mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-02-02 00:00:03 +03:00
1447 lines
37 KiB
C
1447 lines
37 KiB
C
/*
|
|
* Some low level IO code, and hacks for various block layer limitations
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "alloc.h"
|
|
#include "bset.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "compress.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "io.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "notify.h"
|
|
#include "stats.h"
|
|
#include "super-io.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/random.h>
|
|
|
|
#include <trace/events/bcache.h>
|
|
|
|
static inline void __bio_inc_remaining(struct bio *bio)
|
|
{
|
|
bio_set_flag(bio, BIO_CHAIN);
|
|
smp_mb__before_atomic();
|
|
atomic_inc(&bio->__bi_remaining);
|
|
}
|
|
|
|
void bch_generic_make_request(struct bio *bio, struct bch_fs *c)
|
|
{
|
|
if (current->bio_list) {
|
|
spin_lock(&c->bio_submit_lock);
|
|
bio_list_add(&c->bio_submit_list, bio);
|
|
spin_unlock(&c->bio_submit_lock);
|
|
queue_work(bcache_io_wq, &c->bio_submit_work);
|
|
} else {
|
|
generic_make_request(bio);
|
|
}
|
|
}
|
|
|
|
void bch_bio_submit_work(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c = container_of(work, struct bch_fs,
|
|
bio_submit_work);
|
|
struct bio_list bl;
|
|
struct bio *bio;
|
|
|
|
spin_lock(&c->bio_submit_lock);
|
|
bl = c->bio_submit_list;
|
|
bio_list_init(&c->bio_submit_list);
|
|
spin_unlock(&c->bio_submit_lock);
|
|
|
|
while ((bio = bio_list_pop(&bl)))
|
|
generic_make_request(bio);
|
|
}
|
|
|
|
/* Allocate, free from mempool: */
|
|
|
|
void bch_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
|
|
{
|
|
struct bio_vec *bv;
|
|
unsigned i;
|
|
|
|
bio_for_each_segment_all(bv, bio, i)
|
|
if (bv->bv_page != ZERO_PAGE(0))
|
|
mempool_free(bv->bv_page, &c->bio_bounce_pages);
|
|
bio->bi_vcnt = 0;
|
|
}
|
|
|
|
static void bch_bio_alloc_page_pool(struct bch_fs *c, struct bio *bio,
|
|
bool *using_mempool)
|
|
{
|
|
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt++];
|
|
|
|
if (likely(!*using_mempool)) {
|
|
bv->bv_page = alloc_page(GFP_NOIO);
|
|
if (unlikely(!bv->bv_page)) {
|
|
mutex_lock(&c->bio_bounce_pages_lock);
|
|
*using_mempool = true;
|
|
goto pool_alloc;
|
|
|
|
}
|
|
} else {
|
|
pool_alloc:
|
|
bv->bv_page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO);
|
|
}
|
|
|
|
bv->bv_len = PAGE_SIZE;
|
|
bv->bv_offset = 0;
|
|
}
|
|
|
|
void bch_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
|
|
size_t bytes)
|
|
{
|
|
bool using_mempool = false;
|
|
|
|
bio->bi_iter.bi_size = bytes;
|
|
|
|
while (bio->bi_vcnt < DIV_ROUND_UP(bytes, PAGE_SIZE))
|
|
bch_bio_alloc_page_pool(c, bio, &using_mempool);
|
|
|
|
if (using_mempool)
|
|
mutex_unlock(&c->bio_bounce_pages_lock);
|
|
}
|
|
|
|
/* Bios with headers */
|
|
|
|
static void bch_submit_wbio(struct bch_fs *c, struct bch_write_bio *wbio,
|
|
struct bch_dev *ca, const struct bch_extent_ptr *ptr,
|
|
bool punt)
|
|
{
|
|
wbio->ca = ca;
|
|
wbio->submit_time_us = local_clock_us();
|
|
wbio->bio.bi_iter.bi_sector = ptr->offset;
|
|
wbio->bio.bi_bdev = ca ? ca->disk_sb.bdev : NULL;
|
|
|
|
if (!ca)
|
|
bcache_io_error(c, &wbio->bio, "device has been removed");
|
|
else if (punt)
|
|
bch_generic_make_request(&wbio->bio, c);
|
|
else
|
|
generic_make_request(&wbio->bio);
|
|
}
|
|
|
|
void bch_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
|
|
const struct bkey_i *k, bool punt)
|
|
{
|
|
struct bkey_s_c_extent e = bkey_i_to_s_c_extent(k);
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_write_bio *n;
|
|
struct bch_dev *ca;
|
|
|
|
BUG_ON(c->opts.nochanges);
|
|
|
|
wbio->split = false;
|
|
wbio->c = c;
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
ca = c->devs[ptr->dev];
|
|
if (!percpu_ref_tryget(&ca->io_ref)) {
|
|
bch_submit_wbio(c, wbio, NULL, ptr, punt);
|
|
break;
|
|
}
|
|
|
|
if (ptr + 1 < &extent_entry_last(e)->ptr) {
|
|
n = to_wbio(bio_clone_fast(&wbio->bio, GFP_NOIO,
|
|
&ca->replica_set));
|
|
|
|
n->bio.bi_end_io = wbio->bio.bi_end_io;
|
|
n->bio.bi_private = wbio->bio.bi_private;
|
|
n->c = c;
|
|
n->orig = &wbio->bio;
|
|
n->bounce = false;
|
|
n->split = true;
|
|
n->put_bio = true;
|
|
n->bio.bi_opf = wbio->bio.bi_opf;
|
|
__bio_inc_remaining(n->orig);
|
|
} else {
|
|
n = wbio;
|
|
}
|
|
|
|
if (!journal_flushes_device(ca))
|
|
n->bio.bi_opf |= REQ_FUA;
|
|
|
|
bch_submit_wbio(c, n, ca, ptr, punt);
|
|
}
|
|
}
|
|
|
|
/* IO errors */
|
|
|
|
/* Writes */
|
|
|
|
static struct workqueue_struct *index_update_wq(struct bch_write_op *op)
|
|
{
|
|
return op->alloc_reserve == RESERVE_MOVINGGC
|
|
? op->c->copygc_wq
|
|
: op->c->wq;
|
|
}
|
|
|
|
static void __bch_write(struct closure *);
|
|
|
|
static void bch_write_done(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
|
|
BUG_ON(!(op->flags & BCH_WRITE_DONE));
|
|
|
|
if (!op->error && (op->flags & BCH_WRITE_FLUSH))
|
|
op->error = bch_journal_error(&op->c->journal);
|
|
|
|
bch_disk_reservation_put(op->c, &op->res);
|
|
percpu_ref_put(&op->c->writes);
|
|
bch_keylist_free(&op->insert_keys, op->inline_keys);
|
|
closure_return(cl);
|
|
}
|
|
|
|
static u64 keylist_sectors(struct keylist *keys)
|
|
{
|
|
struct bkey_i *k;
|
|
u64 ret = 0;
|
|
|
|
for_each_keylist_key(keys, k)
|
|
ret += k->k.size;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch_write_index_default(struct bch_write_op *op)
|
|
{
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct btree_iter iter;
|
|
int ret;
|
|
|
|
bch_btree_iter_init_intent(&iter, op->c, BTREE_ID_EXTENTS,
|
|
bkey_start_pos(&bch_keylist_front(keys)->k));
|
|
|
|
ret = bch_btree_insert_list_at(&iter, keys, &op->res,
|
|
NULL, op_journal_seq(op),
|
|
BTREE_INSERT_NOFAIL);
|
|
bch_btree_iter_unlock(&iter);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bch_write_index - after a write, update index to point to new data
|
|
*/
|
|
static void bch_write_index(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
struct keylist *keys = &op->insert_keys;
|
|
unsigned i;
|
|
|
|
op->flags |= BCH_WRITE_LOOPED;
|
|
|
|
if (!bch_keylist_empty(keys)) {
|
|
u64 sectors_start = keylist_sectors(keys);
|
|
int ret = op->index_update_fn(op);
|
|
|
|
BUG_ON(keylist_sectors(keys) && !ret);
|
|
|
|
op->written += sectors_start - keylist_sectors(keys);
|
|
|
|
if (ret) {
|
|
__bcache_io_error(c, "btree IO error %i", ret);
|
|
op->error = ret;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(op->open_buckets); i++)
|
|
if (op->open_buckets[i]) {
|
|
bch_open_bucket_put(c,
|
|
c->open_buckets +
|
|
op->open_buckets[i]);
|
|
op->open_buckets[i] = 0;
|
|
}
|
|
|
|
if (!(op->flags & BCH_WRITE_DONE))
|
|
continue_at(cl, __bch_write, op->io_wq);
|
|
|
|
if (!op->error && (op->flags & BCH_WRITE_FLUSH)) {
|
|
bch_journal_flush_seq_async(&c->journal,
|
|
*op_journal_seq(op),
|
|
cl);
|
|
continue_at(cl, bch_write_done, index_update_wq(op));
|
|
} else {
|
|
continue_at_nobarrier(cl, bch_write_done, NULL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bch_write_discard - discard range of keys
|
|
*
|
|
* Used to implement discard, and to handle when writethrough write hits
|
|
* a write error on the cache device.
|
|
*/
|
|
static void bch_write_discard(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bio *bio = &op->bio->bio;
|
|
struct bpos end = op->pos;
|
|
|
|
end.offset += bio_sectors(bio);
|
|
|
|
op->error = bch_discard(op->c, op->pos, end, op->version,
|
|
&op->res, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Convert extents to be inserted to discards after an error:
|
|
*/
|
|
static void bch_write_io_error(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
|
|
if (op->flags & BCH_WRITE_DISCARD_ON_ERROR) {
|
|
struct bkey_i *src = bch_keylist_front(&op->insert_keys);
|
|
struct bkey_i *dst = bch_keylist_front(&op->insert_keys);
|
|
|
|
/*
|
|
* Our data write just errored, which means we've got a bunch
|
|
* of keys to insert that point to data that wasn't
|
|
* successfully written.
|
|
*
|
|
* We don't have to insert those keys but we still have to
|
|
* invalidate that region of the cache - so, if we just strip
|
|
* off all the pointers from the keys we'll accomplish just
|
|
* that.
|
|
*/
|
|
|
|
while (src != op->insert_keys.top) {
|
|
struct bkey_i *n = bkey_next(src);
|
|
|
|
set_bkey_val_u64s(&src->k, 0);
|
|
src->k.type = KEY_TYPE_DISCARD;
|
|
bkey_copy(dst, src);
|
|
|
|
dst = bkey_next(dst);
|
|
src = n;
|
|
}
|
|
|
|
op->insert_keys.top = dst;
|
|
op->flags |= BCH_WRITE_DISCARD;
|
|
} else {
|
|
/* TODO: We could try to recover from this. */
|
|
while (!bch_keylist_empty(&op->insert_keys))
|
|
bch_keylist_pop_front(&op->insert_keys);
|
|
|
|
op->error = -EIO;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
}
|
|
|
|
bch_write_index(cl);
|
|
}
|
|
|
|
static void bch_write_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_write_bio *wbio = to_wbio(bio);
|
|
struct bch_fs *c = wbio->c;
|
|
struct bio *orig = wbio->orig;
|
|
struct bch_dev *ca = wbio->ca;
|
|
|
|
if (bch_dev_nonfatal_io_err_on(bio->bi_error, ca,
|
|
"data write"))
|
|
set_closure_fn(cl, bch_write_io_error, index_update_wq(op));
|
|
|
|
bch_account_io_completion_time(ca, wbio->submit_time_us,
|
|
REQ_OP_WRITE);
|
|
if (ca)
|
|
percpu_ref_put(&ca->io_ref);
|
|
|
|
if (bio->bi_error && orig)
|
|
orig->bi_error = bio->bi_error;
|
|
|
|
if (wbio->bounce)
|
|
bch_bio_free_pages_pool(c, bio);
|
|
|
|
if (wbio->put_bio)
|
|
bio_put(bio);
|
|
|
|
if (orig)
|
|
bio_endio(orig);
|
|
else
|
|
closure_put(cl);
|
|
}
|
|
|
|
static struct nonce extent_nonce(struct bversion version,
|
|
unsigned nonce,
|
|
unsigned uncompressed_size,
|
|
unsigned compression_type)
|
|
{
|
|
return (struct nonce) {{
|
|
[0] = cpu_to_le32((nonce << 12) |
|
|
(uncompressed_size << 22)),
|
|
[1] = cpu_to_le32(version.lo),
|
|
[2] = cpu_to_le32(version.lo >> 32),
|
|
[3] = cpu_to_le32(version.hi|
|
|
(compression_type << 24))^BCH_NONCE_EXTENT,
|
|
}};
|
|
}
|
|
|
|
static void init_append_extent(struct bch_write_op *op,
|
|
unsigned compressed_size,
|
|
unsigned uncompressed_size,
|
|
unsigned compression_type,
|
|
unsigned nonce,
|
|
struct bch_csum csum, unsigned csum_type,
|
|
struct open_bucket *ob)
|
|
{
|
|
struct bkey_i_extent *e = bkey_extent_init(op->insert_keys.top);
|
|
|
|
op->pos.offset += uncompressed_size;
|
|
e->k.p = op->pos;
|
|
e->k.size = uncompressed_size;
|
|
e->k.version = op->version;
|
|
bkey_extent_set_cached(&e->k, op->flags & BCH_WRITE_CACHED);
|
|
|
|
bch_extent_crc_append(e, compressed_size,
|
|
uncompressed_size,
|
|
compression_type,
|
|
nonce, csum, csum_type);
|
|
|
|
bch_alloc_sectors_append_ptrs(op->c, e, op->nr_replicas,
|
|
ob, compressed_size);
|
|
|
|
bkey_extent_set_cached(&e->k, (op->flags & BCH_WRITE_CACHED));
|
|
bch_keylist_push(&op->insert_keys);
|
|
}
|
|
|
|
static int bch_write_extent(struct bch_write_op *op,
|
|
struct open_bucket *ob,
|
|
struct bio *orig)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *bio;
|
|
struct bch_write_bio *wbio;
|
|
unsigned key_to_write_offset = op->insert_keys.top_p -
|
|
op->insert_keys.keys_p;
|
|
struct bkey_i *key_to_write;
|
|
unsigned csum_type = op->csum_type;
|
|
unsigned compression_type = op->compression_type;
|
|
int ret;
|
|
|
|
/* don't refetch csum type/compression type */
|
|
barrier();
|
|
|
|
/* Need to decompress data? */
|
|
if ((op->flags & BCH_WRITE_DATA_COMPRESSED) &&
|
|
(crc_uncompressed_size(NULL, &op->crc) != op->size ||
|
|
crc_compressed_size(NULL, &op->crc) > ob->sectors_free)) {
|
|
int ret;
|
|
|
|
ret = bch_bio_uncompress_inplace(c, orig, op->size, op->crc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
op->flags &= ~BCH_WRITE_DATA_COMPRESSED;
|
|
}
|
|
|
|
if (op->flags & BCH_WRITE_DATA_COMPRESSED) {
|
|
init_append_extent(op,
|
|
crc_compressed_size(NULL, &op->crc),
|
|
crc_uncompressed_size(NULL, &op->crc),
|
|
op->crc.compression_type,
|
|
op->crc.nonce,
|
|
op->crc.csum,
|
|
op->crc.csum_type,
|
|
ob);
|
|
|
|
bio = orig;
|
|
wbio = to_wbio(bio);
|
|
wbio->orig = NULL;
|
|
wbio->bounce = false;
|
|
wbio->put_bio = false;
|
|
ret = 0;
|
|
} else if (csum_type != BCH_CSUM_NONE ||
|
|
compression_type != BCH_COMPRESSION_NONE) {
|
|
/* all units here in bytes */
|
|
unsigned total_output = 0, output_available =
|
|
min(ob->sectors_free << 9, orig->bi_iter.bi_size);
|
|
unsigned crc_nonce = bch_csum_type_is_encryption(csum_type)
|
|
? op->nonce : 0;
|
|
struct bch_csum csum;
|
|
struct nonce nonce;
|
|
|
|
bio = bio_alloc_bioset(GFP_NOIO,
|
|
DIV_ROUND_UP(output_available, PAGE_SIZE),
|
|
&c->bio_write);
|
|
/*
|
|
* XXX: can't use mempool for more than
|
|
* BCH_COMPRESSED_EXTENT_MAX worth of pages
|
|
*/
|
|
bch_bio_alloc_pages_pool(c, bio, output_available);
|
|
|
|
/* copy WRITE_SYNC flag */
|
|
bio->bi_opf = orig->bi_opf;
|
|
wbio = to_wbio(bio);
|
|
wbio->orig = NULL;
|
|
wbio->bounce = true;
|
|
wbio->put_bio = true;
|
|
|
|
do {
|
|
unsigned fragment_compression_type = compression_type;
|
|
size_t dst_len, src_len;
|
|
|
|
bch_bio_compress(c, bio, &dst_len,
|
|
orig, &src_len,
|
|
&fragment_compression_type);
|
|
|
|
BUG_ON(!dst_len || dst_len > bio->bi_iter.bi_size);
|
|
BUG_ON(!src_len || src_len > orig->bi_iter.bi_size);
|
|
BUG_ON(dst_len & (block_bytes(c) - 1));
|
|
BUG_ON(src_len & (block_bytes(c) - 1));
|
|
|
|
swap(bio->bi_iter.bi_size, dst_len);
|
|
nonce = extent_nonce(op->version,
|
|
crc_nonce,
|
|
src_len >> 9,
|
|
compression_type),
|
|
|
|
bch_encrypt_bio(c, csum_type, nonce, bio);
|
|
|
|
csum = bch_checksum_bio(c, csum_type, nonce, bio);
|
|
swap(bio->bi_iter.bi_size, dst_len);
|
|
|
|
init_append_extent(op,
|
|
dst_len >> 9, src_len >> 9,
|
|
fragment_compression_type,
|
|
crc_nonce, csum, csum_type, ob);
|
|
|
|
total_output += dst_len;
|
|
bio_advance(bio, dst_len);
|
|
bio_advance(orig, src_len);
|
|
} while (bio->bi_iter.bi_size &&
|
|
orig->bi_iter.bi_size &&
|
|
!bch_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX));
|
|
|
|
BUG_ON(total_output > output_available);
|
|
|
|
memset(&bio->bi_iter, 0, sizeof(bio->bi_iter));
|
|
bio->bi_iter.bi_size = total_output;
|
|
|
|
/*
|
|
* Free unneeded pages after compressing:
|
|
*/
|
|
while (bio->bi_vcnt * PAGE_SIZE >
|
|
round_up(bio->bi_iter.bi_size, PAGE_SIZE))
|
|
mempool_free(bio->bi_io_vec[--bio->bi_vcnt].bv_page,
|
|
&c->bio_bounce_pages);
|
|
|
|
ret = orig->bi_iter.bi_size != 0;
|
|
} else {
|
|
bio = bio_next_split(orig, ob->sectors_free, GFP_NOIO,
|
|
&c->bio_write);
|
|
|
|
wbio = to_wbio(bio);
|
|
wbio->orig = NULL;
|
|
wbio->bounce = false;
|
|
wbio->put_bio = bio != orig;
|
|
|
|
init_append_extent(op, bio_sectors(bio), bio_sectors(bio),
|
|
compression_type, 0,
|
|
(struct bch_csum) { 0 }, csum_type, ob);
|
|
|
|
ret = bio != orig;
|
|
}
|
|
|
|
bio->bi_end_io = bch_write_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
|
|
closure_get(bio->bi_private);
|
|
|
|
/* might have done a realloc... */
|
|
|
|
key_to_write = (void *) (op->insert_keys.keys_p + key_to_write_offset);
|
|
|
|
bch_check_mark_super(c, key_to_write, false);
|
|
|
|
#ifndef CONFIG_BCACHE_NO_IO
|
|
bch_submit_wbio_replicas(to_wbio(bio), c, key_to_write, false);
|
|
#else
|
|
to_wbio(bio)->ca = NULL;
|
|
bio_endio(bio);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static void __bch_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
struct bio *bio = &op->bio->bio;
|
|
unsigned open_bucket_nr = 0;
|
|
struct open_bucket *b;
|
|
int ret;
|
|
|
|
memset(op->open_buckets, 0, sizeof(op->open_buckets));
|
|
|
|
if (op->flags & BCH_WRITE_DISCARD) {
|
|
op->flags |= BCH_WRITE_DONE;
|
|
bch_write_discard(cl);
|
|
bio_put(bio);
|
|
continue_at(cl, bch_write_done, index_update_wq(op));
|
|
}
|
|
|
|
/*
|
|
* Journal writes are marked REQ_PREFLUSH; if the original write was a
|
|
* flush, it'll wait on the journal write.
|
|
*/
|
|
bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
|
|
|
|
do {
|
|
EBUG_ON(bio->bi_iter.bi_sector != op->pos.offset);
|
|
EBUG_ON(!bio_sectors(bio));
|
|
|
|
if (open_bucket_nr == ARRAY_SIZE(op->open_buckets))
|
|
continue_at(cl, bch_write_index, index_update_wq(op));
|
|
|
|
/* for the device pointers and 1 for the chksum */
|
|
if (bch_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX))
|
|
continue_at(cl, bch_write_index, index_update_wq(op));
|
|
|
|
b = bch_alloc_sectors_start(c, op->wp,
|
|
op->nr_replicas,
|
|
c->opts.data_replicas_required,
|
|
op->alloc_reserve,
|
|
(op->flags & BCH_WRITE_ALLOC_NOWAIT) ? NULL : cl);
|
|
EBUG_ON(!b);
|
|
|
|
if (unlikely(IS_ERR(b))) {
|
|
if (unlikely(PTR_ERR(b) != -EAGAIN)) {
|
|
ret = PTR_ERR(b);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If we already have some keys, must insert them first
|
|
* before allocating another open bucket. We only hit
|
|
* this case if open_bucket_nr > 1.
|
|
*/
|
|
if (!bch_keylist_empty(&op->insert_keys))
|
|
continue_at(cl, bch_write_index,
|
|
index_update_wq(op));
|
|
|
|
/*
|
|
* If we've looped, we're running out of a workqueue -
|
|
* not the bch_write() caller's context - and we don't
|
|
* want to block the workqueue:
|
|
*/
|
|
if (op->flags & BCH_WRITE_LOOPED)
|
|
continue_at(cl, __bch_write, op->io_wq);
|
|
|
|
/*
|
|
* Otherwise, we do want to block the caller on alloc
|
|
* failure instead of letting it queue up more and more
|
|
* writes:
|
|
* XXX: this technically needs a try_to_freeze() -
|
|
* except that that's not safe because caller may have
|
|
* issued other IO... hmm..
|
|
*/
|
|
closure_sync(cl);
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(b - c->open_buckets == 0 ||
|
|
b - c->open_buckets > U8_MAX);
|
|
op->open_buckets[open_bucket_nr++] = b - c->open_buckets;
|
|
|
|
ret = bch_write_extent(op, b, bio);
|
|
|
|
bch_alloc_sectors_done(c, op->wp, b);
|
|
|
|
if (ret < 0)
|
|
goto err;
|
|
} while (ret);
|
|
|
|
op->flags |= BCH_WRITE_DONE;
|
|
continue_at(cl, bch_write_index, index_update_wq(op));
|
|
err:
|
|
if (op->flags & BCH_WRITE_DISCARD_ON_ERROR) {
|
|
/*
|
|
* If we were writing cached data, not doing the write is fine
|
|
* so long as we discard whatever would have been overwritten -
|
|
* then it's equivalent to doing the write and immediately
|
|
* reclaiming it.
|
|
*/
|
|
|
|
bch_write_discard(cl);
|
|
} else {
|
|
/*
|
|
* Right now we can only error here if we went RO - the
|
|
* allocation failed, but we already checked for -ENOSPC when we
|
|
* got our reservation.
|
|
*
|
|
* XXX capacity might have changed, but we don't check for that
|
|
* yet:
|
|
*/
|
|
op->error = ret;
|
|
}
|
|
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
/*
|
|
* No reason not to insert keys for whatever data was successfully
|
|
* written (especially for a cmpxchg operation that's moving data
|
|
* around)
|
|
*/
|
|
continue_at(cl, !bch_keylist_empty(&op->insert_keys)
|
|
? bch_write_index
|
|
: bch_write_done, index_update_wq(op));
|
|
}
|
|
|
|
void bch_wake_delayed_writes(unsigned long data)
|
|
{
|
|
struct bch_fs *c = (void *) data;
|
|
struct bch_write_op *op;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&c->foreground_write_pd_lock, flags);
|
|
|
|
while ((op = c->write_wait_head)) {
|
|
if (time_after(op->expires, jiffies)) {
|
|
mod_timer(&c->foreground_write_wakeup, op->expires);
|
|
break;
|
|
}
|
|
|
|
c->write_wait_head = op->next;
|
|
if (!c->write_wait_head)
|
|
c->write_wait_tail = NULL;
|
|
|
|
closure_put(&op->cl);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&c->foreground_write_pd_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* bch_write - handle a write to a cache device or flash only volume
|
|
*
|
|
* This is the starting point for any data to end up in a cache device; it could
|
|
* be from a normal write, or a writeback write, or a write to a flash only
|
|
* volume - it's also used by the moving garbage collector to compact data in
|
|
* mostly empty buckets.
|
|
*
|
|
* It first writes the data to the cache, creating a list of keys to be inserted
|
|
* (if the data won't fit in a single open bucket, there will be multiple keys);
|
|
* after the data is written it calls bch_journal, and after the keys have been
|
|
* added to the next journal write they're inserted into the btree.
|
|
*
|
|
* It inserts the data in op->bio; bi_sector is used for the key offset, and
|
|
* op->inode is used for the key inode.
|
|
*
|
|
* If op->discard is true, instead of inserting the data it invalidates the
|
|
* region of the cache represented by op->bio and op->inode.
|
|
*/
|
|
void bch_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bio *bio = &op->bio->bio;
|
|
struct bch_fs *c = op->c;
|
|
u64 inode = op->pos.inode;
|
|
|
|
trace_bcache_write(c, inode, bio,
|
|
!(op->flags & BCH_WRITE_CACHED),
|
|
op->flags & BCH_WRITE_DISCARD);
|
|
|
|
if (c->opts.nochanges ||
|
|
!percpu_ref_tryget(&c->writes)) {
|
|
__bcache_io_error(c, "read only");
|
|
op->error = -EROFS;
|
|
bch_disk_reservation_put(c, &op->res);
|
|
closure_return(cl);
|
|
}
|
|
|
|
if (bversion_zero(op->version) &&
|
|
bch_csum_type_is_encryption(op->csum_type))
|
|
op->version.lo =
|
|
atomic64_inc_return(&c->key_version) + 1;
|
|
|
|
if (!(op->flags & BCH_WRITE_DISCARD))
|
|
bch_increment_clock(c, bio_sectors(bio), WRITE);
|
|
|
|
if (!(op->flags & BCH_WRITE_DISCARD))
|
|
bch_mark_foreground_write(c, bio_sectors(bio));
|
|
else
|
|
bch_mark_discard(c, bio_sectors(bio));
|
|
|
|
/* Don't call bch_next_delay() if rate is >= 1 GB/sec */
|
|
|
|
if (c->foreground_write_ratelimit_enabled &&
|
|
c->foreground_write_pd.rate.rate < (1 << 30) &&
|
|
!(op->flags & BCH_WRITE_DISCARD) && op->wp->throttle) {
|
|
unsigned long flags;
|
|
u64 delay;
|
|
|
|
spin_lock_irqsave(&c->foreground_write_pd_lock, flags);
|
|
bch_ratelimit_increment(&c->foreground_write_pd.rate,
|
|
bio->bi_iter.bi_size);
|
|
|
|
delay = bch_ratelimit_delay(&c->foreground_write_pd.rate);
|
|
|
|
if (delay >= HZ / 100) {
|
|
trace_bcache_write_throttle(c, inode, bio, delay);
|
|
|
|
closure_get(&op->cl); /* list takes a ref */
|
|
|
|
op->expires = jiffies + delay;
|
|
op->next = NULL;
|
|
|
|
if (c->write_wait_tail)
|
|
c->write_wait_tail->next = op;
|
|
else
|
|
c->write_wait_head = op;
|
|
c->write_wait_tail = op;
|
|
|
|
if (!timer_pending(&c->foreground_write_wakeup))
|
|
mod_timer(&c->foreground_write_wakeup,
|
|
op->expires);
|
|
|
|
spin_unlock_irqrestore(&c->foreground_write_pd_lock,
|
|
flags);
|
|
continue_at(cl, __bch_write, index_update_wq(op));
|
|
}
|
|
|
|
spin_unlock_irqrestore(&c->foreground_write_pd_lock, flags);
|
|
}
|
|
|
|
continue_at_nobarrier(cl, __bch_write, NULL);
|
|
}
|
|
|
|
void bch_write_op_init(struct bch_write_op *op, struct bch_fs *c,
|
|
struct bch_write_bio *bio, struct disk_reservation res,
|
|
struct write_point *wp, struct bpos pos,
|
|
u64 *journal_seq, unsigned flags)
|
|
{
|
|
EBUG_ON(res.sectors && !res.nr_replicas);
|
|
|
|
op->c = c;
|
|
op->io_wq = index_update_wq(op);
|
|
op->bio = bio;
|
|
op->written = 0;
|
|
op->error = 0;
|
|
op->flags = flags;
|
|
op->csum_type = bch_data_checksum_type(c);
|
|
op->compression_type = c->opts.compression;
|
|
op->nr_replicas = res.nr_replicas;
|
|
op->alloc_reserve = RESERVE_NONE;
|
|
op->nonce = 0;
|
|
op->pos = pos;
|
|
op->version = ZERO_VERSION;
|
|
op->res = res;
|
|
op->wp = wp;
|
|
|
|
if (journal_seq) {
|
|
op->journal_seq_p = journal_seq;
|
|
op->flags |= BCH_WRITE_JOURNAL_SEQ_PTR;
|
|
} else {
|
|
op->journal_seq = 0;
|
|
}
|
|
|
|
op->index_update_fn = bch_write_index_default;
|
|
|
|
bch_keylist_init(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys));
|
|
|
|
if (version_stress_test(c))
|
|
get_random_bytes(&op->version, sizeof(op->version));
|
|
}
|
|
|
|
/* Discard */
|
|
|
|
/* bch_discard - discard a range of keys from start_key to end_key.
|
|
* @c filesystem
|
|
* @start_key pointer to start location
|
|
* NOTE: discard starts at bkey_start_offset(start_key)
|
|
* @end_key pointer to end location
|
|
* NOTE: discard ends at KEY_OFFSET(end_key)
|
|
* @version version of discard (0ULL if none)
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* <0 on error
|
|
*
|
|
* XXX: this needs to be refactored with inode_truncate, or more
|
|
* appropriately inode_truncate should call this
|
|
*/
|
|
int bch_discard(struct bch_fs *c, struct bpos start,
|
|
struct bpos end, struct bversion version,
|
|
struct disk_reservation *disk_res,
|
|
struct extent_insert_hook *hook,
|
|
u64 *journal_seq)
|
|
{
|
|
return bch_btree_delete_range(c, BTREE_ID_EXTENTS, start, end, version,
|
|
disk_res, hook, journal_seq);
|
|
}
|
|
|
|
/* Cache promotion on read */
|
|
|
|
struct cache_promote_op {
|
|
struct closure cl;
|
|
struct migrate_write write;
|
|
struct bio_vec bi_inline_vecs[0]; /* must be last */
|
|
};
|
|
|
|
/* Read */
|
|
|
|
static int bio_checksum_uncompress(struct bch_fs *c,
|
|
struct bch_read_bio *rbio)
|
|
{
|
|
struct bio *src = &rbio->bio;
|
|
struct bio *dst = &bch_rbio_parent(rbio)->bio;
|
|
struct bvec_iter dst_iter = rbio->parent_iter;
|
|
struct nonce nonce = extent_nonce(rbio->version,
|
|
rbio->crc.nonce,
|
|
crc_uncompressed_size(NULL, &rbio->crc),
|
|
rbio->crc.compression_type);
|
|
struct bch_csum csum;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* reset iterator for checksumming and copying bounced data: here we've
|
|
* set rbio->compressed_size to the amount of data we actually read,
|
|
* which was not necessarily the full extent if we were only bouncing
|
|
* in order to promote
|
|
*/
|
|
if (rbio->bounce) {
|
|
src->bi_iter.bi_size = crc_compressed_size(NULL, &rbio->crc) << 9;
|
|
src->bi_iter.bi_idx = 0;
|
|
src->bi_iter.bi_bvec_done = 0;
|
|
} else {
|
|
src->bi_iter = rbio->parent_iter;
|
|
}
|
|
|
|
csum = bch_checksum_bio(c, rbio->crc.csum_type, nonce, src);
|
|
if (bch_dev_nonfatal_io_err_on(bch_crc_cmp(rbio->crc.csum, csum), rbio->ca,
|
|
"data checksum error, inode %llu offset %llu: expected %0llx%0llx got %0llx%0llx (type %u)",
|
|
rbio->inode, (u64) rbio->parent_iter.bi_sector << 9,
|
|
rbio->crc.csum.hi, rbio->crc.csum.lo, csum.hi, csum.lo,
|
|
rbio->crc.csum_type))
|
|
ret = -EIO;
|
|
|
|
/*
|
|
* If there was a checksum error, still copy the data back - unless it
|
|
* was compressed, we don't want to decompress bad data:
|
|
*/
|
|
if (rbio->crc.compression_type != BCH_COMPRESSION_NONE) {
|
|
if (!ret) {
|
|
bch_encrypt_bio(c, rbio->crc.csum_type, nonce, src);
|
|
ret = bch_bio_uncompress(c, src, dst,
|
|
dst_iter, rbio->crc);
|
|
if (ret)
|
|
__bcache_io_error(c, "decompression error");
|
|
}
|
|
} else if (rbio->bounce) {
|
|
bio_advance(src, rbio->crc.offset << 9);
|
|
|
|
/* don't need to decrypt the entire bio: */
|
|
BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size);
|
|
src->bi_iter.bi_size = dst_iter.bi_size;
|
|
|
|
nonce = nonce_add(nonce, rbio->crc.offset << 9);
|
|
|
|
bch_encrypt_bio(c, rbio->crc.csum_type,
|
|
nonce, src);
|
|
|
|
bio_copy_data_iter(dst, dst_iter,
|
|
src, src->bi_iter);
|
|
} else {
|
|
bch_encrypt_bio(c, rbio->crc.csum_type, nonce, src);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bch_rbio_free(struct bch_fs *c, struct bch_read_bio *rbio)
|
|
{
|
|
struct bio *bio = &rbio->bio;
|
|
|
|
BUG_ON(rbio->ca);
|
|
BUG_ON(!rbio->split);
|
|
|
|
if (rbio->promote)
|
|
kfree(rbio->promote);
|
|
if (rbio->bounce)
|
|
bch_bio_free_pages_pool(c, bio);
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void bch_rbio_done(struct bch_fs *c, struct bch_read_bio *rbio)
|
|
{
|
|
struct bio *orig = &bch_rbio_parent(rbio)->bio;
|
|
|
|
percpu_ref_put(&rbio->ca->io_ref);
|
|
rbio->ca = NULL;
|
|
|
|
if (rbio->split) {
|
|
if (rbio->bio.bi_error)
|
|
orig->bi_error = rbio->bio.bi_error;
|
|
|
|
bio_endio(orig);
|
|
bch_rbio_free(c, rbio);
|
|
} else {
|
|
if (rbio->promote)
|
|
kfree(rbio->promote);
|
|
|
|
orig->bi_end_io = rbio->orig_bi_end_io;
|
|
bio_endio_nodec(orig);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decide if we want to retry the read - returns true if read is being retried,
|
|
* false if caller should pass error on up
|
|
*/
|
|
static void bch_read_error_maybe_retry(struct bch_fs *c,
|
|
struct bch_read_bio *rbio,
|
|
int error)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if ((error == -EINTR) &&
|
|
(rbio->flags & BCH_READ_RETRY_IF_STALE)) {
|
|
atomic_long_inc(&c->cache_read_races);
|
|
goto retry;
|
|
}
|
|
|
|
if (error == -EIO) {
|
|
/* io error - do we have another replica? */
|
|
}
|
|
|
|
bch_rbio_parent(rbio)->bio.bi_error = error;
|
|
bch_rbio_done(c, rbio);
|
|
return;
|
|
retry:
|
|
percpu_ref_put(&rbio->ca->io_ref);
|
|
rbio->ca = NULL;
|
|
|
|
spin_lock_irqsave(&c->read_retry_lock, flags);
|
|
bio_list_add(&c->read_retry_list, &rbio->bio);
|
|
spin_unlock_irqrestore(&c->read_retry_lock, flags);
|
|
queue_work(c->wq, &c->read_retry_work);
|
|
}
|
|
|
|
static void cache_promote_done(struct closure *cl)
|
|
{
|
|
struct cache_promote_op *op =
|
|
container_of(cl, struct cache_promote_op, cl);
|
|
|
|
bch_bio_free_pages_pool(op->write.op.c, &op->write.wbio.bio);
|
|
kfree(op);
|
|
}
|
|
|
|
/* Inner part that may run in process context */
|
|
static void __bch_read_endio(struct bch_fs *c, struct bch_read_bio *rbio)
|
|
{
|
|
int ret;
|
|
|
|
ret = bio_checksum_uncompress(c, rbio);
|
|
if (ret) {
|
|
bch_read_error_maybe_retry(c, rbio, ret);
|
|
return;
|
|
}
|
|
|
|
if (rbio->promote) {
|
|
struct cache_promote_op *promote = rbio->promote;
|
|
struct closure *cl = &promote->cl;
|
|
|
|
BUG_ON(!rbio->split || !rbio->bounce);
|
|
|
|
/* we now own pages: */
|
|
swap(promote->write.wbio.bio.bi_vcnt, rbio->bio.bi_vcnt);
|
|
rbio->promote = NULL;
|
|
|
|
bch_rbio_done(c, rbio);
|
|
|
|
closure_init(cl, &c->cl);
|
|
closure_call(&promote->write.op.cl, bch_write, c->wq, cl);
|
|
closure_return_with_destructor(cl, cache_promote_done);
|
|
} else {
|
|
bch_rbio_done(c, rbio);
|
|
}
|
|
}
|
|
|
|
void bch_bio_decompress_work(struct work_struct *work)
|
|
{
|
|
struct bio_decompress_worker *d =
|
|
container_of(work, struct bio_decompress_worker, work);
|
|
struct llist_node *list, *next;
|
|
struct bch_read_bio *rbio;
|
|
|
|
while ((list = llist_del_all(&d->bio_list)))
|
|
for (list = llist_reverse_order(list);
|
|
list;
|
|
list = next) {
|
|
next = llist_next(list);
|
|
rbio = container_of(list, struct bch_read_bio, list);
|
|
|
|
__bch_read_endio(d->c, rbio);
|
|
}
|
|
}
|
|
|
|
static void bch_read_endio(struct bio *bio)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(bio, struct bch_read_bio, bio);
|
|
struct bch_fs *c = rbio->ca->fs;
|
|
int stale = ((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) ||
|
|
ptr_stale(rbio->ca, &rbio->ptr) ? -EINTR : 0;
|
|
int error = bio->bi_error ?: stale;
|
|
|
|
bch_account_io_completion_time(rbio->ca, rbio->submit_time_us, REQ_OP_READ);
|
|
|
|
bch_dev_nonfatal_io_err_on(bio->bi_error, rbio->ca, "data read");
|
|
|
|
if (error) {
|
|
bch_read_error_maybe_retry(c, rbio, error);
|
|
return;
|
|
}
|
|
|
|
if (rbio->crc.compression_type != BCH_COMPRESSION_NONE ||
|
|
bch_csum_type_is_encryption(rbio->crc.csum_type)) {
|
|
struct bio_decompress_worker *d;
|
|
|
|
preempt_disable();
|
|
d = this_cpu_ptr(c->bio_decompress_worker);
|
|
llist_add(&rbio->list, &d->bio_list);
|
|
queue_work(system_highpri_wq, &d->work);
|
|
preempt_enable();
|
|
} else {
|
|
__bch_read_endio(c, rbio);
|
|
}
|
|
}
|
|
|
|
static bool should_promote(struct bch_fs *c,
|
|
struct extent_pick_ptr *pick, unsigned flags)
|
|
{
|
|
if (!(flags & BCH_READ_PROMOTE))
|
|
return false;
|
|
|
|
if (percpu_ref_is_dying(&c->writes))
|
|
return false;
|
|
|
|
return c->fastest_tier &&
|
|
c->fastest_tier < c->tiers + pick->ca->mi.tier;
|
|
}
|
|
|
|
void bch_read_extent_iter(struct bch_fs *c, struct bch_read_bio *orig,
|
|
struct bvec_iter iter, struct bkey_s_c k,
|
|
struct extent_pick_ptr *pick, unsigned flags)
|
|
{
|
|
struct bch_read_bio *rbio;
|
|
struct cache_promote_op *promote_op = NULL;
|
|
unsigned skip = iter.bi_sector - bkey_start_offset(k.k);
|
|
bool bounce = false, split, read_full = false;
|
|
|
|
EBUG_ON(bkey_start_offset(k.k) > iter.bi_sector ||
|
|
k.k->p.offset < bvec_iter_end_sector(iter));
|
|
|
|
/* only promote if we're not reading from the fastest tier: */
|
|
|
|
/*
|
|
* XXX: multiple promotes can race with each other, wastefully. Keep a
|
|
* list of outstanding promotes?
|
|
*/
|
|
if (should_promote(c, pick, flags)) {
|
|
/*
|
|
* biovec needs to be big enough to hold decompressed data, if
|
|
* the bch_write_extent() has to decompress/recompress it:
|
|
*/
|
|
unsigned sectors =
|
|
max_t(unsigned, k.k->size,
|
|
crc_uncompressed_size(NULL, &pick->crc));
|
|
unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
|
|
|
|
promote_op = kmalloc(sizeof(*promote_op) +
|
|
sizeof(struct bio_vec) * pages, GFP_NOIO);
|
|
if (promote_op) {
|
|
struct bio *promote_bio = &promote_op->write.wbio.bio;
|
|
|
|
bio_init(promote_bio);
|
|
promote_bio->bi_max_vecs = pages;
|
|
promote_bio->bi_io_vec = promote_bio->bi_inline_vecs;
|
|
bounce = true;
|
|
/* could also set read_full */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* note: if compression_type and crc_type both == none, then
|
|
* compressed/uncompressed size is zero
|
|
*/
|
|
if (pick->crc.compression_type != BCH_COMPRESSION_NONE ||
|
|
(pick->crc.csum_type != BCH_CSUM_NONE &&
|
|
(bvec_iter_sectors(iter) != crc_uncompressed_size(NULL, &pick->crc) ||
|
|
(flags & BCH_READ_FORCE_BOUNCE)))) {
|
|
read_full = true;
|
|
bounce = true;
|
|
}
|
|
|
|
if (bounce) {
|
|
unsigned sectors = read_full
|
|
? (crc_compressed_size(NULL, &pick->crc) ?: k.k->size)
|
|
: bvec_iter_sectors(iter);
|
|
|
|
rbio = container_of(bio_alloc_bioset(GFP_NOIO,
|
|
DIV_ROUND_UP(sectors, PAGE_SECTORS),
|
|
&c->bio_read_split),
|
|
struct bch_read_bio, bio);
|
|
|
|
bch_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9);
|
|
split = true;
|
|
} else if (!(flags & BCH_READ_MAY_REUSE_BIO) ||
|
|
!(flags & BCH_READ_IS_LAST)) {
|
|
/*
|
|
* Have to clone if there were any splits, due to error
|
|
* reporting issues (if a split errored, and retrying didn't
|
|
* work, when it reports the error to its parent (us) we don't
|
|
* know if the error was from our bio, and we should retry, or
|
|
* from the whole bio, in which case we don't want to retry and
|
|
* lose the error)
|
|
*/
|
|
rbio = container_of(bio_clone_fast(&orig->bio,
|
|
GFP_NOIO, &c->bio_read_split),
|
|
struct bch_read_bio, bio);
|
|
rbio->bio.bi_iter = iter;
|
|
split = true;
|
|
} else {
|
|
rbio = orig;
|
|
rbio->bio.bi_iter = iter;
|
|
split = false;
|
|
BUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN));
|
|
}
|
|
|
|
if (!(flags & BCH_READ_IS_LAST))
|
|
__bio_inc_remaining(&orig->bio);
|
|
|
|
if (split)
|
|
rbio->parent = orig;
|
|
else
|
|
rbio->orig_bi_end_io = orig->bio.bi_end_io;
|
|
rbio->parent_iter = iter;
|
|
|
|
rbio->inode = k.k->p.inode;
|
|
rbio->flags = flags;
|
|
rbio->bounce = bounce;
|
|
rbio->split = split;
|
|
rbio->version = k.k->version;
|
|
rbio->crc = pick->crc;
|
|
/*
|
|
* crc.compressed_size will be 0 if there wasn't any checksum
|
|
* information, also we need to stash the original size of the bio if we
|
|
* bounced (which isn't necessarily the original key size, if we bounced
|
|
* only for promoting)
|
|
*/
|
|
rbio->crc._compressed_size = bio_sectors(&rbio->bio) - 1;
|
|
rbio->ptr = pick->ptr;
|
|
rbio->ca = pick->ca;
|
|
rbio->promote = promote_op;
|
|
|
|
rbio->bio.bi_bdev = pick->ca->disk_sb.bdev;
|
|
rbio->bio.bi_opf = orig->bio.bi_opf;
|
|
rbio->bio.bi_iter.bi_sector = pick->ptr.offset;
|
|
rbio->bio.bi_end_io = bch_read_endio;
|
|
|
|
if (promote_op) {
|
|
struct bio *promote_bio = &promote_op->write.wbio.bio;
|
|
|
|
promote_bio->bi_iter = rbio->bio.bi_iter;
|
|
memcpy(promote_bio->bi_io_vec, rbio->bio.bi_io_vec,
|
|
sizeof(struct bio_vec) * rbio->bio.bi_vcnt);
|
|
|
|
bch_migrate_write_init(c, &promote_op->write,
|
|
&c->promote_write_point,
|
|
k, NULL,
|
|
BCH_WRITE_ALLOC_NOWAIT|
|
|
BCH_WRITE_CACHED);
|
|
promote_op->write.promote = true;
|
|
|
|
if (rbio->crc.compression_type) {
|
|
promote_op->write.op.flags |= BCH_WRITE_DATA_COMPRESSED;
|
|
promote_op->write.op.crc = rbio->crc;
|
|
promote_op->write.op.size = k.k->size;
|
|
} else if (read_full) {
|
|
/*
|
|
* Adjust bio to correspond to _live_ portion of @k -
|
|
* which might be less than what we're actually reading:
|
|
*/
|
|
bio_advance(promote_bio, rbio->crc.offset << 9);
|
|
BUG_ON(bio_sectors(promote_bio) < k.k->size);
|
|
promote_bio->bi_iter.bi_size = k.k->size << 9;
|
|
} else {
|
|
/*
|
|
* Set insert pos to correspond to what we're actually
|
|
* reading:
|
|
*/
|
|
promote_op->write.op.pos.offset = iter.bi_sector;
|
|
}
|
|
|
|
promote_bio->bi_iter.bi_sector =
|
|
promote_op->write.op.pos.offset;
|
|
}
|
|
|
|
/* _after_ promete stuff has looked at rbio->crc.offset */
|
|
if (read_full)
|
|
rbio->crc.offset += skip;
|
|
else
|
|
rbio->bio.bi_iter.bi_sector += skip;
|
|
|
|
rbio->submit_time_us = local_clock_us();
|
|
|
|
#ifndef CONFIG_BCACHE_NO_IO
|
|
generic_make_request(&rbio->bio);
|
|
#else
|
|
bio_endio(&rbio->bio);
|
|
#endif
|
|
}
|
|
|
|
static void bch_read_iter(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter, u64 inode,
|
|
unsigned flags)
|
|
{
|
|
struct bio *bio = &rbio->bio;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
for_each_btree_key_with_holes(&iter, c, BTREE_ID_EXTENTS,
|
|
POS(inode, bvec_iter.bi_sector), k) {
|
|
BKEY_PADDED(k) tmp;
|
|
struct extent_pick_ptr pick;
|
|
unsigned bytes, sectors;
|
|
bool is_last;
|
|
|
|
/*
|
|
* Unlock the iterator while the btree node's lock is still in
|
|
* cache, before doing the IO:
|
|
*/
|
|
bkey_reassemble(&tmp.k, k);
|
|
k = bkey_i_to_s_c(&tmp.k);
|
|
bch_btree_iter_unlock(&iter);
|
|
|
|
bch_extent_pick_ptr(c, k, &pick);
|
|
if (IS_ERR(pick.ca)) {
|
|
bcache_io_error(c, bio, "no device to read from");
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
sectors = min_t(u64, k.k->p.offset,
|
|
bvec_iter_end_sector(bvec_iter)) -
|
|
bvec_iter.bi_sector;
|
|
bytes = sectors << 9;
|
|
is_last = bytes == bvec_iter.bi_size;
|
|
swap(bvec_iter.bi_size, bytes);
|
|
|
|
if (is_last)
|
|
flags |= BCH_READ_IS_LAST;
|
|
|
|
if (pick.ca) {
|
|
PTR_BUCKET(pick.ca, &pick.ptr)->read_prio =
|
|
c->prio_clock[READ].hand;
|
|
|
|
bch_read_extent_iter(c, rbio, bvec_iter,
|
|
k, &pick, flags);
|
|
|
|
flags &= ~BCH_READ_MAY_REUSE_BIO;
|
|
} else {
|
|
zero_fill_bio_iter(bio, bvec_iter);
|
|
|
|
if (is_last)
|
|
bio_endio(bio);
|
|
}
|
|
|
|
if (is_last)
|
|
return;
|
|
|
|
swap(bvec_iter.bi_size, bytes);
|
|
bio_advance_iter(bio, &bvec_iter, bytes);
|
|
}
|
|
|
|
/*
|
|
* If we get here, it better have been because there was an error
|
|
* reading a btree node
|
|
*/
|
|
ret = bch_btree_iter_unlock(&iter);
|
|
BUG_ON(!ret);
|
|
bcache_io_error(c, bio, "btree IO error %i", ret);
|
|
bio_endio(bio);
|
|
}
|
|
|
|
void bch_read(struct bch_fs *c, struct bch_read_bio *bio, u64 inode)
|
|
{
|
|
bch_increment_clock(c, bio_sectors(&bio->bio), READ);
|
|
|
|
bch_read_iter(c, bio, bio->bio.bi_iter, inode,
|
|
BCH_READ_FORCE_BOUNCE|
|
|
BCH_READ_RETRY_IF_STALE|
|
|
BCH_READ_PROMOTE|
|
|
BCH_READ_MAY_REUSE_BIO);
|
|
}
|
|
EXPORT_SYMBOL(bch_read);
|
|
|
|
/**
|
|
* bch_read_retry - re-submit a bio originally from bch_read()
|
|
*/
|
|
static void bch_read_retry(struct bch_fs *c, struct bch_read_bio *rbio)
|
|
{
|
|
struct bch_read_bio *parent = bch_rbio_parent(rbio);
|
|
struct bvec_iter iter = rbio->parent_iter;
|
|
u64 inode = rbio->inode;
|
|
|
|
trace_bcache_read_retry(&rbio->bio);
|
|
|
|
if (rbio->split)
|
|
bch_rbio_free(c, rbio);
|
|
else
|
|
rbio->bio.bi_end_io = rbio->orig_bi_end_io;
|
|
|
|
bch_read_iter(c, parent, iter, inode,
|
|
BCH_READ_FORCE_BOUNCE|
|
|
BCH_READ_RETRY_IF_STALE|
|
|
BCH_READ_PROMOTE);
|
|
}
|
|
|
|
void bch_read_retry_work(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c = container_of(work, struct bch_fs,
|
|
read_retry_work);
|
|
struct bch_read_bio *rbio;
|
|
struct bio *bio;
|
|
unsigned long flags;
|
|
|
|
while (1) {
|
|
spin_lock_irqsave(&c->read_retry_lock, flags);
|
|
bio = bio_list_pop(&c->read_retry_list);
|
|
spin_unlock_irqrestore(&c->read_retry_lock, flags);
|
|
|
|
if (!bio)
|
|
break;
|
|
|
|
rbio = container_of(bio, struct bch_read_bio, bio);
|
|
bch_read_retry(c, rbio);
|
|
}
|
|
}
|