bcachefs-tools/libbcache/request.c
2017-03-10 12:40:01 -09:00

810 lines
20 KiB
C

/*
* Handle a read or a write request and decide what to do with it.
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*
* Main pieces here:
*
* 1) Data insert path, via bch_data_insert() -- writes data to cache and
* updates extents btree
* 2) Read path, via bch_read() -- for now only used by bcachefs and ioctl
* interface
* 3) Read path, via cache_lookup() and struct search -- used by block device
* make_request functions
* 4) Cache promotion -- used by bch_read() and cache_lookup() to copy data to
* the cache, either from a backing device or a cache device in a higher tier
*
* One tricky thing that comes up is a race condition where a bucket may be
* re-used while reads from it are still in flight. To guard against this, we
* save the ptr that is being read and check if it is stale once the read
* completes. If the ptr is stale, the read is retried.
*
* #2 and #3 will be unified further in the future.
*/
#include "bcache.h"
#include "blockdev.h"
#include "btree_update.h"
#include "btree_iter.h"
#include "clock.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal.h"
#include "keybuf.h"
#include "request.h"
#include "writeback.h"
#include "stats.h"
#include <linux/module.h>
#include <linux/hash.h>
#include <linux/random.h>
#include <linux/backing-dev.h>
#include <trace/events/bcache.h>
#define CUTOFF_CACHE_ADD 10
#define CUTOFF_CACHE_READA 15
/* Congested? */
unsigned bch_get_congested(struct bch_fs *c)
{
int i;
long rand;
if (!c->congested_read_threshold_us &&
!c->congested_write_threshold_us)
return 0;
i = (local_clock_us() - c->congested_last_us) / 1024;
if (i < 0)
return 0;
i += atomic_read(&c->congested);
if (i >= 0)
return 0;
i += CONGESTED_MAX;
if (i > 0)
i = fract_exp_two(i, 6);
rand = get_random_int();
i -= bitmap_weight(&rand, BITS_PER_LONG);
return i > 0 ? i : 1;
}
static void add_sequential(struct task_struct *t)
{
t->sequential_io_avg = ewma_add(t->sequential_io_avg,
t->sequential_io, 3);
t->sequential_io = 0;
}
static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
{
return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
}
static bool check_should_bypass(struct cached_dev *dc, struct bio *bio, int rw)
{
struct bch_fs *c = dc->disk.c;
unsigned mode = BDEV_CACHE_MODE(dc->disk_sb.sb);
unsigned sectors, congested = bch_get_congested(c);
struct task_struct *task = current;
struct io *i;
if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
sectors_available(c) * 100 < c->capacity * CUTOFF_CACHE_ADD ||
(bio_op(bio) == REQ_OP_DISCARD))
goto skip;
if (mode == CACHE_MODE_NONE ||
(mode == CACHE_MODE_WRITEAROUND &&
op_is_write(bio_op(bio))))
goto skip;
if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
bio_sectors(bio) & (c->sb.block_size - 1)) {
pr_debug("skipping unaligned io");
goto skip;
}
if (bypass_torture_test(dc)) {
if ((get_random_int() & 3) == 3)
goto skip;
else
goto rescale;
}
if (!congested && !dc->sequential_cutoff)
goto rescale;
if (!congested &&
mode == CACHE_MODE_WRITEBACK &&
op_is_write(bio_op(bio)) &&
(bio->bi_opf & REQ_SYNC))
goto rescale;
spin_lock(&dc->io_lock);
hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
if (i->last == bio->bi_iter.bi_sector &&
time_before(jiffies, i->last_io))
goto found;
i = list_first_entry(&dc->io_lru, struct io, lru);
add_sequential(task);
i->sequential = 0;
found:
if (i->sequential + bio->bi_iter.bi_size > i->sequential)
i->sequential += bio->bi_iter.bi_size;
i->last = bio_end_sector(bio);
i->last_io = jiffies + msecs_to_jiffies(5000);
task->sequential_io = i->sequential;
hlist_del(&i->hash);
hlist_add_head(&i->hash, iohash(dc, i->last));
list_move_tail(&i->lru, &dc->io_lru);
spin_unlock(&dc->io_lock);
sectors = max(task->sequential_io,
task->sequential_io_avg) >> 9;
if (dc->sequential_cutoff &&
sectors >= dc->sequential_cutoff >> 9) {
trace_bcache_bypass_sequential(bio);
goto skip;
}
if (congested && sectors >= congested) {
trace_bcache_bypass_congested(bio);
goto skip;
}
rescale:
return false;
skip:
bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
return true;
}
/* Common code for the make_request functions */
/**
* request_endio - endio function for backing device bios
*/
static void request_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
if (bio->bi_error) {
struct search *s = container_of(cl, struct search, cl);
s->iop.error = bio->bi_error;
/* Only cache read errors are recoverable */
s->recoverable = false;
}
bio_put(bio);
closure_put(cl);
}
static void bio_complete(struct search *s)
{
if (s->orig_bio) {
generic_end_io_acct(bio_data_dir(s->orig_bio),
&s->d->disk->part0, s->start_time);
trace_bcache_request_end(s->d, s->orig_bio);
s->orig_bio->bi_error = s->iop.error;
bio_endio(s->orig_bio);
s->orig_bio = NULL;
}
}
static void do_bio_hook(struct search *s, struct bio *orig_bio)
{
int rw = bio_data_dir(orig_bio);
struct bio *bio = rw ? &s->wbio.bio : &s->rbio.bio;
bio_init(bio);
__bio_clone_fast(bio, orig_bio);
bio->bi_end_io = request_endio;
bio->bi_private = &s->cl;
bio_cnt_set(bio, 3);
}
static void search_free(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
bio_complete(s);
if (s->iop.bio)
bio_put(&s->iop.bio->bio);
closure_debug_destroy(cl);
mempool_free(s, &s->d->c->search);
}
static inline struct search *search_alloc(struct bio *bio,
struct bcache_device *d)
{
struct search *s;
s = mempool_alloc(&d->c->search, GFP_NOIO);
closure_init(&s->cl, NULL);
do_bio_hook(s, bio);
s->orig_bio = bio;
s->d = d;
s->recoverable = 1;
s->bypass = 0;
s->write = op_is_write(bio_op(bio));
s->read_dirty_data = 0;
s->cache_miss = 0;
s->start_time = jiffies;
s->inode = bcache_dev_inum(d);
s->iop.c = d->c;
s->iop.bio = NULL;
s->iop.error = 0;
return s;
}
/* Cached devices */
static void cached_dev_bio_complete(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
search_free(cl);
cached_dev_put(dc);
}
/* Process reads */
static void cached_dev_read_error(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct bio *bio = &s->rbio.bio;
if (s->recoverable) {
/* Read bucket invalidate races are handled here, also plain
* old IO errors from the cache that can be retried from the
* backing device (reads of clean data) */
trace_bcache_read_retry(s->orig_bio);
s->iop.error = 0;
do_bio_hook(s, s->orig_bio);
/* XXX: invalidate cache, don't count twice */
closure_bio_submit(bio, cl);
}
continue_at(cl, cached_dev_bio_complete, NULL);
}
static void cached_dev_read_done(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
if (dc->verify && s->recoverable && !s->read_dirty_data)
bch_data_verify(dc, s->orig_bio);
continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
}
static void cached_dev_read_done_bh(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
bch_mark_cache_accounting(s->iop.c, dc, !s->cache_miss, s->bypass);
trace_bcache_read(s->orig_bio, !s->cache_miss, s->bypass);
if (s->iop.error)
continue_at_nobarrier(cl, cached_dev_read_error, s->iop.c->wq);
else if (dc->verify)
continue_at_nobarrier(cl, cached_dev_read_done, s->iop.c->wq);
else
continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
}
/**
* __cache_promote -- insert result of read bio into cache
*
* Used for backing devices and flash-only volumes.
*
* @orig_bio must actually be a bbio with a valid key.
*/
void __cache_promote(struct bch_fs *c, struct bch_read_bio *orig_bio,
struct bkey_s_c old,
struct bkey_s_c new,
unsigned write_flags)
{
#if 0
struct cache_promote_op *op;
struct bio *bio;
unsigned pages = DIV_ROUND_UP(orig_bio->bio.bi_iter.bi_size, PAGE_SIZE);
/* XXX: readahead? */
op = kmalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO);
if (!op)
goto out_submit;
/* clone the bbio */
memcpy(&op->bio, orig_bio, offsetof(struct bbio, bio));
bio = &op->bio.bio.bio;
bio_init(bio);
bio_get(bio);
bio->bi_bdev = orig_bio->bio.bi_bdev;
bio->bi_iter.bi_sector = orig_bio->bio.bi_iter.bi_sector;
bio->bi_iter.bi_size = orig_bio->bio.bi_iter.bi_size;
bio->bi_end_io = cache_promote_endio;
bio->bi_private = &op->cl;
bio->bi_io_vec = bio->bi_inline_vecs;
bch_bio_map(bio, NULL);
if (bio_alloc_pages(bio, __GFP_NOWARN|GFP_NOIO))
goto out_free;
orig_bio->ca = NULL;
closure_init(&op->cl, &c->cl);
op->orig_bio = &orig_bio->bio;
op->stale = 0;
bch_write_op_init(&op->iop, c, &op->bio, &c->promote_write_point,
new, old,
BCH_WRITE_ALLOC_NOWAIT|write_flags);
op->iop.nr_replicas = 1;
//bch_cut_front(bkey_start_pos(&orig_bio->key.k), &op->iop.insert_key);
//bch_cut_back(orig_bio->key.k.p, &op->iop.insert_key.k);
trace_bcache_promote(&orig_bio->bio);
op->bio.bio.submit_time_us = local_clock_us();
closure_bio_submit(bio, &op->cl);
continue_at(&op->cl, cache_promote_write, c->wq);
out_free:
kfree(op);
out_submit:
generic_make_request(&orig_bio->bio);
#endif
}
/**
* cached_dev_cache_miss - populate cache with data from backing device
*
* We don't write to the cache if s->bypass is set.
*/
static int cached_dev_cache_miss(struct btree_iter *iter, struct search *s,
struct bio *bio, unsigned sectors)
{
int ret;
unsigned reada = 0;
struct bio *miss;
BKEY_PADDED(key) replace;
s->cache_miss = 1;
if (s->bypass)
goto nopromote;
#if 0
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
/* XXX: broken */
if (!(bio->bi_opf & REQ_RAHEAD) &&
!(bio->bi_opf & REQ_META) &&
((u64) sectors_available(dc->disk.c) * 100 <
(u64) iter->c->capacity * CUTOFF_CACHE_READA))
reada = min_t(sector_t, dc->readahead >> 9,
bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
#endif
sectors = min(sectors, bio_sectors(bio) + reada);
replace.key.k = KEY(s->inode,
bio->bi_iter.bi_sector + sectors,
sectors);
ret = bch_btree_insert_check_key(iter, &replace.key);
if (ret == -EINTR)
return ret;
miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
miss->bi_end_io = request_endio;
miss->bi_private = &s->cl;
//to_bbio(miss)->key.k = KEY(s->inode,
// bio_end_sector(miss),
// bio_sectors(miss));
to_rbio(miss)->ca = NULL;
closure_get(&s->cl);
__cache_promote(s->iop.c, to_rbio(miss),
bkey_i_to_s_c(&replace.key),
bkey_to_s_c(&KEY(replace.key.k.p.inode,
replace.key.k.p.offset,
replace.key.k.size)),
BCH_WRITE_CACHED);
return 0;
nopromote:
miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
miss->bi_end_io = request_endio;
miss->bi_private = &s->cl;
closure_bio_submit(miss, &s->cl);
return 0;
}
static void cached_dev_read(struct cached_dev *dc, struct search *s)
{
struct bch_fs *c = s->iop.c;
struct closure *cl = &s->cl;
struct bio *bio = &s->rbio.bio;
struct btree_iter iter;
struct bkey_s_c k;
int ret;
bch_increment_clock(c, bio_sectors(bio), READ);
for_each_btree_key_with_holes(&iter, c, BTREE_ID_EXTENTS,
POS(s->inode, bio->bi_iter.bi_sector), k) {
BKEY_PADDED(k) tmp;
struct extent_pick_ptr pick;
unsigned sectors, bytes;
bool is_last;
retry:
bkey_reassemble(&tmp.k, k);
bch_btree_iter_unlock(&iter);
k = bkey_i_to_s_c(&tmp.k);
bch_extent_pick_ptr(c, k, &pick);
if (IS_ERR(pick.ca)) {
bcache_io_error(c, bio, "no device to read from");
goto out;
}
sectors = min_t(u64, k.k->p.offset, bio_end_sector(bio)) -
bio->bi_iter.bi_sector;
bytes = sectors << 9;
is_last = bytes == bio->bi_iter.bi_size;
swap(bio->bi_iter.bi_size, bytes);
if (pick.ca) {
PTR_BUCKET(pick.ca, &pick.ptr)->read_prio =
c->prio_clock[READ].hand;
if (!bkey_extent_is_cached(k.k))
s->read_dirty_data = true;
bch_read_extent(c, &s->rbio, k, &pick,
BCH_READ_FORCE_BOUNCE|
BCH_READ_RETRY_IF_STALE|
(!s->bypass ? BCH_READ_PROMOTE : 0)|
(is_last ? BCH_READ_IS_LAST : 0));
} else {
/* not present (hole), or stale cached data */
if (cached_dev_cache_miss(&iter, s, bio, sectors)) {
k = bch_btree_iter_peek_with_holes(&iter);
if (btree_iter_err(k))
break;
goto retry;
}
}
swap(bio->bi_iter.bi_size, bytes);
bio_advance(bio, bytes);
if (is_last) {
bch_btree_iter_unlock(&iter);
goto out;
}
}
/*
* If we get here, it better have been because there was an error
* reading a btree node
*/
ret = bch_btree_iter_unlock(&iter);
BUG_ON(!ret);
bcache_io_error(c, bio, "btree IO error %i", ret);
out:
continue_at(cl, cached_dev_read_done_bh, NULL);
}
/* Process writes */
static void cached_dev_write_complete(struct closure *cl)
{
struct search *s = container_of(cl, struct search, cl);
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
up_read_non_owner(&dc->writeback_lock);
cached_dev_bio_complete(cl);
}
static void cached_dev_write(struct cached_dev *dc, struct search *s)
{
struct closure *cl = &s->cl;
struct bio *bio = &s->wbio.bio;
bool writeback = false;
bool bypass = s->bypass;
struct bkey insert_key = KEY(s->inode,
bio_end_sector(bio),
bio_sectors(bio));
unsigned flags = BCH_WRITE_DISCARD_ON_ERROR;
down_read_non_owner(&dc->writeback_lock);
if (bch_keybuf_check_overlapping(&dc->writeback_keys,
bkey_start_pos(&insert_key),
insert_key.p)) {
/*
* We overlap with some dirty data undergoing background
* writeback, force this write to writeback
*/
bypass = false;
writeback = true;
}
/*
* Discards aren't _required_ to do anything, so skipping if
* check_overlapping returned true is ok
*
* But check_overlapping drops dirty keys for which io hasn't started,
* so we still want to call it.
*/
if (bio_op(bio) == REQ_OP_DISCARD)
bypass = true;
if (should_writeback(dc, bio, BDEV_CACHE_MODE(dc->disk_sb.sb),
bypass)) {
bypass = false;
writeback = true;
}
if (bypass) {
/*
* If this is a bypass-write (as opposed to a discard), send
* it down to the backing device. If this is a discard, only
* send it to the backing device if the backing device
* supports discards. Otherwise, we simply discard the key
* range from the cache and don't touch the backing device.
*/
if ((bio_op(bio) != REQ_OP_DISCARD) ||
blk_queue_discard(bdev_get_queue(dc->disk_sb.bdev)))
closure_bio_submit(s->orig_bio, cl);
} else if (writeback) {
bch_writeback_add(dc);
if (bio->bi_opf & REQ_PREFLUSH) {
/* Also need to send a flush to the backing device */
struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
&dc->disk.bio_split);
flush->bi_bdev = bio->bi_bdev;
flush->bi_end_io = request_endio;
flush->bi_private = cl;
bio_set_op_attrs(flush, REQ_OP_WRITE, WRITE_FLUSH);
closure_bio_submit(flush, cl);
}
} else {
struct bio *writethrough =
bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
closure_bio_submit(writethrough, cl);
flags |= BCH_WRITE_CACHED;
flags |= BCH_WRITE_ALLOC_NOWAIT;
}
if (bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
flags |= BCH_WRITE_FLUSH;
if (bypass)
flags |= BCH_WRITE_DISCARD;
bch_write_op_init(&s->iop, dc->disk.c, &s->wbio,
(struct disk_reservation) { 0 },
foreground_write_point(dc->disk.c,
(unsigned long) current),
bkey_start_pos(&insert_key),
NULL, flags);
closure_call(&s->iop.cl, bch_write, NULL, cl);
continue_at(cl, cached_dev_write_complete, NULL);
}
/* Cached devices - read & write stuff */
static void __cached_dev_make_request(struct request_queue *q, struct bio *bio)
{
struct search *s;
struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
int rw = bio_data_dir(bio);
generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
bio->bi_bdev = dc->disk_sb.bdev;
bio->bi_iter.bi_sector += le64_to_cpu(dc->disk_sb.sb->data_offset);
if (cached_dev_get(dc)) {
struct bio *clone;
s = search_alloc(bio, d);
trace_bcache_request_start(s->d, bio);
clone = rw ? &s->wbio.bio : &s->rbio.bio;
if (!bio->bi_iter.bi_size) {
if (s->orig_bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
bch_journal_flush_async(&s->iop.c->journal,
&s->cl);
/*
* If it's a flush, we send the flush to the backing
* device too
*/
closure_bio_submit(clone, &s->cl);
continue_at(&s->cl, cached_dev_bio_complete, NULL);
} else {
s->bypass = check_should_bypass(dc, bio, rw);
if (rw)
cached_dev_write(dc, s);
else
cached_dev_read(dc, s);
}
} else {
if ((bio_op(bio) == REQ_OP_DISCARD) &&
!blk_queue_discard(bdev_get_queue(dc->disk_sb.bdev)))
bio_endio(bio);
else
generic_make_request(bio);
}
}
static blk_qc_t cached_dev_make_request(struct request_queue *q,
struct bio *bio)
{
__cached_dev_make_request(q, bio);
return BLK_QC_T_NONE;
}
static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
return __blkdev_driver_ioctl(dc->disk_sb.bdev, mode, cmd, arg);
}
static int cached_dev_congested(void *data, int bits)
{
struct bcache_device *d = data;
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
struct request_queue *q = bdev_get_queue(dc->disk_sb.bdev);
int ret = 0;
if (bdi_congested(&q->backing_dev_info, bits))
return 1;
if (cached_dev_get(dc)) {
ret |= bch_congested(d->c, bits);
cached_dev_put(dc);
}
return ret;
}
void bch_cached_dev_request_init(struct cached_dev *dc)
{
struct gendisk *g = dc->disk.disk;
g->queue->make_request_fn = cached_dev_make_request;
g->queue->backing_dev_info.congested_fn = cached_dev_congested;
dc->disk.ioctl = cached_dev_ioctl;
}
/* Blockdev volumes */
static void __blockdev_volume_make_request(struct request_queue *q,
struct bio *bio)
{
struct search *s;
struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
int rw = bio_data_dir(bio);
generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
trace_bcache_request_start(d, bio);
s = search_alloc(bio, d);
if (!bio->bi_iter.bi_size) {
if (s->orig_bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
bch_journal_flush_async(&s->iop.c->journal,
&s->cl);
continue_at(&s->cl, search_free, NULL);
} else if (rw) {
struct disk_reservation res = { 0 };
unsigned flags = 0;
if (bio_op(bio) != REQ_OP_DISCARD &&
bch_disk_reservation_get(d->c, &res, bio_sectors(bio), 0)) {
s->iop.error = -ENOSPC;
continue_at(&s->cl, search_free, NULL);
return;
}
if (bio->bi_opf & (REQ_PREFLUSH|REQ_FUA))
flags |= BCH_WRITE_FLUSH;
if (bio_op(bio) == REQ_OP_DISCARD)
flags |= BCH_WRITE_DISCARD;
bch_write_op_init(&s->iop, d->c, &s->wbio, res,
foreground_write_point(d->c,
(unsigned long) current),
POS(s->inode, bio->bi_iter.bi_sector),
NULL, flags);
closure_call(&s->iop.cl, bch_write, NULL, &s->cl);
} else {
closure_get(&s->cl);
bch_read(d->c, &s->rbio, bcache_dev_inum(d));
}
continue_at(&s->cl, search_free, NULL);
}
static blk_qc_t blockdev_volume_make_request(struct request_queue *q,
struct bio *bio)
{
__blockdev_volume_make_request(q, bio);
return BLK_QC_T_NONE;
}
static int blockdev_volume_ioctl(struct bcache_device *d, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
return -ENOTTY;
}
static int blockdev_volume_congested(void *data, int bits)
{
struct bcache_device *d = data;
return bch_congested(d->c, bits);
}
void bch_blockdev_volume_request_init(struct bcache_device *d)
{
struct gendisk *g = d->disk;
g->queue->make_request_fn = blockdev_volume_make_request;
g->queue->backing_dev_info.congested_fn = blockdev_volume_congested;
d->ioctl = blockdev_volume_ioctl;
}