bcachefs-tools/libbcache/writeback.c
2017-03-10 12:40:01 -09:00

658 lines
15 KiB
C

/*
* background writeback - scan btree for dirty data and write it to the backing
* device
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcache.h"
#include "btree_update.h"
#include "clock.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "keybuf.h"
#include "keylist.h"
#include "writeback.h"
#include <linux/delay.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <trace/events/bcache.h>
/* Rate limiting */
static void __update_writeback_rate(struct cached_dev *dc)
{
struct bch_fs *c = dc->disk.c;
u64 cache_dirty_target =
div_u64(c->capacity * dc->writeback_percent, 100);
s64 target = div64_u64(cache_dirty_target *
bdev_sectors(dc->disk_sb.bdev),
c->cached_dev_sectors);
s64 dirty = bcache_dev_sectors_dirty(&dc->disk);
bch_pd_controller_update(&dc->writeback_pd, target << 9,
dirty << 9, -1);
}
static void update_writeback_rate(struct work_struct *work)
{
struct cached_dev *dc = container_of(to_delayed_work(work),
struct cached_dev,
writeback_pd_update);
down_read(&dc->writeback_lock);
if (atomic_read(&dc->has_dirty) &&
dc->writeback_percent &&
!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
__update_writeback_rate(dc);
else
dc->writeback_pd.rate.rate = UINT_MAX;
up_read(&dc->writeback_lock);
schedule_delayed_work(&dc->writeback_pd_update,
dc->writeback_pd_update_seconds * HZ);
}
struct dirty_io {
struct closure cl;
struct bch_replace_info replace;
struct cached_dev *dc;
struct bch_dev *ca;
struct keybuf_key *w;
struct bch_extent_ptr ptr;
int error;
bool from_mempool;
/* Must be last */
struct bio bio;
};
#define DIRTY_IO_MEMPOOL_BVECS 64
#define DIRTY_IO_MEMPOOL_SECTORS (DIRTY_IO_MEMPOOL_BVECS * PAGE_SECTORS)
static void dirty_init(struct dirty_io *io)
{
struct bio *bio = &io->bio;
bio_init(bio);
if (!io->dc->writeback_percent)
bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
bio->bi_iter.bi_size = io->replace.key.k.size << 9;
bio->bi_max_vecs =
DIV_ROUND_UP(io->replace.key.k.size, PAGE_SECTORS);
bio->bi_io_vec = bio->bi_inline_vecs;
bch_bio_map(bio, NULL);
}
static void dirty_io_destructor(struct closure *cl)
{
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
if (io->from_mempool)
mempool_free(io, &io->dc->writeback_io_pool);
else
kfree(io);
}
static void write_dirty_finish(struct closure *cl)
{
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
struct cached_dev *dc = io->dc;
struct bio_vec *bv;
int i;
bio_for_each_segment_all(bv, &io->bio, i)
mempool_free(bv->bv_page, &dc->writeback_page_pool);
if (!io->error) {
BKEY_PADDED(k) tmp;
int ret;
bkey_copy(&tmp.k, &io->replace.key);
io->replace.hook.fn = bch_extent_cmpxchg;
bkey_extent_set_cached(&tmp.k.k, true);
ret = bch_btree_insert(dc->disk.c, BTREE_ID_EXTENTS, &tmp.k,
NULL, &io->replace.hook, NULL, 0);
if (io->replace.successes == 0)
trace_bcache_writeback_collision(&io->replace.key.k);
atomic_long_inc(ret
? &dc->disk.c->writeback_keys_failed
: &dc->disk.c->writeback_keys_done);
}
bch_keybuf_put(&dc->writeback_keys, io->w);
closure_return_with_destructor(cl, dirty_io_destructor);
}
static void dirty_endio(struct bio *bio)
{
struct dirty_io *io = container_of(bio, struct dirty_io, bio);
if (bio->bi_error) {
trace_bcache_writeback_error(&io->replace.key.k,
op_is_write(bio_op(&io->bio)),
bio->bi_error);
io->error = bio->bi_error;
}
closure_put(&io->cl);
}
static void write_dirty(struct closure *cl)
{
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
if (!io->error) {
dirty_init(io);
bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
io->bio.bi_iter.bi_sector =
bkey_start_offset(&io->replace.key.k);
io->bio.bi_bdev = io->dc->disk_sb.bdev;
io->bio.bi_end_io = dirty_endio;
closure_bio_submit(&io->bio, cl);
}
continue_at(cl, write_dirty_finish, io->dc->disk.c->wq);
}
static void read_dirty_endio(struct bio *bio)
{
struct dirty_io *io = container_of(bio, struct dirty_io, bio);
bch_dev_nonfatal_io_err_on(bio->bi_error, io->ca, "writeback read");
bch_account_io_completion(io->ca);
if (ptr_stale(io->ca, &io->ptr))
bio->bi_error = -EINTR;
dirty_endio(bio);
}
static void read_dirty_submit(struct closure *cl)
{
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
closure_bio_submit(&io->bio, cl);
continue_at(cl, write_dirty, system_freezable_wq);
}
static u64 read_dirty(struct cached_dev *dc)
{
struct keybuf_key *w;
struct dirty_io *io;
struct closure cl;
unsigned i;
struct bio_vec *bv;
u64 sectors_written = 0;
BKEY_PADDED(k) tmp;
closure_init_stack(&cl);
while (!bch_ratelimit_wait_freezable_stoppable(&dc->writeback_pd.rate)) {
w = bch_keybuf_next(&dc->writeback_keys);
if (!w)
break;
sectors_written += w->key.k.size;
bkey_copy(&tmp.k, &w->key);
while (tmp.k.k.size) {
struct extent_pick_ptr pick;
bch_extent_pick_ptr(dc->disk.c,
bkey_i_to_s_c(&tmp.k),
&pick);
if (IS_ERR_OR_NULL(pick.ca))
break;
io = kzalloc(sizeof(*io) + sizeof(struct bio_vec) *
DIV_ROUND_UP(tmp.k.k.size,
PAGE_SECTORS),
GFP_KERNEL);
if (!io) {
trace_bcache_writeback_alloc_fail(pick.ca->fs,
tmp.k.k.size);
io = mempool_alloc(&dc->writeback_io_pool,
GFP_KERNEL);
memset(io, 0, sizeof(*io) +
sizeof(struct bio_vec) *
DIRTY_IO_MEMPOOL_BVECS);
io->from_mempool = true;
bkey_copy(&io->replace.key, &tmp.k);
if (DIRTY_IO_MEMPOOL_SECTORS <
io->replace.key.k.size)
bch_key_resize(&io->replace.key.k,
DIRTY_IO_MEMPOOL_SECTORS);
} else {
bkey_copy(&io->replace.key, &tmp.k);
}
io->dc = dc;
io->ca = pick.ca;
io->w = w;
io->ptr = pick.ptr;
atomic_inc(&w->ref);
dirty_init(io);
bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
io->bio.bi_iter.bi_sector = pick.ptr.offset;
io->bio.bi_bdev = pick.ca->disk_sb.bdev;
io->bio.bi_end_io = read_dirty_endio;
bio_for_each_segment_all(bv, &io->bio, i) {
bv->bv_page =
mempool_alloc(&dc->writeback_page_pool,
i ? GFP_NOWAIT
: GFP_KERNEL);
if (!bv->bv_page) {
BUG_ON(!i);
io->bio.bi_vcnt = i;
io->bio.bi_iter.bi_size =
io->bio.bi_vcnt * PAGE_SIZE;
bch_key_resize(&io->replace.key.k,
bio_sectors(&io->bio));
break;
}
}
bch_cut_front(io->replace.key.k.p, &tmp.k);
trace_bcache_writeback(&io->replace.key.k);
bch_ratelimit_increment(&dc->writeback_pd.rate,
io->replace.key.k.size << 9);
closure_call(&io->cl, read_dirty_submit, NULL, &cl);
}
bch_keybuf_put(&dc->writeback_keys, w);
}
/*
* Wait for outstanding writeback IOs to finish (and keybuf slots to be
* freed) before refilling again
*/
closure_sync(&cl);
return sectors_written;
}
/* Scan for dirty data */
static void __bcache_dev_sectors_dirty_add(struct bcache_device *d,
u64 offset, int nr_sectors)
{
unsigned stripe_offset, stripe, sectors_dirty;
if (!d)
return;
if (!d->stripe_sectors_dirty)
return;
stripe = offset_to_stripe(d, offset);
stripe_offset = offset & (d->stripe_size - 1);
while (nr_sectors) {
int s = min_t(unsigned, abs(nr_sectors),
d->stripe_size - stripe_offset);
if (nr_sectors < 0)
s = -s;
if (stripe >= d->nr_stripes)
return;
sectors_dirty = atomic_add_return(s,
d->stripe_sectors_dirty + stripe);
if (sectors_dirty == d->stripe_size)
set_bit(stripe, d->full_dirty_stripes);
else
clear_bit(stripe, d->full_dirty_stripes);
nr_sectors -= s;
stripe_offset = 0;
stripe++;
}
}
void bcache_dev_sectors_dirty_add(struct bch_fs *c, unsigned inode,
u64 offset, int nr_sectors)
{
struct bcache_device *d;
rcu_read_lock();
d = bch_dev_find(c, inode);
if (d)
__bcache_dev_sectors_dirty_add(d, offset, nr_sectors);
rcu_read_unlock();
}
static bool dirty_pred(struct keybuf *buf, struct bkey_s_c k)
{
struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
BUG_ON(k.k->p.inode != bcache_dev_inum(&dc->disk));
return bkey_extent_is_data(k.k) &&
!bkey_extent_is_cached(k.k);
}
static void refill_full_stripes(struct cached_dev *dc)
{
struct keybuf *buf = &dc->writeback_keys;
unsigned inode = bcache_dev_inum(&dc->disk);
unsigned start_stripe, stripe, next_stripe;
bool wrapped = false;
stripe = offset_to_stripe(&dc->disk, buf->last_scanned.offset);
if (stripe >= dc->disk.nr_stripes)
stripe = 0;
start_stripe = stripe;
while (1) {
stripe = find_next_bit(dc->disk.full_dirty_stripes,
dc->disk.nr_stripes, stripe);
if (stripe == dc->disk.nr_stripes)
goto next;
next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
dc->disk.nr_stripes, stripe);
buf->last_scanned = POS(inode,
stripe * dc->disk.stripe_size);
bch_refill_keybuf(dc->disk.c, buf,
POS(inode,
next_stripe * dc->disk.stripe_size),
dirty_pred);
if (array_freelist_empty(&buf->freelist))
return;
stripe = next_stripe;
next:
if (wrapped && stripe > start_stripe)
return;
if (stripe == dc->disk.nr_stripes) {
stripe = 0;
wrapped = true;
}
}
}
static u64 bch_writeback(struct cached_dev *dc)
{
struct keybuf *buf = &dc->writeback_keys;
unsigned inode = bcache_dev_inum(&dc->disk);
struct bpos start = POS(inode, 0);
struct bpos end = POS(inode, KEY_OFFSET_MAX);
struct bpos start_pos;
u64 sectors_written = 0;
buf->last_scanned = POS(inode, 0);
while (bkey_cmp(buf->last_scanned, end) < 0 &&
!kthread_should_stop()) {
down_write(&dc->writeback_lock);
if (!atomic_read(&dc->has_dirty)) {
up_write(&dc->writeback_lock);
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
return sectors_written;
schedule();
try_to_freeze();
return sectors_written;
}
if (bkey_cmp(buf->last_scanned, end) >= 0)
buf->last_scanned = POS(inode, 0);
if (dc->partial_stripes_expensive) {
refill_full_stripes(dc);
if (array_freelist_empty(&buf->freelist))
goto refill_done;
}
start_pos = buf->last_scanned;
bch_refill_keybuf(dc->disk.c, buf, end, dirty_pred);
if (bkey_cmp(buf->last_scanned, end) >= 0) {
/*
* If we get to the end start scanning again from the
* beginning, and only scan up to where we initially
* started scanning from:
*/
buf->last_scanned = start;
bch_refill_keybuf(dc->disk.c, buf, start_pos,
dirty_pred);
}
if (RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
atomic_set(&dc->has_dirty, 0);
cached_dev_put(dc);
SET_BDEV_STATE(dc->disk_sb.sb, BDEV_STATE_CLEAN);
bch_write_bdev_super(dc, NULL);
}
refill_done:
up_write(&dc->writeback_lock);
bch_ratelimit_reset(&dc->writeback_pd.rate);
sectors_written += read_dirty(dc);
}
return sectors_written;
}
static int bch_writeback_thread(void *arg)
{
struct cached_dev *dc = arg;
struct bch_fs *c = dc->disk.c;
struct io_clock *clock = &c->io_clock[WRITE];
unsigned long last;
u64 sectors_written;
set_freezable();
while (!kthread_should_stop()) {
if (kthread_wait_freezable(dc->writeback_running ||
test_bit(BCACHE_DEV_DETACHING,
&dc->disk.flags)))
break;
last = atomic_long_read(&clock->now);
sectors_written = bch_writeback(dc);
if (sectors_written < c->capacity >> 4)
bch_kthread_io_clock_wait(clock,
last + (c->capacity >> 5));
}
return 0;
}
/**
* bch_keylist_recalc_oldest_gens - update oldest_gen pointers from writeback keys
*
* This prevents us from wrapping around gens for a bucket only referenced from
* writeback keybufs. We don't actually care that the data in those buckets is
* marked live, only that we don't wrap the gens.
*/
void bch_writeback_recalc_oldest_gens(struct bch_fs *c)
{
struct radix_tree_iter iter;
void **slot;
rcu_read_lock();
radix_tree_for_each_slot(slot, &c->devices, &iter, 0) {
struct bcache_device *d;
struct cached_dev *dc;
d = radix_tree_deref_slot(slot);
if (!CACHED_DEV(&d->inode.v))
continue;
dc = container_of(d, struct cached_dev, disk);
bch_keybuf_recalc_oldest_gens(c, &dc->writeback_keys);
}
rcu_read_unlock();
}
/* Init */
void bch_sectors_dirty_init(struct cached_dev *dc, struct bch_fs *c)
{
struct bcache_device *d = &dc->disk;
struct btree_iter iter;
struct bkey_s_c k;
/*
* We have to do this before the disk is added to the radix tree or we
* race with moving GC
*/
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS,
POS(bcache_dev_inum(d), 0), k) {
if (k.k->p.inode > bcache_dev_inum(d))
break;
if (bkey_extent_is_data(k.k) &&
!bkey_extent_is_cached(k.k))
__bcache_dev_sectors_dirty_add(d,
bkey_start_offset(k.k),
k.k->size);
bch_btree_iter_cond_resched(&iter);
}
bch_btree_iter_unlock(&iter);
dc->writeback_pd.last_actual = bcache_dev_sectors_dirty(d);
}
void bch_cached_dev_writeback_stop(struct cached_dev *dc)
{
cancel_delayed_work_sync(&dc->writeback_pd_update);
if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
kthread_stop(dc->writeback_thread);
dc->writeback_thread = NULL;
}
}
void bch_cached_dev_writeback_free(struct cached_dev *dc)
{
struct bcache_device *d = &dc->disk;
mempool_exit(&dc->writeback_page_pool);
mempool_exit(&dc->writeback_io_pool);
kvfree(d->full_dirty_stripes);
kvfree(d->stripe_sectors_dirty);
}
int bch_cached_dev_writeback_init(struct cached_dev *dc)
{
struct bcache_device *d = &dc->disk;
sector_t sectors;
size_t n;
sectors = get_capacity(dc->disk.disk);
if (!d->stripe_size) {
#ifdef CONFIG_BCACHE_DEBUG
d->stripe_size = 1 << 0;
#else
d->stripe_size = 1 << 31;
#endif
}
pr_debug("stripe size: %d sectors", d->stripe_size);
d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
if (!d->nr_stripes ||
d->nr_stripes > INT_MAX ||
d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
(unsigned)d->nr_stripes);
return -ENOMEM;
}
n = d->nr_stripes * sizeof(atomic_t);
d->stripe_sectors_dirty = n < PAGE_SIZE << 6
? kzalloc(n, GFP_KERNEL)
: vzalloc(n);
if (!d->stripe_sectors_dirty) {
pr_err("cannot allocate stripe_sectors_dirty");
return -ENOMEM;
}
n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
d->full_dirty_stripes = n < PAGE_SIZE << 6
? kzalloc(n, GFP_KERNEL)
: vzalloc(n);
if (!d->full_dirty_stripes) {
pr_err("cannot allocate full_dirty_stripes");
return -ENOMEM;
}
if (mempool_init_kmalloc_pool(&dc->writeback_io_pool, 4,
sizeof(struct dirty_io) +
sizeof(struct bio_vec) *
DIRTY_IO_MEMPOOL_BVECS) ||
mempool_init_page_pool(&dc->writeback_page_pool,
(64 << 10) / PAGE_SIZE, 0))
return -ENOMEM;
init_rwsem(&dc->writeback_lock);
bch_keybuf_init(&dc->writeback_keys);
dc->writeback_metadata = true;
dc->writeback_running = true;
dc->writeback_percent = 10;
dc->writeback_pd_update_seconds = 5;
bch_pd_controller_init(&dc->writeback_pd);
INIT_DELAYED_WORK(&dc->writeback_pd_update, update_writeback_rate);
return 0;
}
int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
"bcache_writeback");
if (IS_ERR(dc->writeback_thread))
return PTR_ERR(dc->writeback_thread);
schedule_delayed_work(&dc->writeback_pd_update,
dc->writeback_pd_update_seconds * HZ);
bch_writeback_queue(dc);
return 0;
}