mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-02-02 00:00:03 +03:00
810 lines
20 KiB
C
810 lines
20 KiB
C
/*
|
|
* Handle a read or a write request and decide what to do with it.
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*
|
|
* Main pieces here:
|
|
*
|
|
* 1) Data insert path, via bch_data_insert() -- writes data to cache and
|
|
* updates extents btree
|
|
* 2) Read path, via bch_read() -- for now only used by bcachefs and ioctl
|
|
* interface
|
|
* 3) Read path, via cache_lookup() and struct search -- used by block device
|
|
* make_request functions
|
|
* 4) Cache promotion -- used by bch_read() and cache_lookup() to copy data to
|
|
* the cache, either from a backing device or a cache device in a higher tier
|
|
*
|
|
* One tricky thing that comes up is a race condition where a bucket may be
|
|
* re-used while reads from it are still in flight. To guard against this, we
|
|
* save the ptr that is being read and check if it is stale once the read
|
|
* completes. If the ptr is stale, the read is retried.
|
|
*
|
|
* #2 and #3 will be unified further in the future.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "blockdev.h"
|
|
#include "btree_update.h"
|
|
#include "btree_iter.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "io.h"
|
|
#include "journal.h"
|
|
#include "keybuf.h"
|
|
#include "request.h"
|
|
#include "writeback.h"
|
|
#include "stats.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/random.h>
|
|
#include <linux/backing-dev.h>
|
|
|
|
#include <trace/events/bcache.h>
|
|
|
|
#define CUTOFF_CACHE_ADD 10
|
|
#define CUTOFF_CACHE_READA 15
|
|
|
|
/* Congested? */
|
|
|
|
unsigned bch_get_congested(struct bch_fs *c)
|
|
{
|
|
int i;
|
|
long rand;
|
|
|
|
if (!c->congested_read_threshold_us &&
|
|
!c->congested_write_threshold_us)
|
|
return 0;
|
|
|
|
i = (local_clock_us() - c->congested_last_us) / 1024;
|
|
if (i < 0)
|
|
return 0;
|
|
|
|
i += atomic_read(&c->congested);
|
|
if (i >= 0)
|
|
return 0;
|
|
|
|
i += CONGESTED_MAX;
|
|
|
|
if (i > 0)
|
|
i = fract_exp_two(i, 6);
|
|
|
|
rand = get_random_int();
|
|
i -= bitmap_weight(&rand, BITS_PER_LONG);
|
|
|
|
return i > 0 ? i : 1;
|
|
}
|
|
|
|
static void add_sequential(struct task_struct *t)
|
|
{
|
|
t->sequential_io_avg = ewma_add(t->sequential_io_avg,
|
|
t->sequential_io, 3);
|
|
t->sequential_io = 0;
|
|
}
|
|
|
|
static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
|
|
{
|
|
return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
|
|
}
|
|
|
|
static bool check_should_bypass(struct cached_dev *dc, struct bio *bio, int rw)
|
|
{
|
|
struct bch_fs *c = dc->disk.c;
|
|
unsigned mode = BDEV_CACHE_MODE(dc->disk_sb.sb);
|
|
unsigned sectors, congested = bch_get_congested(c);
|
|
struct task_struct *task = current;
|
|
struct io *i;
|
|
|
|
if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
|
|
sectors_available(c) * 100 < c->capacity * CUTOFF_CACHE_ADD ||
|
|
(bio_op(bio) == REQ_OP_DISCARD))
|
|
goto skip;
|
|
|
|
if (mode == CACHE_MODE_NONE ||
|
|
(mode == CACHE_MODE_WRITEAROUND &&
|
|
op_is_write(bio_op(bio))))
|
|
goto skip;
|
|
|
|
if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
|
|
bio_sectors(bio) & (c->sb.block_size - 1)) {
|
|
pr_debug("skipping unaligned io");
|
|
goto skip;
|
|
}
|
|
|
|
if (bypass_torture_test(dc)) {
|
|
if ((get_random_int() & 3) == 3)
|
|
goto skip;
|
|
else
|
|
goto rescale;
|
|
}
|
|
|
|
if (!congested && !dc->sequential_cutoff)
|
|
goto rescale;
|
|
|
|
if (!congested &&
|
|
mode == CACHE_MODE_WRITEBACK &&
|
|
op_is_write(bio_op(bio)) &&
|
|
(bio->bi_opf & REQ_SYNC))
|
|
goto rescale;
|
|
|
|
spin_lock(&dc->io_lock);
|
|
|
|
hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
|
|
if (i->last == bio->bi_iter.bi_sector &&
|
|
time_before(jiffies, i->last_io))
|
|
goto found;
|
|
|
|
i = list_first_entry(&dc->io_lru, struct io, lru);
|
|
|
|
add_sequential(task);
|
|
i->sequential = 0;
|
|
found:
|
|
if (i->sequential + bio->bi_iter.bi_size > i->sequential)
|
|
i->sequential += bio->bi_iter.bi_size;
|
|
|
|
i->last = bio_end_sector(bio);
|
|
i->last_io = jiffies + msecs_to_jiffies(5000);
|
|
task->sequential_io = i->sequential;
|
|
|
|
hlist_del(&i->hash);
|
|
hlist_add_head(&i->hash, iohash(dc, i->last));
|
|
list_move_tail(&i->lru, &dc->io_lru);
|
|
|
|
spin_unlock(&dc->io_lock);
|
|
|
|
sectors = max(task->sequential_io,
|
|
task->sequential_io_avg) >> 9;
|
|
|
|
if (dc->sequential_cutoff &&
|
|
sectors >= dc->sequential_cutoff >> 9) {
|
|
trace_bcache_bypass_sequential(bio);
|
|
goto skip;
|
|
}
|
|
|
|
if (congested && sectors >= congested) {
|
|
trace_bcache_bypass_congested(bio);
|
|
goto skip;
|
|
}
|
|
|
|
rescale:
|
|
return false;
|
|
skip:
|
|
bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
|
|
return true;
|
|
}
|
|
|
|
/* Common code for the make_request functions */
|
|
|
|
/**
|
|
* request_endio - endio function for backing device bios
|
|
*/
|
|
static void request_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
|
|
if (bio->bi_error) {
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
s->iop.error = bio->bi_error;
|
|
/* Only cache read errors are recoverable */
|
|
s->recoverable = false;
|
|
}
|
|
|
|
bio_put(bio);
|
|
closure_put(cl);
|
|
}
|
|
|
|
static void bio_complete(struct search *s)
|
|
{
|
|
if (s->orig_bio) {
|
|
generic_end_io_acct(bio_data_dir(s->orig_bio),
|
|
&s->d->disk->part0, s->start_time);
|
|
|
|
trace_bcache_request_end(s->d, s->orig_bio);
|
|
s->orig_bio->bi_error = s->iop.error;
|
|
bio_endio(s->orig_bio);
|
|
s->orig_bio = NULL;
|
|
}
|
|
}
|
|
|
|
static void do_bio_hook(struct search *s, struct bio *orig_bio)
|
|
{
|
|
int rw = bio_data_dir(orig_bio);
|
|
struct bio *bio = rw ? &s->wbio.bio : &s->rbio.bio;
|
|
|
|
bio_init(bio);
|
|
__bio_clone_fast(bio, orig_bio);
|
|
bio->bi_end_io = request_endio;
|
|
bio->bi_private = &s->cl;
|
|
|
|
bio_cnt_set(bio, 3);
|
|
}
|
|
|
|
static void search_free(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
|
|
bio_complete(s);
|
|
|
|
if (s->iop.bio)
|
|
bio_put(&s->iop.bio->bio);
|
|
|
|
closure_debug_destroy(cl);
|
|
mempool_free(s, &s->d->c->search);
|
|
}
|
|
|
|
static inline struct search *search_alloc(struct bio *bio,
|
|
struct bcache_device *d)
|
|
{
|
|
struct search *s;
|
|
|
|
s = mempool_alloc(&d->c->search, GFP_NOIO);
|
|
|
|
closure_init(&s->cl, NULL);
|
|
do_bio_hook(s, bio);
|
|
|
|
s->orig_bio = bio;
|
|
s->d = d;
|
|
s->recoverable = 1;
|
|
s->bypass = 0;
|
|
s->write = op_is_write(bio_op(bio));
|
|
s->read_dirty_data = 0;
|
|
s->cache_miss = 0;
|
|
s->start_time = jiffies;
|
|
s->inode = bcache_dev_inum(d);
|
|
|
|
s->iop.c = d->c;
|
|
s->iop.bio = NULL;
|
|
s->iop.error = 0;
|
|
|
|
return s;
|
|
}
|
|
|
|
/* Cached devices */
|
|
|
|
static void cached_dev_bio_complete(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
search_free(cl);
|
|
cached_dev_put(dc);
|
|
}
|
|
|
|
/* Process reads */
|
|
|
|
static void cached_dev_read_error(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct bio *bio = &s->rbio.bio;
|
|
|
|
if (s->recoverable) {
|
|
/* Read bucket invalidate races are handled here, also plain
|
|
* old IO errors from the cache that can be retried from the
|
|
* backing device (reads of clean data) */
|
|
trace_bcache_read_retry(s->orig_bio);
|
|
|
|
s->iop.error = 0;
|
|
do_bio_hook(s, s->orig_bio);
|
|
|
|
/* XXX: invalidate cache, don't count twice */
|
|
|
|
closure_bio_submit(bio, cl);
|
|
}
|
|
|
|
continue_at(cl, cached_dev_bio_complete, NULL);
|
|
}
|
|
|
|
static void cached_dev_read_done(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
if (dc->verify && s->recoverable && !s->read_dirty_data)
|
|
bch_data_verify(dc, s->orig_bio);
|
|
|
|
continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
|
|
}
|
|
|
|
static void cached_dev_read_done_bh(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
bch_mark_cache_accounting(s->iop.c, dc, !s->cache_miss, s->bypass);
|
|
trace_bcache_read(s->orig_bio, !s->cache_miss, s->bypass);
|
|
|
|
if (s->iop.error)
|
|
continue_at_nobarrier(cl, cached_dev_read_error, s->iop.c->wq);
|
|
else if (dc->verify)
|
|
continue_at_nobarrier(cl, cached_dev_read_done, s->iop.c->wq);
|
|
else
|
|
continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
|
|
}
|
|
|
|
/**
|
|
* __cache_promote -- insert result of read bio into cache
|
|
*
|
|
* Used for backing devices and flash-only volumes.
|
|
*
|
|
* @orig_bio must actually be a bbio with a valid key.
|
|
*/
|
|
void __cache_promote(struct bch_fs *c, struct bch_read_bio *orig_bio,
|
|
struct bkey_s_c old,
|
|
struct bkey_s_c new,
|
|
unsigned write_flags)
|
|
{
|
|
#if 0
|
|
struct cache_promote_op *op;
|
|
struct bio *bio;
|
|
unsigned pages = DIV_ROUND_UP(orig_bio->bio.bi_iter.bi_size, PAGE_SIZE);
|
|
|
|
/* XXX: readahead? */
|
|
|
|
op = kmalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO);
|
|
if (!op)
|
|
goto out_submit;
|
|
|
|
/* clone the bbio */
|
|
memcpy(&op->bio, orig_bio, offsetof(struct bbio, bio));
|
|
|
|
bio = &op->bio.bio.bio;
|
|
bio_init(bio);
|
|
bio_get(bio);
|
|
bio->bi_bdev = orig_bio->bio.bi_bdev;
|
|
bio->bi_iter.bi_sector = orig_bio->bio.bi_iter.bi_sector;
|
|
bio->bi_iter.bi_size = orig_bio->bio.bi_iter.bi_size;
|
|
bio->bi_end_io = cache_promote_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio->bi_io_vec = bio->bi_inline_vecs;
|
|
bch_bio_map(bio, NULL);
|
|
|
|
if (bio_alloc_pages(bio, __GFP_NOWARN|GFP_NOIO))
|
|
goto out_free;
|
|
|
|
orig_bio->ca = NULL;
|
|
|
|
closure_init(&op->cl, &c->cl);
|
|
op->orig_bio = &orig_bio->bio;
|
|
op->stale = 0;
|
|
|
|
bch_write_op_init(&op->iop, c, &op->bio, &c->promote_write_point,
|
|
new, old,
|
|
BCH_WRITE_ALLOC_NOWAIT|write_flags);
|
|
op->iop.nr_replicas = 1;
|
|
|
|
//bch_cut_front(bkey_start_pos(&orig_bio->key.k), &op->iop.insert_key);
|
|
//bch_cut_back(orig_bio->key.k.p, &op->iop.insert_key.k);
|
|
|
|
trace_bcache_promote(&orig_bio->bio);
|
|
|
|
op->bio.bio.submit_time_us = local_clock_us();
|
|
closure_bio_submit(bio, &op->cl);
|
|
|
|
continue_at(&op->cl, cache_promote_write, c->wq);
|
|
out_free:
|
|
kfree(op);
|
|
out_submit:
|
|
generic_make_request(&orig_bio->bio);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* cached_dev_cache_miss - populate cache with data from backing device
|
|
*
|
|
* We don't write to the cache if s->bypass is set.
|
|
*/
|
|
static int cached_dev_cache_miss(struct btree_iter *iter, struct search *s,
|
|
struct bio *bio, unsigned sectors)
|
|
{
|
|
int ret;
|
|
unsigned reada = 0;
|
|
struct bio *miss;
|
|
BKEY_PADDED(key) replace;
|
|
|
|
s->cache_miss = 1;
|
|
|
|
if (s->bypass)
|
|
goto nopromote;
|
|
#if 0
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
/* XXX: broken */
|
|
if (!(bio->bi_opf & REQ_RAHEAD) &&
|
|
!(bio->bi_opf & REQ_META) &&
|
|
((u64) sectors_available(dc->disk.c) * 100 <
|
|
(u64) iter->c->capacity * CUTOFF_CACHE_READA))
|
|
reada = min_t(sector_t, dc->readahead >> 9,
|
|
bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
|
|
#endif
|
|
sectors = min(sectors, bio_sectors(bio) + reada);
|
|
|
|
replace.key.k = KEY(s->inode,
|
|
bio->bi_iter.bi_sector + sectors,
|
|
sectors);
|
|
|
|
ret = bch_btree_insert_check_key(iter, &replace.key);
|
|
if (ret == -EINTR)
|
|
return ret;
|
|
|
|
miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
|
|
|
|
miss->bi_end_io = request_endio;
|
|
miss->bi_private = &s->cl;
|
|
|
|
//to_bbio(miss)->key.k = KEY(s->inode,
|
|
// bio_end_sector(miss),
|
|
// bio_sectors(miss));
|
|
to_rbio(miss)->ca = NULL;
|
|
|
|
closure_get(&s->cl);
|
|
__cache_promote(s->iop.c, to_rbio(miss),
|
|
bkey_i_to_s_c(&replace.key),
|
|
bkey_to_s_c(&KEY(replace.key.k.p.inode,
|
|
replace.key.k.p.offset,
|
|
replace.key.k.size)),
|
|
BCH_WRITE_CACHED);
|
|
|
|
return 0;
|
|
nopromote:
|
|
miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
|
|
|
|
miss->bi_end_io = request_endio;
|
|
miss->bi_private = &s->cl;
|
|
closure_bio_submit(miss, &s->cl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cached_dev_read(struct cached_dev *dc, struct search *s)
|
|
{
|
|
struct bch_fs *c = s->iop.c;
|
|
struct closure *cl = &s->cl;
|
|
struct bio *bio = &s->rbio.bio;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
bch_increment_clock(c, bio_sectors(bio), READ);
|
|
|
|
for_each_btree_key_with_holes(&iter, c, BTREE_ID_EXTENTS,
|
|
POS(s->inode, bio->bi_iter.bi_sector), k) {
|
|
BKEY_PADDED(k) tmp;
|
|
struct extent_pick_ptr pick;
|
|
unsigned sectors, bytes;
|
|
bool is_last;
|
|
retry:
|
|
bkey_reassemble(&tmp.k, k);
|
|
bch_btree_iter_unlock(&iter);
|
|
k = bkey_i_to_s_c(&tmp.k);
|
|
|
|
bch_extent_pick_ptr(c, k, &pick);
|
|
if (IS_ERR(pick.ca)) {
|
|
bcache_io_error(c, bio, "no device to read from");
|
|
goto out;
|
|
}
|
|
|
|
sectors = min_t(u64, k.k->p.offset, bio_end_sector(bio)) -
|
|
bio->bi_iter.bi_sector;
|
|
bytes = sectors << 9;
|
|
is_last = bytes == bio->bi_iter.bi_size;
|
|
swap(bio->bi_iter.bi_size, bytes);
|
|
|
|
if (pick.ca) {
|
|
PTR_BUCKET(pick.ca, &pick.ptr)->read_prio =
|
|
c->prio_clock[READ].hand;
|
|
|
|
if (!bkey_extent_is_cached(k.k))
|
|
s->read_dirty_data = true;
|
|
|
|
bch_read_extent(c, &s->rbio, k, &pick,
|
|
BCH_READ_FORCE_BOUNCE|
|
|
BCH_READ_RETRY_IF_STALE|
|
|
(!s->bypass ? BCH_READ_PROMOTE : 0)|
|
|
(is_last ? BCH_READ_IS_LAST : 0));
|
|
} else {
|
|
/* not present (hole), or stale cached data */
|
|
if (cached_dev_cache_miss(&iter, s, bio, sectors)) {
|
|
k = bch_btree_iter_peek_with_holes(&iter);
|
|
if (btree_iter_err(k))
|
|
break;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
swap(bio->bi_iter.bi_size, bytes);
|
|
bio_advance(bio, bytes);
|
|
|
|
if (is_last) {
|
|
bch_btree_iter_unlock(&iter);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we get here, it better have been because there was an error
|
|
* reading a btree node
|
|
*/
|
|
ret = bch_btree_iter_unlock(&iter);
|
|
BUG_ON(!ret);
|
|
bcache_io_error(c, bio, "btree IO error %i", ret);
|
|
out:
|
|
continue_at(cl, cached_dev_read_done_bh, NULL);
|
|
}
|
|
|
|
/* Process writes */
|
|
|
|
static void cached_dev_write_complete(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
up_read_non_owner(&dc->writeback_lock);
|
|
cached_dev_bio_complete(cl);
|
|
}
|
|
|
|
static void cached_dev_write(struct cached_dev *dc, struct search *s)
|
|
{
|
|
struct closure *cl = &s->cl;
|
|
struct bio *bio = &s->wbio.bio;
|
|
bool writeback = false;
|
|
bool bypass = s->bypass;
|
|
struct bkey insert_key = KEY(s->inode,
|
|
bio_end_sector(bio),
|
|
bio_sectors(bio));
|
|
unsigned flags = BCH_WRITE_DISCARD_ON_ERROR;
|
|
|
|
down_read_non_owner(&dc->writeback_lock);
|
|
if (bch_keybuf_check_overlapping(&dc->writeback_keys,
|
|
bkey_start_pos(&insert_key),
|
|
insert_key.p)) {
|
|
/*
|
|
* We overlap with some dirty data undergoing background
|
|
* writeback, force this write to writeback
|
|
*/
|
|
bypass = false;
|
|
writeback = true;
|
|
}
|
|
|
|
/*
|
|
* Discards aren't _required_ to do anything, so skipping if
|
|
* check_overlapping returned true is ok
|
|
*
|
|
* But check_overlapping drops dirty keys for which io hasn't started,
|
|
* so we still want to call it.
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_DISCARD)
|
|
bypass = true;
|
|
|
|
if (should_writeback(dc, bio, BDEV_CACHE_MODE(dc->disk_sb.sb),
|
|
bypass)) {
|
|
bypass = false;
|
|
writeback = true;
|
|
}
|
|
|
|
if (bypass) {
|
|
/*
|
|
* If this is a bypass-write (as opposed to a discard), send
|
|
* it down to the backing device. If this is a discard, only
|
|
* send it to the backing device if the backing device
|
|
* supports discards. Otherwise, we simply discard the key
|
|
* range from the cache and don't touch the backing device.
|
|
*/
|
|
if ((bio_op(bio) != REQ_OP_DISCARD) ||
|
|
blk_queue_discard(bdev_get_queue(dc->disk_sb.bdev)))
|
|
closure_bio_submit(s->orig_bio, cl);
|
|
} else if (writeback) {
|
|
bch_writeback_add(dc);
|
|
|
|
if (bio->bi_opf & REQ_PREFLUSH) {
|
|
/* Also need to send a flush to the backing device */
|
|
struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
|
|
&dc->disk.bio_split);
|
|
|
|
flush->bi_bdev = bio->bi_bdev;
|
|
flush->bi_end_io = request_endio;
|
|
flush->bi_private = cl;
|
|
bio_set_op_attrs(flush, REQ_OP_WRITE, WRITE_FLUSH);
|
|
|
|
closure_bio_submit(flush, cl);
|
|
}
|
|
} else {
|
|
struct bio *writethrough =
|
|
bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
|
|
|
|
closure_bio_submit(writethrough, cl);
|
|
|
|
flags |= BCH_WRITE_CACHED;
|
|
flags |= BCH_WRITE_ALLOC_NOWAIT;
|
|
}
|
|
|
|
if (bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
|
|
flags |= BCH_WRITE_FLUSH;
|
|
if (bypass)
|
|
flags |= BCH_WRITE_DISCARD;
|
|
|
|
bch_write_op_init(&s->iop, dc->disk.c, &s->wbio,
|
|
(struct disk_reservation) { 0 },
|
|
foreground_write_point(dc->disk.c,
|
|
(unsigned long) current),
|
|
bkey_start_pos(&insert_key),
|
|
NULL, flags);
|
|
|
|
closure_call(&s->iop.cl, bch_write, NULL, cl);
|
|
continue_at(cl, cached_dev_write_complete, NULL);
|
|
}
|
|
|
|
/* Cached devices - read & write stuff */
|
|
|
|
static void __cached_dev_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct search *s;
|
|
struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
|
|
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
|
|
int rw = bio_data_dir(bio);
|
|
|
|
generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
|
|
|
|
bio->bi_bdev = dc->disk_sb.bdev;
|
|
bio->bi_iter.bi_sector += le64_to_cpu(dc->disk_sb.sb->data_offset);
|
|
|
|
if (cached_dev_get(dc)) {
|
|
struct bio *clone;
|
|
|
|
s = search_alloc(bio, d);
|
|
trace_bcache_request_start(s->d, bio);
|
|
|
|
clone = rw ? &s->wbio.bio : &s->rbio.bio;
|
|
|
|
if (!bio->bi_iter.bi_size) {
|
|
if (s->orig_bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
|
|
bch_journal_flush_async(&s->iop.c->journal,
|
|
&s->cl);
|
|
|
|
/*
|
|
* If it's a flush, we send the flush to the backing
|
|
* device too
|
|
*/
|
|
closure_bio_submit(clone, &s->cl);
|
|
|
|
continue_at(&s->cl, cached_dev_bio_complete, NULL);
|
|
} else {
|
|
s->bypass = check_should_bypass(dc, bio, rw);
|
|
|
|
if (rw)
|
|
cached_dev_write(dc, s);
|
|
else
|
|
cached_dev_read(dc, s);
|
|
}
|
|
} else {
|
|
if ((bio_op(bio) == REQ_OP_DISCARD) &&
|
|
!blk_queue_discard(bdev_get_queue(dc->disk_sb.bdev)))
|
|
bio_endio(bio);
|
|
else
|
|
generic_make_request(bio);
|
|
}
|
|
}
|
|
|
|
static blk_qc_t cached_dev_make_request(struct request_queue *q,
|
|
struct bio *bio)
|
|
{
|
|
__cached_dev_make_request(q, bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
|
|
return __blkdev_driver_ioctl(dc->disk_sb.bdev, mode, cmd, arg);
|
|
}
|
|
|
|
static int cached_dev_congested(void *data, int bits)
|
|
{
|
|
struct bcache_device *d = data;
|
|
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
|
|
struct request_queue *q = bdev_get_queue(dc->disk_sb.bdev);
|
|
int ret = 0;
|
|
|
|
if (bdi_congested(&q->backing_dev_info, bits))
|
|
return 1;
|
|
|
|
if (cached_dev_get(dc)) {
|
|
ret |= bch_congested(d->c, bits);
|
|
cached_dev_put(dc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch_cached_dev_request_init(struct cached_dev *dc)
|
|
{
|
|
struct gendisk *g = dc->disk.disk;
|
|
|
|
g->queue->make_request_fn = cached_dev_make_request;
|
|
g->queue->backing_dev_info.congested_fn = cached_dev_congested;
|
|
dc->disk.ioctl = cached_dev_ioctl;
|
|
}
|
|
|
|
/* Blockdev volumes */
|
|
|
|
static void __blockdev_volume_make_request(struct request_queue *q,
|
|
struct bio *bio)
|
|
{
|
|
struct search *s;
|
|
struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
|
|
int rw = bio_data_dir(bio);
|
|
|
|
generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
|
|
|
|
trace_bcache_request_start(d, bio);
|
|
|
|
s = search_alloc(bio, d);
|
|
|
|
if (!bio->bi_iter.bi_size) {
|
|
if (s->orig_bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
|
|
bch_journal_flush_async(&s->iop.c->journal,
|
|
&s->cl);
|
|
|
|
continue_at(&s->cl, search_free, NULL);
|
|
} else if (rw) {
|
|
struct disk_reservation res = { 0 };
|
|
unsigned flags = 0;
|
|
|
|
if (bio_op(bio) != REQ_OP_DISCARD &&
|
|
bch_disk_reservation_get(d->c, &res, bio_sectors(bio), 0)) {
|
|
s->iop.error = -ENOSPC;
|
|
continue_at(&s->cl, search_free, NULL);
|
|
return;
|
|
}
|
|
|
|
if (bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
|
|
flags |= BCH_WRITE_FLUSH;
|
|
if (bio_op(bio) == REQ_OP_DISCARD)
|
|
flags |= BCH_WRITE_DISCARD;
|
|
|
|
bch_write_op_init(&s->iop, d->c, &s->wbio, res,
|
|
foreground_write_point(d->c,
|
|
(unsigned long) current),
|
|
POS(s->inode, bio->bi_iter.bi_sector),
|
|
NULL, flags);
|
|
|
|
closure_call(&s->iop.cl, bch_write, NULL, &s->cl);
|
|
} else {
|
|
closure_get(&s->cl);
|
|
bch_read(d->c, &s->rbio, bcache_dev_inum(d));
|
|
}
|
|
continue_at(&s->cl, search_free, NULL);
|
|
}
|
|
|
|
static blk_qc_t blockdev_volume_make_request(struct request_queue *q,
|
|
struct bio *bio)
|
|
{
|
|
__blockdev_volume_make_request(q, bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
static int blockdev_volume_ioctl(struct bcache_device *d, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return -ENOTTY;
|
|
}
|
|
|
|
static int blockdev_volume_congested(void *data, int bits)
|
|
{
|
|
struct bcache_device *d = data;
|
|
|
|
return bch_congested(d->c, bits);
|
|
}
|
|
|
|
void bch_blockdev_volume_request_init(struct bcache_device *d)
|
|
{
|
|
struct gendisk *g = d->disk;
|
|
|
|
g->queue->make_request_fn = blockdev_volume_make_request;
|
|
g->queue->backing_dev_info.congested_fn = blockdev_volume_congested;
|
|
d->ioctl = blockdev_volume_ioctl;
|
|
}
|