mirror of
https://github.com/koverstreet/bcachefs-tools.git
synced 2025-02-02 00:00:03 +03:00
658 lines
15 KiB
C
658 lines
15 KiB
C
/*
|
|
* background writeback - scan btree for dirty data and write it to the backing
|
|
* device
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree_update.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "io.h"
|
|
#include "keybuf.h"
|
|
#include "keylist.h"
|
|
#include "writeback.h"
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <trace/events/bcache.h>
|
|
|
|
/* Rate limiting */
|
|
|
|
static void __update_writeback_rate(struct cached_dev *dc)
|
|
{
|
|
struct bch_fs *c = dc->disk.c;
|
|
u64 cache_dirty_target =
|
|
div_u64(c->capacity * dc->writeback_percent, 100);
|
|
s64 target = div64_u64(cache_dirty_target *
|
|
bdev_sectors(dc->disk_sb.bdev),
|
|
c->cached_dev_sectors);
|
|
s64 dirty = bcache_dev_sectors_dirty(&dc->disk);
|
|
|
|
bch_pd_controller_update(&dc->writeback_pd, target << 9,
|
|
dirty << 9, -1);
|
|
}
|
|
|
|
static void update_writeback_rate(struct work_struct *work)
|
|
{
|
|
struct cached_dev *dc = container_of(to_delayed_work(work),
|
|
struct cached_dev,
|
|
writeback_pd_update);
|
|
|
|
down_read(&dc->writeback_lock);
|
|
|
|
if (atomic_read(&dc->has_dirty) &&
|
|
dc->writeback_percent &&
|
|
!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
|
|
__update_writeback_rate(dc);
|
|
else
|
|
dc->writeback_pd.rate.rate = UINT_MAX;
|
|
|
|
up_read(&dc->writeback_lock);
|
|
|
|
schedule_delayed_work(&dc->writeback_pd_update,
|
|
dc->writeback_pd_update_seconds * HZ);
|
|
}
|
|
|
|
struct dirty_io {
|
|
struct closure cl;
|
|
struct bch_replace_info replace;
|
|
struct cached_dev *dc;
|
|
struct bch_dev *ca;
|
|
struct keybuf_key *w;
|
|
struct bch_extent_ptr ptr;
|
|
int error;
|
|
bool from_mempool;
|
|
/* Must be last */
|
|
struct bio bio;
|
|
};
|
|
|
|
#define DIRTY_IO_MEMPOOL_BVECS 64
|
|
#define DIRTY_IO_MEMPOOL_SECTORS (DIRTY_IO_MEMPOOL_BVECS * PAGE_SECTORS)
|
|
|
|
static void dirty_init(struct dirty_io *io)
|
|
{
|
|
struct bio *bio = &io->bio;
|
|
|
|
bio_init(bio);
|
|
if (!io->dc->writeback_percent)
|
|
bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
|
|
|
|
bio->bi_iter.bi_size = io->replace.key.k.size << 9;
|
|
bio->bi_max_vecs =
|
|
DIV_ROUND_UP(io->replace.key.k.size, PAGE_SECTORS);
|
|
bio->bi_io_vec = bio->bi_inline_vecs;
|
|
bch_bio_map(bio, NULL);
|
|
}
|
|
|
|
static void dirty_io_destructor(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
|
|
if (io->from_mempool)
|
|
mempool_free(io, &io->dc->writeback_io_pool);
|
|
else
|
|
kfree(io);
|
|
}
|
|
|
|
static void write_dirty_finish(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
struct cached_dev *dc = io->dc;
|
|
struct bio_vec *bv;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bv, &io->bio, i)
|
|
mempool_free(bv->bv_page, &dc->writeback_page_pool);
|
|
|
|
if (!io->error) {
|
|
BKEY_PADDED(k) tmp;
|
|
int ret;
|
|
|
|
bkey_copy(&tmp.k, &io->replace.key);
|
|
io->replace.hook.fn = bch_extent_cmpxchg;
|
|
bkey_extent_set_cached(&tmp.k.k, true);
|
|
|
|
ret = bch_btree_insert(dc->disk.c, BTREE_ID_EXTENTS, &tmp.k,
|
|
NULL, &io->replace.hook, NULL, 0);
|
|
if (io->replace.successes == 0)
|
|
trace_bcache_writeback_collision(&io->replace.key.k);
|
|
|
|
atomic_long_inc(ret
|
|
? &dc->disk.c->writeback_keys_failed
|
|
: &dc->disk.c->writeback_keys_done);
|
|
}
|
|
|
|
bch_keybuf_put(&dc->writeback_keys, io->w);
|
|
|
|
closure_return_with_destructor(cl, dirty_io_destructor);
|
|
}
|
|
|
|
static void dirty_endio(struct bio *bio)
|
|
{
|
|
struct dirty_io *io = container_of(bio, struct dirty_io, bio);
|
|
|
|
if (bio->bi_error) {
|
|
trace_bcache_writeback_error(&io->replace.key.k,
|
|
op_is_write(bio_op(&io->bio)),
|
|
bio->bi_error);
|
|
io->error = bio->bi_error;
|
|
}
|
|
|
|
closure_put(&io->cl);
|
|
}
|
|
|
|
static void write_dirty(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
|
|
if (!io->error) {
|
|
dirty_init(io);
|
|
bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
|
|
io->bio.bi_iter.bi_sector =
|
|
bkey_start_offset(&io->replace.key.k);
|
|
io->bio.bi_bdev = io->dc->disk_sb.bdev;
|
|
io->bio.bi_end_io = dirty_endio;
|
|
|
|
closure_bio_submit(&io->bio, cl);
|
|
}
|
|
|
|
continue_at(cl, write_dirty_finish, io->dc->disk.c->wq);
|
|
}
|
|
|
|
static void read_dirty_endio(struct bio *bio)
|
|
{
|
|
struct dirty_io *io = container_of(bio, struct dirty_io, bio);
|
|
|
|
bch_dev_nonfatal_io_err_on(bio->bi_error, io->ca, "writeback read");
|
|
|
|
bch_account_io_completion(io->ca);
|
|
|
|
if (ptr_stale(io->ca, &io->ptr))
|
|
bio->bi_error = -EINTR;
|
|
|
|
dirty_endio(bio);
|
|
}
|
|
|
|
static void read_dirty_submit(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
|
|
closure_bio_submit(&io->bio, cl);
|
|
|
|
continue_at(cl, write_dirty, system_freezable_wq);
|
|
}
|
|
|
|
static u64 read_dirty(struct cached_dev *dc)
|
|
{
|
|
struct keybuf_key *w;
|
|
struct dirty_io *io;
|
|
struct closure cl;
|
|
unsigned i;
|
|
struct bio_vec *bv;
|
|
u64 sectors_written = 0;
|
|
BKEY_PADDED(k) tmp;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
while (!bch_ratelimit_wait_freezable_stoppable(&dc->writeback_pd.rate)) {
|
|
w = bch_keybuf_next(&dc->writeback_keys);
|
|
if (!w)
|
|
break;
|
|
|
|
sectors_written += w->key.k.size;
|
|
bkey_copy(&tmp.k, &w->key);
|
|
|
|
while (tmp.k.k.size) {
|
|
struct extent_pick_ptr pick;
|
|
|
|
bch_extent_pick_ptr(dc->disk.c,
|
|
bkey_i_to_s_c(&tmp.k),
|
|
&pick);
|
|
if (IS_ERR_OR_NULL(pick.ca))
|
|
break;
|
|
|
|
io = kzalloc(sizeof(*io) + sizeof(struct bio_vec) *
|
|
DIV_ROUND_UP(tmp.k.k.size,
|
|
PAGE_SECTORS),
|
|
GFP_KERNEL);
|
|
if (!io) {
|
|
trace_bcache_writeback_alloc_fail(pick.ca->fs,
|
|
tmp.k.k.size);
|
|
io = mempool_alloc(&dc->writeback_io_pool,
|
|
GFP_KERNEL);
|
|
memset(io, 0, sizeof(*io) +
|
|
sizeof(struct bio_vec) *
|
|
DIRTY_IO_MEMPOOL_BVECS);
|
|
io->from_mempool = true;
|
|
|
|
bkey_copy(&io->replace.key, &tmp.k);
|
|
|
|
if (DIRTY_IO_MEMPOOL_SECTORS <
|
|
io->replace.key.k.size)
|
|
bch_key_resize(&io->replace.key.k,
|
|
DIRTY_IO_MEMPOOL_SECTORS);
|
|
} else {
|
|
bkey_copy(&io->replace.key, &tmp.k);
|
|
}
|
|
|
|
io->dc = dc;
|
|
io->ca = pick.ca;
|
|
io->w = w;
|
|
io->ptr = pick.ptr;
|
|
atomic_inc(&w->ref);
|
|
|
|
dirty_init(io);
|
|
bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
|
|
io->bio.bi_iter.bi_sector = pick.ptr.offset;
|
|
io->bio.bi_bdev = pick.ca->disk_sb.bdev;
|
|
io->bio.bi_end_io = read_dirty_endio;
|
|
|
|
bio_for_each_segment_all(bv, &io->bio, i) {
|
|
bv->bv_page =
|
|
mempool_alloc(&dc->writeback_page_pool,
|
|
i ? GFP_NOWAIT
|
|
: GFP_KERNEL);
|
|
if (!bv->bv_page) {
|
|
BUG_ON(!i);
|
|
io->bio.bi_vcnt = i;
|
|
|
|
io->bio.bi_iter.bi_size =
|
|
io->bio.bi_vcnt * PAGE_SIZE;
|
|
|
|
bch_key_resize(&io->replace.key.k,
|
|
bio_sectors(&io->bio));
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch_cut_front(io->replace.key.k.p, &tmp.k);
|
|
trace_bcache_writeback(&io->replace.key.k);
|
|
|
|
bch_ratelimit_increment(&dc->writeback_pd.rate,
|
|
io->replace.key.k.size << 9);
|
|
|
|
closure_call(&io->cl, read_dirty_submit, NULL, &cl);
|
|
}
|
|
|
|
bch_keybuf_put(&dc->writeback_keys, w);
|
|
}
|
|
|
|
/*
|
|
* Wait for outstanding writeback IOs to finish (and keybuf slots to be
|
|
* freed) before refilling again
|
|
*/
|
|
closure_sync(&cl);
|
|
|
|
return sectors_written;
|
|
}
|
|
|
|
/* Scan for dirty data */
|
|
|
|
static void __bcache_dev_sectors_dirty_add(struct bcache_device *d,
|
|
u64 offset, int nr_sectors)
|
|
{
|
|
unsigned stripe_offset, stripe, sectors_dirty;
|
|
|
|
if (!d)
|
|
return;
|
|
|
|
if (!d->stripe_sectors_dirty)
|
|
return;
|
|
|
|
stripe = offset_to_stripe(d, offset);
|
|
stripe_offset = offset & (d->stripe_size - 1);
|
|
|
|
while (nr_sectors) {
|
|
int s = min_t(unsigned, abs(nr_sectors),
|
|
d->stripe_size - stripe_offset);
|
|
|
|
if (nr_sectors < 0)
|
|
s = -s;
|
|
|
|
if (stripe >= d->nr_stripes)
|
|
return;
|
|
|
|
sectors_dirty = atomic_add_return(s,
|
|
d->stripe_sectors_dirty + stripe);
|
|
if (sectors_dirty == d->stripe_size)
|
|
set_bit(stripe, d->full_dirty_stripes);
|
|
else
|
|
clear_bit(stripe, d->full_dirty_stripes);
|
|
|
|
nr_sectors -= s;
|
|
stripe_offset = 0;
|
|
stripe++;
|
|
}
|
|
}
|
|
|
|
void bcache_dev_sectors_dirty_add(struct bch_fs *c, unsigned inode,
|
|
u64 offset, int nr_sectors)
|
|
{
|
|
struct bcache_device *d;
|
|
|
|
rcu_read_lock();
|
|
d = bch_dev_find(c, inode);
|
|
if (d)
|
|
__bcache_dev_sectors_dirty_add(d, offset, nr_sectors);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static bool dirty_pred(struct keybuf *buf, struct bkey_s_c k)
|
|
{
|
|
struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
|
|
|
|
BUG_ON(k.k->p.inode != bcache_dev_inum(&dc->disk));
|
|
|
|
return bkey_extent_is_data(k.k) &&
|
|
!bkey_extent_is_cached(k.k);
|
|
}
|
|
|
|
static void refill_full_stripes(struct cached_dev *dc)
|
|
{
|
|
struct keybuf *buf = &dc->writeback_keys;
|
|
unsigned inode = bcache_dev_inum(&dc->disk);
|
|
unsigned start_stripe, stripe, next_stripe;
|
|
bool wrapped = false;
|
|
|
|
stripe = offset_to_stripe(&dc->disk, buf->last_scanned.offset);
|
|
|
|
if (stripe >= dc->disk.nr_stripes)
|
|
stripe = 0;
|
|
|
|
start_stripe = stripe;
|
|
|
|
while (1) {
|
|
stripe = find_next_bit(dc->disk.full_dirty_stripes,
|
|
dc->disk.nr_stripes, stripe);
|
|
|
|
if (stripe == dc->disk.nr_stripes)
|
|
goto next;
|
|
|
|
next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
|
|
dc->disk.nr_stripes, stripe);
|
|
|
|
buf->last_scanned = POS(inode,
|
|
stripe * dc->disk.stripe_size);
|
|
|
|
bch_refill_keybuf(dc->disk.c, buf,
|
|
POS(inode,
|
|
next_stripe * dc->disk.stripe_size),
|
|
dirty_pred);
|
|
|
|
if (array_freelist_empty(&buf->freelist))
|
|
return;
|
|
|
|
stripe = next_stripe;
|
|
next:
|
|
if (wrapped && stripe > start_stripe)
|
|
return;
|
|
|
|
if (stripe == dc->disk.nr_stripes) {
|
|
stripe = 0;
|
|
wrapped = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
static u64 bch_writeback(struct cached_dev *dc)
|
|
{
|
|
struct keybuf *buf = &dc->writeback_keys;
|
|
unsigned inode = bcache_dev_inum(&dc->disk);
|
|
struct bpos start = POS(inode, 0);
|
|
struct bpos end = POS(inode, KEY_OFFSET_MAX);
|
|
struct bpos start_pos;
|
|
u64 sectors_written = 0;
|
|
|
|
buf->last_scanned = POS(inode, 0);
|
|
|
|
while (bkey_cmp(buf->last_scanned, end) < 0 &&
|
|
!kthread_should_stop()) {
|
|
down_write(&dc->writeback_lock);
|
|
|
|
if (!atomic_read(&dc->has_dirty)) {
|
|
up_write(&dc->writeback_lock);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop())
|
|
return sectors_written;
|
|
|
|
schedule();
|
|
try_to_freeze();
|
|
return sectors_written;
|
|
}
|
|
|
|
if (bkey_cmp(buf->last_scanned, end) >= 0)
|
|
buf->last_scanned = POS(inode, 0);
|
|
|
|
if (dc->partial_stripes_expensive) {
|
|
refill_full_stripes(dc);
|
|
if (array_freelist_empty(&buf->freelist))
|
|
goto refill_done;
|
|
}
|
|
|
|
start_pos = buf->last_scanned;
|
|
bch_refill_keybuf(dc->disk.c, buf, end, dirty_pred);
|
|
|
|
if (bkey_cmp(buf->last_scanned, end) >= 0) {
|
|
/*
|
|
* If we get to the end start scanning again from the
|
|
* beginning, and only scan up to where we initially
|
|
* started scanning from:
|
|
*/
|
|
buf->last_scanned = start;
|
|
bch_refill_keybuf(dc->disk.c, buf, start_pos,
|
|
dirty_pred);
|
|
}
|
|
|
|
if (RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
|
|
atomic_set(&dc->has_dirty, 0);
|
|
cached_dev_put(dc);
|
|
SET_BDEV_STATE(dc->disk_sb.sb, BDEV_STATE_CLEAN);
|
|
bch_write_bdev_super(dc, NULL);
|
|
}
|
|
|
|
refill_done:
|
|
up_write(&dc->writeback_lock);
|
|
|
|
bch_ratelimit_reset(&dc->writeback_pd.rate);
|
|
sectors_written += read_dirty(dc);
|
|
}
|
|
|
|
return sectors_written;
|
|
}
|
|
|
|
static int bch_writeback_thread(void *arg)
|
|
{
|
|
struct cached_dev *dc = arg;
|
|
struct bch_fs *c = dc->disk.c;
|
|
struct io_clock *clock = &c->io_clock[WRITE];
|
|
unsigned long last;
|
|
u64 sectors_written;
|
|
|
|
set_freezable();
|
|
|
|
while (!kthread_should_stop()) {
|
|
if (kthread_wait_freezable(dc->writeback_running ||
|
|
test_bit(BCACHE_DEV_DETACHING,
|
|
&dc->disk.flags)))
|
|
break;
|
|
|
|
last = atomic_long_read(&clock->now);
|
|
|
|
sectors_written = bch_writeback(dc);
|
|
|
|
if (sectors_written < c->capacity >> 4)
|
|
bch_kthread_io_clock_wait(clock,
|
|
last + (c->capacity >> 5));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bch_keylist_recalc_oldest_gens - update oldest_gen pointers from writeback keys
|
|
*
|
|
* This prevents us from wrapping around gens for a bucket only referenced from
|
|
* writeback keybufs. We don't actually care that the data in those buckets is
|
|
* marked live, only that we don't wrap the gens.
|
|
*/
|
|
void bch_writeback_recalc_oldest_gens(struct bch_fs *c)
|
|
{
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
|
|
rcu_read_lock();
|
|
|
|
radix_tree_for_each_slot(slot, &c->devices, &iter, 0) {
|
|
struct bcache_device *d;
|
|
struct cached_dev *dc;
|
|
|
|
d = radix_tree_deref_slot(slot);
|
|
|
|
if (!CACHED_DEV(&d->inode.v))
|
|
continue;
|
|
dc = container_of(d, struct cached_dev, disk);
|
|
|
|
bch_keybuf_recalc_oldest_gens(c, &dc->writeback_keys);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Init */
|
|
|
|
void bch_sectors_dirty_init(struct cached_dev *dc, struct bch_fs *c)
|
|
{
|
|
struct bcache_device *d = &dc->disk;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
|
|
/*
|
|
* We have to do this before the disk is added to the radix tree or we
|
|
* race with moving GC
|
|
*/
|
|
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS,
|
|
POS(bcache_dev_inum(d), 0), k) {
|
|
if (k.k->p.inode > bcache_dev_inum(d))
|
|
break;
|
|
|
|
if (bkey_extent_is_data(k.k) &&
|
|
!bkey_extent_is_cached(k.k))
|
|
__bcache_dev_sectors_dirty_add(d,
|
|
bkey_start_offset(k.k),
|
|
k.k->size);
|
|
|
|
bch_btree_iter_cond_resched(&iter);
|
|
}
|
|
bch_btree_iter_unlock(&iter);
|
|
|
|
dc->writeback_pd.last_actual = bcache_dev_sectors_dirty(d);
|
|
}
|
|
|
|
void bch_cached_dev_writeback_stop(struct cached_dev *dc)
|
|
{
|
|
cancel_delayed_work_sync(&dc->writeback_pd_update);
|
|
if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
|
|
kthread_stop(dc->writeback_thread);
|
|
dc->writeback_thread = NULL;
|
|
}
|
|
}
|
|
|
|
void bch_cached_dev_writeback_free(struct cached_dev *dc)
|
|
{
|
|
struct bcache_device *d = &dc->disk;
|
|
|
|
mempool_exit(&dc->writeback_page_pool);
|
|
mempool_exit(&dc->writeback_io_pool);
|
|
kvfree(d->full_dirty_stripes);
|
|
kvfree(d->stripe_sectors_dirty);
|
|
}
|
|
|
|
int bch_cached_dev_writeback_init(struct cached_dev *dc)
|
|
{
|
|
struct bcache_device *d = &dc->disk;
|
|
sector_t sectors;
|
|
size_t n;
|
|
|
|
sectors = get_capacity(dc->disk.disk);
|
|
|
|
if (!d->stripe_size) {
|
|
#ifdef CONFIG_BCACHE_DEBUG
|
|
d->stripe_size = 1 << 0;
|
|
#else
|
|
d->stripe_size = 1 << 31;
|
|
#endif
|
|
}
|
|
|
|
pr_debug("stripe size: %d sectors", d->stripe_size);
|
|
d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
|
|
|
|
if (!d->nr_stripes ||
|
|
d->nr_stripes > INT_MAX ||
|
|
d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
|
|
pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
|
|
(unsigned)d->nr_stripes);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
n = d->nr_stripes * sizeof(atomic_t);
|
|
d->stripe_sectors_dirty = n < PAGE_SIZE << 6
|
|
? kzalloc(n, GFP_KERNEL)
|
|
: vzalloc(n);
|
|
if (!d->stripe_sectors_dirty) {
|
|
pr_err("cannot allocate stripe_sectors_dirty");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
|
|
d->full_dirty_stripes = n < PAGE_SIZE << 6
|
|
? kzalloc(n, GFP_KERNEL)
|
|
: vzalloc(n);
|
|
if (!d->full_dirty_stripes) {
|
|
pr_err("cannot allocate full_dirty_stripes");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (mempool_init_kmalloc_pool(&dc->writeback_io_pool, 4,
|
|
sizeof(struct dirty_io) +
|
|
sizeof(struct bio_vec) *
|
|
DIRTY_IO_MEMPOOL_BVECS) ||
|
|
mempool_init_page_pool(&dc->writeback_page_pool,
|
|
(64 << 10) / PAGE_SIZE, 0))
|
|
return -ENOMEM;
|
|
|
|
init_rwsem(&dc->writeback_lock);
|
|
bch_keybuf_init(&dc->writeback_keys);
|
|
|
|
dc->writeback_metadata = true;
|
|
dc->writeback_running = true;
|
|
dc->writeback_percent = 10;
|
|
dc->writeback_pd_update_seconds = 5;
|
|
|
|
bch_pd_controller_init(&dc->writeback_pd);
|
|
INIT_DELAYED_WORK(&dc->writeback_pd_update, update_writeback_rate);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bch_cached_dev_writeback_start(struct cached_dev *dc)
|
|
{
|
|
dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
|
|
"bcache_writeback");
|
|
if (IS_ERR(dc->writeback_thread))
|
|
return PTR_ERR(dc->writeback_thread);
|
|
|
|
schedule_delayed_work(&dc->writeback_pd_update,
|
|
dc->writeback_pd_update_seconds * HZ);
|
|
|
|
bch_writeback_queue(dc);
|
|
|
|
return 0;
|
|
}
|