(struct btree_iter *iter)
{
int ret;
if (unlikely(!iter->nodes[iter->level]))
return 0;
iter->at_end_of_leaf = false;
ret = __bch_btree_iter_traverse(iter);
if (unlikely(ret))
ret = btree_iter_traverse_error(iter, ret);
return ret;
}
/* Iterate across nodes (leaf and interior nodes) */
struct btree *bch_btree_iter_peek_node(struct btree_iter *iter)
{
struct btree *b;
int ret;
EBUG_ON(iter->is_extents);
ret = bch_btree_iter_traverse(iter);
if (ret)
return NULL;
b = iter->nodes[iter->level];
if (b) {
EBUG_ON(bkey_cmp(b->key.k.p, iter->pos) < 0);
iter->pos = b->key.k.p;
}
return b;
}
struct btree *bch_btree_iter_next_node(struct btree_iter *iter, unsigned depth)
{
struct btree *b;
int ret;
EBUG_ON(iter->is_extents);
btree_iter_up(iter);
if (!iter->nodes[iter->level])
return NULL;
/* parent node usually won't be locked: redo traversal if necessary */
ret = bch_btree_iter_traverse(iter);
if (ret)
return NULL;
b = iter->nodes[iter->level];
if (!b)
return b;
if (bkey_cmp(iter->pos, b->key.k.p) < 0) {
/* Haven't gotten to the end of the parent node: */
/* ick: */
iter->pos = iter->btree_id == BTREE_ID_INODES
? btree_type_successor(iter->btree_id, iter->pos)
: bkey_successor(iter->pos);
iter->level = depth;
ret = bch_btree_iter_traverse(iter);
if (ret)
return NULL;
b = iter->nodes[iter->level];
}
iter->pos = b->key.k.p;
return b;
}
/* Iterate across keys (in leaf nodes only) */
void bch_btree_iter_set_pos_same_leaf(struct btree_iter *iter, struct bpos new_pos)
{
struct btree *b = iter->nodes[0];
struct btree_node_iter *node_iter = &iter->node_iters[0];
struct bkey_packed *k;
EBUG_ON(iter->level != 0);
EBUG_ON(bkey_cmp(new_pos, iter->pos) < 0);
EBUG_ON(!btree_node_locked(iter, 0));
EBUG_ON(bkey_cmp(new_pos, b->key.k.p) > 0);
while ((k = bch_btree_node_iter_peek_all(node_iter, b)) &&
!btree_iter_pos_cmp_packed(b, &new_pos, k,
iter->is_extents))
bch_btree_node_iter_advance(node_iter, b);
if (!k &&
!btree_iter_pos_cmp(new_pos, &b->key.k, iter->is_extents))
iter->at_end_of_leaf = true;
iter->pos = new_pos;
}
void bch_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos)
{
EBUG_ON(bkey_cmp(new_pos, iter->pos) < 0); /* XXX handle this */
iter->pos = new_pos;
}
void bch_btree_iter_advance_pos(struct btree_iter *iter)
{
/*
* We use iter->k instead of iter->pos for extents: iter->pos will be
* equal to the start of the extent we returned, but we need to advance
* to the end of the extent we returned.
*/
bch_btree_iter_set_pos(iter,
btree_type_successor(iter->btree_id, iter->k.p));
}
/* XXX: expensive */
void bch_btree_iter_rewind(struct btree_iter *iter, struct bpos pos)
{
/* incapable of rewinding across nodes: */
BUG_ON(bkey_cmp(pos, iter->nodes[iter->level]->data->min_key) < 0);
iter->pos = pos;
__btree_iter_init(iter, iter->nodes[iter->level]);
}
struct bkey_s_c bch_btree_iter_peek(struct btree_iter *iter)
{
struct bkey_s_c k;
int ret;
while (1) {
ret = bch_btree_iter_traverse(iter);
if (unlikely(ret)) {
iter->k = KEY(iter->pos.inode, iter->pos.offset, 0);
return bkey_s_c_err(ret);
}
k = __btree_iter_peek(iter);
if (likely(k.k)) {
/*
* iter->pos should always be equal to the key we just
* returned - except extents can straddle iter->pos:
*/
if (!iter->is_extents ||
bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0)
bch_btree_iter_set_pos(iter, bkey_start_pos(k.k));
return k;
}
iter->pos = iter->nodes[0]->key.k.p;
if (!bkey_cmp(iter->pos, POS_MAX)) {
iter->k = KEY(iter->pos.inode, iter->pos.offset, 0);
bch_btree_iter_unlock(iter);
return bkey_s_c_null;
}
iter->pos = btree_type_successor(iter->btree_id, iter->pos);
}
}
struct bkey_s_c bch_btree_iter_peek_with_holes(struct btree_iter *iter)
{
struct bkey_s_c k;
struct bkey n;
int ret;
while (1) {
ret = bch_btree_iter_traverse(iter);
if (unlikely(ret)) {
iter->k = KEY(iter->pos.inode, iter->pos.offset, 0);
return bkey_s_c_err(ret);
}
k = __btree_iter_peek_all(iter);
recheck:
if (!k.k || bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) {
/* hole */
bkey_init(&n);
n.p = iter->pos;
if (iter->is_extents) {
if (n.p.offset == KEY_OFFSET_MAX) {
iter->pos = bkey_successor(iter->pos);
goto recheck;
}
if (!k.k)
k.k = &iter->nodes[0]->key.k;
bch_key_resize(&n,
min_t(u64, KEY_SIZE_MAX,
(k.k->p.inode == n.p.inode
? bkey_start_offset(k.k)
: KEY_OFFSET_MAX) -
n.p.offset));
EBUG_ON(!n.size);
}
iter->k = n;
return (struct bkey_s_c) { &iter->k, NULL };
} else if (!bkey_deleted(k.k)) {
return k;
} else {
__btree_iter_advance(iter);
}
}
}
void __bch_btree_iter_init(struct btree_iter *iter, struct bch_fs *c,
enum btree_id btree_id, struct bpos pos,
unsigned locks_want, unsigned depth)
{
iter->level = depth;
/* bch_bkey_ops isn't used much, this would be a cache miss */
/* iter->is_extents = bch_bkey_ops[btree_id]->is_extents; */
iter->is_extents = btree_id == BTREE_ID_EXTENTS;
iter->nodes_locked = 0;
iter->nodes_intent_locked = 0;
iter->locks_want = min(locks_want, BTREE_MAX_DEPTH);
iter->btree_id = btree_id;
iter->at_end_of_leaf = 0;
iter->error = 0;
iter->c = c;
iter->pos = pos;
memset(iter->nodes, 0, sizeof(iter->nodes));
iter->nodes[iter->level] = BTREE_ITER_NOT_END;
iter->next = iter;
prefetch(c->btree_roots[btree_id].b);
}
void bch_btree_iter_link(struct btree_iter *iter, struct btree_iter *new)
{
BUG_ON(btree_iter_linked(new));
new->next = iter->next;
iter->next = new;
if (IS_ENABLED(CONFIG_BCACHE_DEBUG)) {
unsigned nr_iters = 1;
for_each_linked_btree_iter(iter, new)
nr_iters++;
BUG_ON(nr_iters > SIX_LOCK_MAX_RECURSE);
}
}
void bch_btree_iter_copy(struct btree_iter *dst, struct btree_iter *src)
{
bch_btree_iter_unlock(dst);
memcpy(dst, src, offsetof(struct btree_iter, next));
dst->nodes_locked = dst->nodes_intent_locked = 0;
}