bcachefs-tools/libbcachefs/journal.c

3026 lines
74 KiB
C

/*
* bcachefs journalling code, for btree insertions
*
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc.h"
#include "bkey_methods.h"
#include "buckets.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "checksum.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "keylist.h"
#include "journal.h"
#include "super-io.h"
#include "vstructs.h"
#include <trace/events/bcachefs.h>
static void journal_write(struct closure *);
static void journal_reclaim_fast(struct journal *);
static void journal_pin_add_entry(struct journal *,
struct journal_entry_pin_list *,
struct journal_entry_pin *,
journal_pin_flush_fn);
static inline struct journal_buf *journal_cur_buf(struct journal *j)
{
return j->buf + j->reservations.idx;
}
static inline struct journal_buf *journal_prev_buf(struct journal *j)
{
return j->buf + !j->reservations.idx;
}
/* Sequence number of oldest dirty journal entry */
static inline u64 last_seq(struct journal *j)
{
return atomic64_read(&j->seq) - fifo_used(&j->pin) + 1;
}
static inline u64 journal_pin_seq(struct journal *j,
struct journal_entry_pin_list *pin_list)
{
return last_seq(j) + fifo_entry_idx(&j->pin, pin_list);
}
static inline void bch2_journal_add_entry_noreservation(struct journal_buf *buf,
unsigned type, enum btree_id id,
unsigned level,
const void *data, size_t u64s)
{
struct jset *jset = buf->data;
bch2_journal_add_entry_at(buf, le32_to_cpu(jset->u64s),
type, id, level, data, u64s);
le32_add_cpu(&jset->u64s, jset_u64s(u64s));
}
static struct jset_entry *bch2_journal_find_entry(struct jset *j, unsigned type,
enum btree_id id)
{
struct jset_entry *entry;
for_each_jset_entry_type(entry, j, type)
if (entry->btree_id == id)
return entry;
return NULL;
}
struct bkey_i *bch2_journal_find_btree_root(struct bch_fs *c, struct jset *j,
enum btree_id id, unsigned *level)
{
struct bkey_i *k;
struct jset_entry *entry =
bch2_journal_find_entry(j, JOURNAL_ENTRY_BTREE_ROOT, id);
if (!entry)
return NULL;
k = entry->start;
*level = entry->level;
*level = entry->level;
return k;
}
static void bch2_journal_add_btree_root(struct journal_buf *buf,
enum btree_id id, struct bkey_i *k,
unsigned level)
{
bch2_journal_add_entry_noreservation(buf,
JOURNAL_ENTRY_BTREE_ROOT, id, level,
k, k->k.u64s);
}
static void journal_seq_blacklist_flush(struct journal *j,
struct journal_entry_pin *pin, u64 seq)
{
struct bch_fs *c =
container_of(j, struct bch_fs, journal);
struct journal_seq_blacklist *bl =
container_of(pin, struct journal_seq_blacklist, pin);
struct blacklisted_node n;
struct closure cl;
unsigned i;
int ret;
closure_init_stack(&cl);
for (i = 0;; i++) {
struct btree_iter iter;
struct btree *b;
mutex_lock(&j->blacklist_lock);
if (i >= bl->nr_entries) {
mutex_unlock(&j->blacklist_lock);
break;
}
n = bl->entries[i];
mutex_unlock(&j->blacklist_lock);
__bch2_btree_iter_init(&iter, c, n.btree_id, n.pos, 0, 0, 0);
b = bch2_btree_iter_peek_node(&iter);
/* The node might have already been rewritten: */
if (b->data->keys.seq == n.seq) {
ret = bch2_btree_node_rewrite(c, &iter, n.seq, 0);
if (ret) {
bch2_btree_iter_unlock(&iter);
bch2_fs_fatal_error(c,
"error %i rewriting btree node with blacklisted journal seq",
ret);
bch2_journal_halt(j);
return;
}
}
bch2_btree_iter_unlock(&iter);
}
for (i = 0;; i++) {
struct btree_update *as;
struct pending_btree_node_free *d;
mutex_lock(&j->blacklist_lock);
if (i >= bl->nr_entries) {
mutex_unlock(&j->blacklist_lock);
break;
}
n = bl->entries[i];
mutex_unlock(&j->blacklist_lock);
redo_wait:
mutex_lock(&c->btree_interior_update_lock);
/*
* Is the node on the list of pending interior node updates -
* being freed? If so, wait for that to finish:
*/
for_each_pending_btree_node_free(c, as, d)
if (n.seq == d->seq &&
n.btree_id == d->btree_id &&
!d->level &&
!bkey_cmp(n.pos, d->key.k.p)) {
closure_wait(&as->wait, &cl);
mutex_unlock(&c->btree_interior_update_lock);
closure_sync(&cl);
goto redo_wait;
}
mutex_unlock(&c->btree_interior_update_lock);
}
mutex_lock(&j->blacklist_lock);
bch2_journal_pin_drop(j, &bl->pin);
list_del(&bl->list);
kfree(bl->entries);
kfree(bl);
mutex_unlock(&j->blacklist_lock);
}
static struct journal_seq_blacklist *
journal_seq_blacklist_find(struct journal *j, u64 seq)
{
struct journal_seq_blacklist *bl;
lockdep_assert_held(&j->blacklist_lock);
list_for_each_entry(bl, &j->seq_blacklist, list)
if (seq == bl->seq)
return bl;
return NULL;
}
static struct journal_seq_blacklist *
bch2_journal_seq_blacklisted_new(struct journal *j, u64 seq)
{
struct journal_seq_blacklist *bl;
lockdep_assert_held(&j->blacklist_lock);
/*
* When we start the journal, bch2_journal_start() will skip over @seq:
*/
bl = kzalloc(sizeof(*bl), GFP_KERNEL);
if (!bl)
return NULL;
bl->seq = seq;
list_add_tail(&bl->list, &j->seq_blacklist);
return bl;
}
/*
* Returns true if @seq is newer than the most recent journal entry that got
* written, and data corresponding to @seq should be ignored - also marks @seq
* as blacklisted so that on future restarts the corresponding data will still
* be ignored:
*/
int bch2_journal_seq_should_ignore(struct bch_fs *c, u64 seq, struct btree *b)
{
struct journal *j = &c->journal;
struct journal_seq_blacklist *bl = NULL;
struct blacklisted_node *n;
u64 journal_seq, i;
int ret = 0;
if (!seq)
return 0;
journal_seq = atomic64_read(&j->seq);
/* Interier updates aren't journalled: */
BUG_ON(b->level);
BUG_ON(seq > journal_seq && test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags));
/*
* Decrease this back to j->seq + 2 when we next rev the on disk format:
* increasing it temporarily to work around bug in old kernels
*/
bch2_fs_inconsistent_on(seq > journal_seq + 4, c,
"bset journal seq too far in the future: %llu > %llu",
seq, journal_seq);
if (seq <= journal_seq &&
list_empty_careful(&j->seq_blacklist))
return 0;
mutex_lock(&j->blacklist_lock);
if (seq <= journal_seq) {
bl = journal_seq_blacklist_find(j, seq);
if (!bl)
goto out;
} else {
bch_verbose(c, "btree node %u:%llu:%llu has future journal sequence number %llu, blacklisting",
b->btree_id, b->key.k.p.inode, b->key.k.p.offset, seq);
for (i = journal_seq + 1; i <= seq; i++) {
bl = journal_seq_blacklist_find(j, i) ?:
bch2_journal_seq_blacklisted_new(j, i);
if (!bl) {
ret = -ENOMEM;
goto out;
}
}
}
for (n = bl->entries; n < bl->entries + bl->nr_entries; n++)
if (b->data->keys.seq == n->seq &&
b->btree_id == n->btree_id &&
!bkey_cmp(b->key.k.p, n->pos))
goto found_entry;
if (!bl->nr_entries ||
is_power_of_2(bl->nr_entries)) {
n = krealloc(bl->entries,
max(bl->nr_entries * 2, 8UL) * sizeof(*n),
GFP_KERNEL);
if (!n) {
ret = -ENOMEM;
goto out;
}
bl->entries = n;
}
bl->entries[bl->nr_entries++] = (struct blacklisted_node) {
.seq = b->data->keys.seq,
.btree_id = b->btree_id,
.pos = b->key.k.p,
};
found_entry:
ret = 1;
out:
mutex_unlock(&j->blacklist_lock);
return ret;
}
/*
* Journal replay/recovery:
*
* This code is all driven from bch2_fs_start(); we first read the journal
* entries, do some other stuff, then we mark all the keys in the journal
* entries (same as garbage collection would), then we replay them - reinserting
* them into the cache in precisely the same order as they appear in the
* journal.
*
* We only journal keys that go in leaf nodes, which simplifies things quite a
* bit.
*/
struct journal_list {
struct closure cl;
struct mutex lock;
struct list_head *head;
int ret;
};
#define JOURNAL_ENTRY_ADD_OK 0
#define JOURNAL_ENTRY_ADD_OUT_OF_RANGE 5
/*
* Given a journal entry we just read, add it to the list of journal entries to
* be replayed:
*/
static int journal_entry_add(struct bch_fs *c, struct bch_dev *ca,
struct journal_list *jlist, struct jset *j)
{
struct journal_replay *i, *pos;
struct list_head *where;
size_t bytes = vstruct_bytes(j);
__le64 last_seq;
int ret;
last_seq = !list_empty(jlist->head)
? list_last_entry(jlist->head, struct journal_replay,
list)->j.last_seq
: 0;
/* Is this entry older than the range we need? */
if (le64_to_cpu(j->seq) < le64_to_cpu(last_seq)) {
ret = JOURNAL_ENTRY_ADD_OUT_OF_RANGE;
goto out;
}
/* Drop entries we don't need anymore */
list_for_each_entry_safe(i, pos, jlist->head, list) {
if (le64_to_cpu(i->j.seq) >= le64_to_cpu(j->last_seq))
break;
list_del(&i->list);
kvpfree(i, offsetof(struct journal_replay, j) +
vstruct_bytes(&i->j));
}
list_for_each_entry_reverse(i, jlist->head, list) {
/* Duplicate? */
if (le64_to_cpu(j->seq) == le64_to_cpu(i->j.seq)) {
fsck_err_on(bytes != vstruct_bytes(&i->j) ||
memcmp(j, &i->j, bytes), c,
"found duplicate but non identical journal entries (seq %llu)",
le64_to_cpu(j->seq));
goto found;
}
if (le64_to_cpu(j->seq) > le64_to_cpu(i->j.seq)) {
where = &i->list;
goto add;
}
}
where = jlist->head;
add:
i = kvpmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL);
if (!i) {
ret = -ENOMEM;
goto out;
}
list_add(&i->list, where);
i->devs.nr = 0;
memcpy(&i->j, j, bytes);
found:
if (!bch2_dev_list_has_dev(i->devs, ca->dev_idx))
bch2_dev_list_add_dev(&i->devs, ca->dev_idx);
else
fsck_err_on(1, c, "duplicate journal entries on same device");
ret = JOURNAL_ENTRY_ADD_OK;
out:
fsck_err:
return ret;
}
static struct nonce journal_nonce(const struct jset *jset)
{
return (struct nonce) {{
[0] = 0,
[1] = ((__le32 *) &jset->seq)[0],
[2] = ((__le32 *) &jset->seq)[1],
[3] = BCH_NONCE_JOURNAL,
}};
}
static void journal_entry_null_range(void *start, void *end)
{
struct jset_entry *entry;
for (entry = start; entry != end; entry = vstruct_next(entry))
memset(entry, 0, sizeof(*entry));
}
static int journal_validate_key(struct bch_fs *c, struct jset *j,
struct jset_entry *entry,
struct bkey_i *k, enum bkey_type key_type,
const char *type)
{
void *next = vstruct_next(entry);
const char *invalid;
char buf[160];
int ret = 0;
if (mustfix_fsck_err_on(!k->k.u64s, c,
"invalid %s in journal: k->u64s 0", type)) {
entry->u64s = cpu_to_le16((u64 *) k - entry->_data);
journal_entry_null_range(vstruct_next(entry), next);
return 0;
}
if (mustfix_fsck_err_on((void *) bkey_next(k) >
(void *) vstruct_next(entry), c,
"invalid %s in journal: extends past end of journal entry",
type)) {
entry->u64s = cpu_to_le16((u64 *) k - entry->_data);
journal_entry_null_range(vstruct_next(entry), next);
return 0;
}
if (mustfix_fsck_err_on(k->k.format != KEY_FORMAT_CURRENT, c,
"invalid %s in journal: bad format %u",
type, k->k.format)) {
le16_add_cpu(&entry->u64s, -k->k.u64s);
memmove(k, bkey_next(k), next - (void *) bkey_next(k));
journal_entry_null_range(vstruct_next(entry), next);
return 0;
}
if (JSET_BIG_ENDIAN(j) != CPU_BIG_ENDIAN)
bch2_bkey_swab(key_type, NULL, bkey_to_packed(k));
invalid = bch2_bkey_invalid(c, key_type, bkey_i_to_s_c(k));
if (invalid) {
bch2_bkey_val_to_text(c, key_type, buf, sizeof(buf),
bkey_i_to_s_c(k));
mustfix_fsck_err(c, "invalid %s in journal: %s\n%s",
type, invalid, buf);
le16_add_cpu(&entry->u64s, -k->k.u64s);
memmove(k, bkey_next(k), next - (void *) bkey_next(k));
journal_entry_null_range(vstruct_next(entry), next);
return 0;
}
fsck_err:
return ret;
}
#define JOURNAL_ENTRY_REREAD 5
#define JOURNAL_ENTRY_NONE 6
#define JOURNAL_ENTRY_BAD 7
#define journal_entry_err(c, msg, ...) \
({ \
if (write == READ) { \
mustfix_fsck_err(c, msg, ##__VA_ARGS__); \
} else { \
bch_err(c, "detected corrupt metadata before write:\n" \
msg, ##__VA_ARGS__); \
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
goto fsck_err; \
} \
true; \
})
#define journal_entry_err_on(cond, c, msg, ...) \
((cond) ? journal_entry_err(c, msg, ##__VA_ARGS__) : false)
static int journal_entry_validate_entries(struct bch_fs *c, struct jset *j,
int write)
{
struct jset_entry *entry;
int ret = 0;
vstruct_for_each(j, entry) {
struct bkey_i *k;
if (journal_entry_err_on(vstruct_next(entry) >
vstruct_last(j), c,
"journal entry extends past end of jset")) {
j->u64s = cpu_to_le32((u64 *) entry - j->_data);
break;
}
switch (entry->type) {
case JOURNAL_ENTRY_BTREE_KEYS:
vstruct_for_each(entry, k) {
ret = journal_validate_key(c, j, entry, k,
bkey_type(entry->level,
entry->btree_id),
"key");
if (ret)
goto fsck_err;
}
break;
case JOURNAL_ENTRY_BTREE_ROOT:
k = entry->start;
if (journal_entry_err_on(!entry->u64s ||
le16_to_cpu(entry->u64s) != k->k.u64s, c,
"invalid btree root journal entry: wrong number of keys")) {
journal_entry_null_range(entry,
vstruct_next(entry));
continue;
}
ret = journal_validate_key(c, j, entry, k,
BKEY_TYPE_BTREE, "btree root");
if (ret)
goto fsck_err;
break;
case JOURNAL_ENTRY_PRIO_PTRS:
break;
case JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED:
if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 1, c,
"invalid journal seq blacklist entry: bad size")) {
journal_entry_null_range(entry,
vstruct_next(entry));
}
break;
default:
journal_entry_err(c, "invalid journal entry type %u",
entry->type);
journal_entry_null_range(entry, vstruct_next(entry));
break;
}
}
fsck_err:
return ret;
}
static int journal_entry_validate(struct bch_fs *c,
struct jset *j, u64 sector,
unsigned bucket_sectors_left,
unsigned sectors_read,
int write)
{
size_t bytes = vstruct_bytes(j);
struct bch_csum csum;
int ret = 0;
if (le64_to_cpu(j->magic) != jset_magic(c))
return JOURNAL_ENTRY_NONE;
if (le32_to_cpu(j->version) != BCACHE_JSET_VERSION) {
bch_err(c, "unknown journal entry version %u",
le32_to_cpu(j->version));
return BCH_FSCK_UNKNOWN_VERSION;
}
if (journal_entry_err_on(bytes > bucket_sectors_left << 9, c,
"journal entry too big (%zu bytes), sector %lluu",
bytes, sector)) {
/* XXX: note we might have missing journal entries */
return JOURNAL_ENTRY_BAD;
}
if (bytes > sectors_read << 9)
return JOURNAL_ENTRY_REREAD;
if (fsck_err_on(!bch2_checksum_type_valid(c, JSET_CSUM_TYPE(j)), c,
"journal entry with unknown csum type %llu sector %lluu",
JSET_CSUM_TYPE(j), sector))
return JOURNAL_ENTRY_BAD;
csum = csum_vstruct(c, JSET_CSUM_TYPE(j), journal_nonce(j), j);
if (journal_entry_err_on(bch2_crc_cmp(csum, j->csum), c,
"journal checksum bad, sector %llu", sector)) {
/* XXX: retry IO, when we start retrying checksum errors */
/* XXX: note we might have missing journal entries */
return JOURNAL_ENTRY_BAD;
}
bch2_encrypt(c, JSET_CSUM_TYPE(j), journal_nonce(j),
j->encrypted_start,
vstruct_end(j) - (void *) j->encrypted_start);
if (journal_entry_err_on(le64_to_cpu(j->last_seq) > le64_to_cpu(j->seq), c,
"invalid journal entry: last_seq > seq"))
j->last_seq = j->seq;
return 0;
fsck_err:
return ret;
}
struct journal_read_buf {
void *data;
size_t size;
};
static int journal_read_buf_realloc(struct journal_read_buf *b,
size_t new_size)
{
void *n;
/* the bios are sized for this many pages, max: */
if (new_size > JOURNAL_ENTRY_SIZE_MAX)
return -ENOMEM;
new_size = roundup_pow_of_two(new_size);
n = kvpmalloc(new_size, GFP_KERNEL);
if (!n)
return -ENOMEM;
kvpfree(b->data, b->size);
b->data = n;
b->size = new_size;
return 0;
}
static int journal_read_bucket(struct bch_dev *ca,
struct journal_read_buf *buf,
struct journal_list *jlist,
unsigned bucket, u64 *seq, bool *entries_found)
{
struct bch_fs *c = ca->fs;
struct journal_device *ja = &ca->journal;
struct bio *bio = ja->bio;
struct jset *j = NULL;
unsigned sectors, sectors_read = 0;
u64 offset = bucket_to_sector(ca, ja->buckets[bucket]),
end = offset + ca->mi.bucket_size;
bool saw_bad = false;
int ret = 0;
pr_debug("reading %u", bucket);
while (offset < end) {
if (!sectors_read) {
reread: sectors_read = min_t(unsigned,
end - offset, buf->size >> 9);
bio_reset(bio);
bio->bi_bdev = ca->disk_sb.bdev;
bio->bi_iter.bi_sector = offset;
bio->bi_iter.bi_size = sectors_read << 9;
bio_set_op_attrs(bio, REQ_OP_READ, 0);
bch2_bio_map(bio, buf->data);
ret = submit_bio_wait(bio);
if (bch2_dev_io_err_on(ret, ca,
"journal read from sector %llu",
offset) ||
bch2_meta_read_fault("journal"))
return -EIO;
j = buf->data;
}
ret = journal_entry_validate(c, j, offset,
end - offset, sectors_read,
READ);
switch (ret) {
case BCH_FSCK_OK:
break;
case JOURNAL_ENTRY_REREAD:
if (vstruct_bytes(j) > buf->size) {
ret = journal_read_buf_realloc(buf,
vstruct_bytes(j));
if (ret)
return ret;
}
goto reread;
case JOURNAL_ENTRY_NONE:
if (!saw_bad)
return 0;
sectors = c->opts.block_size;
goto next_block;
case JOURNAL_ENTRY_BAD:
saw_bad = true;
sectors = c->opts.block_size;
goto next_block;
default:
return ret;
}
/*
* This happens sometimes if we don't have discards on -
* when we've partially overwritten a bucket with new
* journal entries. We don't need the rest of the
* bucket:
*/
if (le64_to_cpu(j->seq) < ja->bucket_seq[bucket])
return 0;
ja->bucket_seq[bucket] = le64_to_cpu(j->seq);
mutex_lock(&jlist->lock);
ret = journal_entry_add(c, ca, jlist, j);
mutex_unlock(&jlist->lock);
switch (ret) {
case JOURNAL_ENTRY_ADD_OK:
*entries_found = true;
break;
case JOURNAL_ENTRY_ADD_OUT_OF_RANGE:
break;
default:
return ret;
}
if (le64_to_cpu(j->seq) > *seq)
*seq = le64_to_cpu(j->seq);
sectors = vstruct_sectors(j, c->block_bits);
next_block:
pr_debug("next");
offset += sectors;
sectors_read -= sectors;
j = ((void *) j) + (sectors << 9);
}
return 0;
}
static void bch2_journal_read_device(struct closure *cl)
{
#define read_bucket(b) \
({ \
bool entries_found = false; \
ret = journal_read_bucket(ca, &buf, jlist, b, &seq, \
&entries_found); \
if (ret) \
goto err; \
__set_bit(b, bitmap); \
entries_found; \
})
struct journal_device *ja =
container_of(cl, struct journal_device, read);
struct bch_dev *ca = container_of(ja, struct bch_dev, journal);
struct journal_list *jlist =
container_of(cl->parent, struct journal_list, cl);
struct request_queue *q = bdev_get_queue(ca->disk_sb.bdev);
struct journal_read_buf buf = { NULL, 0 };
DECLARE_BITMAP(bitmap, ja->nr);
unsigned i, l, r;
u64 seq = 0;
int ret;
if (!ja->nr)
goto out;
bitmap_zero(bitmap, ja->nr);
ret = journal_read_buf_realloc(&buf, PAGE_SIZE);
if (ret)
goto err;
pr_debug("%u journal buckets", ja->nr);
/*
* If the device supports discard but not secure discard, we can't do
* the fancy fibonacci hash/binary search because the live journal
* entries might not form a contiguous range:
*/
for (i = 0; i < ja->nr; i++)
read_bucket(i);
goto search_done;
if (!blk_queue_nonrot(q))
goto linear_scan;
/*
* Read journal buckets ordered by golden ratio hash to quickly
* find a sequence of buckets with valid journal entries
*/
for (i = 0; i < ja->nr; i++) {
l = (i * 2654435769U) % ja->nr;
if (test_bit(l, bitmap))
break;
if (read_bucket(l))
goto bsearch;
}
/*
* If that fails, check all the buckets we haven't checked
* already
*/
pr_debug("falling back to linear search");
linear_scan:
for (l = find_first_zero_bit(bitmap, ja->nr);
l < ja->nr;
l = find_next_zero_bit(bitmap, ja->nr, l + 1))
if (read_bucket(l))
goto bsearch;
/* no journal entries on this device? */
if (l == ja->nr)
goto out;
bsearch:
/* Binary search */
r = find_next_bit(bitmap, ja->nr, l + 1);
pr_debug("starting binary search, l %u r %u", l, r);
while (l + 1 < r) {
unsigned m = (l + r) >> 1;
u64 cur_seq = seq;
read_bucket(m);
if (cur_seq != seq)
l = m;
else
r = m;
}
search_done:
/*
* Find the journal bucket with the highest sequence number:
*
* If there's duplicate journal entries in multiple buckets (which
* definitely isn't supposed to happen, but...) - make sure to start
* cur_idx at the last of those buckets, so we don't deadlock trying to
* allocate
*/
seq = 0;
for (i = 0; i < ja->nr; i++)
if (ja->bucket_seq[i] >= seq &&
ja->bucket_seq[i] != ja->bucket_seq[(i + 1) % ja->nr]) {
/*
* When journal_next_bucket() goes to allocate for
* the first time, it'll use the bucket after
* ja->cur_idx
*/
ja->cur_idx = i;
seq = ja->bucket_seq[i];
}
/*
* Set last_idx to indicate the entire journal is full and needs to be
* reclaimed - journal reclaim will immediately reclaim whatever isn't
* pinned when it first runs:
*/
ja->last_idx = (ja->cur_idx + 1) % ja->nr;
/*
* Read buckets in reverse order until we stop finding more journal
* entries:
*/
for (i = (ja->cur_idx + ja->nr - 1) % ja->nr;
i != ja->cur_idx;
i = (i + ja->nr - 1) % ja->nr)
if (!test_bit(i, bitmap) &&
!read_bucket(i))
break;
out:
kvpfree(buf.data, buf.size);
percpu_ref_put(&ca->io_ref);
closure_return(cl);
err:
mutex_lock(&jlist->lock);
jlist->ret = ret;
mutex_unlock(&jlist->lock);
goto out;
#undef read_bucket
}
void bch2_journal_entries_free(struct list_head *list)
{
while (!list_empty(list)) {
struct journal_replay *i =
list_first_entry(list, struct journal_replay, list);
list_del(&i->list);
kvpfree(i, offsetof(struct journal_replay, j) +
vstruct_bytes(&i->j));
}
}
static int journal_seq_blacklist_read(struct journal *j,
struct journal_replay *i,
struct journal_entry_pin_list *p)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct jset_entry *entry;
struct journal_seq_blacklist *bl;
u64 seq;
for_each_jset_entry_type(entry, &i->j,
JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED) {
struct jset_entry_blacklist *bl_entry =
container_of(entry, struct jset_entry_blacklist, entry);
seq = le64_to_cpu(bl_entry->seq);
bch_verbose(c, "blacklisting existing journal seq %llu", seq);
bl = bch2_journal_seq_blacklisted_new(j, seq);
if (!bl)
return -ENOMEM;
journal_pin_add_entry(j, p, &bl->pin,
journal_seq_blacklist_flush);
bl->written = true;
}
return 0;
}
static inline bool journal_has_keys(struct list_head *list)
{
struct journal_replay *i;
struct jset_entry *entry;
struct bkey_i *k, *_n;
list_for_each_entry(i, list, list)
for_each_jset_key(k, _n, entry, &i->j)
return true;
return false;
}
int bch2_journal_read(struct bch_fs *c, struct list_head *list)
{
struct journal *j = &c->journal;
struct journal_list jlist;
struct journal_replay *i;
struct journal_entry_pin_list *p;
struct bch_dev *ca;
u64 cur_seq, end_seq;
unsigned iter, keys = 0, entries = 0;
int ret = 0;
closure_init_stack(&jlist.cl);
mutex_init(&jlist.lock);
jlist.head = list;
jlist.ret = 0;
for_each_readable_member(ca, c, iter) {
percpu_ref_get(&ca->io_ref);
closure_call(&ca->journal.read,
bch2_journal_read_device,
system_unbound_wq,
&jlist.cl);
}
closure_sync(&jlist.cl);
if (jlist.ret)
return jlist.ret;
if (list_empty(list)){
bch_err(c, "no journal entries found");
return BCH_FSCK_REPAIR_IMPOSSIBLE;
}
fsck_err_on(c->sb.clean && journal_has_keys(list), c,
"filesystem marked clean but journal has keys to replay");
list_for_each_entry(i, list, list) {
ret = journal_entry_validate_entries(c, &i->j, READ);
if (ret)
goto fsck_err;
}
i = list_last_entry(list, struct journal_replay, list);
unfixable_fsck_err_on(le64_to_cpu(i->j.seq) -
le64_to_cpu(i->j.last_seq) + 1 > j->pin.size, c,
"too many journal entries open for refcount fifo");
atomic64_set(&j->seq, le64_to_cpu(i->j.seq));
j->last_seq_ondisk = le64_to_cpu(i->j.last_seq);
j->pin.front = le64_to_cpu(i->j.last_seq);
j->pin.back = le64_to_cpu(i->j.seq) + 1;
BUG_ON(last_seq(j) != le64_to_cpu(i->j.last_seq));
BUG_ON(journal_seq_pin(j, atomic64_read(&j->seq)) !=
&fifo_peek_back(&j->pin));
fifo_for_each_entry_ptr(p, &j->pin, iter) {
INIT_LIST_HEAD(&p->list);
INIT_LIST_HEAD(&p->flushed);
atomic_set(&p->count, 0);
p->devs.nr = 0;
}
mutex_lock(&j->blacklist_lock);
list_for_each_entry(i, list, list) {
p = journal_seq_pin(j, le64_to_cpu(i->j.seq));
atomic_set(&p->count, 1);
p->devs = i->devs;
if (journal_seq_blacklist_read(j, i, p)) {
mutex_unlock(&j->blacklist_lock);
return -ENOMEM;
}
}
mutex_unlock(&j->blacklist_lock);
cur_seq = last_seq(j);
end_seq = le64_to_cpu(list_last_entry(list,
struct journal_replay, list)->j.seq);
list_for_each_entry(i, list, list) {
struct jset_entry *entry;
struct bkey_i *k, *_n;
bool blacklisted;
mutex_lock(&j->blacklist_lock);
while (cur_seq < le64_to_cpu(i->j.seq) &&
journal_seq_blacklist_find(j, cur_seq))
cur_seq++;
blacklisted = journal_seq_blacklist_find(j,
le64_to_cpu(i->j.seq));
mutex_unlock(&j->blacklist_lock);
fsck_err_on(blacklisted, c,
"found blacklisted journal entry %llu",
le64_to_cpu(i->j.seq));
fsck_err_on(le64_to_cpu(i->j.seq) != cur_seq, c,
"journal entries %llu-%llu missing! (replaying %llu-%llu)",
cur_seq, le64_to_cpu(i->j.seq) - 1,
last_seq(j), end_seq);
cur_seq = le64_to_cpu(i->j.seq) + 1;
for_each_jset_key(k, _n, entry, &i->j)
keys++;
entries++;
}
bch_info(c, "journal read done, %i keys in %i entries, seq %llu",
keys, entries, (u64) atomic64_read(&j->seq));
fsck_err:
return ret;
}
int bch2_journal_mark(struct bch_fs *c, struct list_head *list)
{
struct bkey_i *k, *n;
struct jset_entry *j;
struct journal_replay *r;
int ret;
list_for_each_entry(r, list, list)
for_each_jset_key(k, n, j, &r->j) {
enum bkey_type type = bkey_type(j->level, j->btree_id);
struct bkey_s_c k_s_c = bkey_i_to_s_c(k);
if (btree_type_has_ptrs(type)) {
ret = bch2_btree_mark_key_initial(c, type, k_s_c);
if (ret)
return ret;
}
}
return 0;
}
static bool journal_entry_is_open(struct journal *j)
{
return j->reservations.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL;
}
void bch2_journal_buf_put_slowpath(struct journal *j, bool need_write_just_set)
{
struct journal_buf *w = journal_prev_buf(j);
atomic_dec_bug(&journal_seq_pin(j, le64_to_cpu(w->data->seq))->count);
if (!need_write_just_set &&
test_bit(JOURNAL_NEED_WRITE, &j->flags))
__bch2_time_stats_update(j->delay_time,
j->need_write_time);
#if 0
closure_call(&j->io, journal_write, NULL, NULL);
#else
/* Shut sparse up: */
closure_init(&j->io, NULL);
set_closure_fn(&j->io, journal_write, NULL);
journal_write(&j->io);
#endif
}
static void __journal_entry_new(struct journal *j, int count)
{
struct journal_entry_pin_list *p = fifo_push_ref(&j->pin);
/*
* The fifo_push() needs to happen at the same time as j->seq is
* incremented for last_seq() to be calculated correctly
*/
atomic64_inc(&j->seq);
BUG_ON(journal_seq_pin(j, atomic64_read(&j->seq)) !=
&fifo_peek_back(&j->pin));
INIT_LIST_HEAD(&p->list);
INIT_LIST_HEAD(&p->flushed);
atomic_set(&p->count, count);
p->devs.nr = 0;
}
static void __bch2_journal_next_entry(struct journal *j)
{
struct journal_buf *buf;
__journal_entry_new(j, 1);
buf = journal_cur_buf(j);
memset(buf->has_inode, 0, sizeof(buf->has_inode));
memset(buf->data, 0, sizeof(*buf->data));
buf->data->seq = cpu_to_le64(atomic64_read(&j->seq));
buf->data->u64s = 0;
}
static inline size_t journal_entry_u64s_reserve(struct journal_buf *buf)
{
return BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_EXTENT_U64s_MAX);
}
static enum {
JOURNAL_ENTRY_ERROR,
JOURNAL_ENTRY_INUSE,
JOURNAL_ENTRY_CLOSED,
JOURNAL_UNLOCKED,
} journal_buf_switch(struct journal *j, bool need_write_just_set)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct journal_buf *buf;
union journal_res_state old, new;
u64 v = atomic64_read(&j->reservations.counter);
lockdep_assert_held(&j->lock);
do {
old.v = new.v = v;
if (old.cur_entry_offset == JOURNAL_ENTRY_CLOSED_VAL)
return JOURNAL_ENTRY_CLOSED;
if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL)
return JOURNAL_ENTRY_ERROR;
if (new.prev_buf_unwritten)
return JOURNAL_ENTRY_INUSE;
/*
* avoid race between setting buf->data->u64s and
* journal_res_put starting write:
*/
journal_state_inc(&new);
new.cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL;
new.idx++;
new.prev_buf_unwritten = 1;
BUG_ON(journal_state_count(new, new.idx));
} while ((v = atomic64_cmpxchg(&j->reservations.counter,
old.v, new.v)) != old.v);
journal_reclaim_fast(j);
clear_bit(JOURNAL_NEED_WRITE, &j->flags);
buf = &j->buf[old.idx];
buf->data->u64s = cpu_to_le32(old.cur_entry_offset);
buf->data->last_seq = cpu_to_le64(last_seq(j));
j->prev_buf_sectors =
vstruct_blocks_plus(buf->data, c->block_bits,
journal_entry_u64s_reserve(buf)) *
c->opts.block_size;
BUG_ON(j->prev_buf_sectors > j->cur_buf_sectors);
__bch2_journal_next_entry(j);
cancel_delayed_work(&j->write_work);
spin_unlock(&j->lock);
if (c->bucket_journal_seq > 1 << 14) {
c->bucket_journal_seq = 0;
bch2_bucket_seq_cleanup(c);
}
/* ugh - might be called from __journal_res_get() under wait_event() */
__set_current_state(TASK_RUNNING);
bch2_journal_buf_put(j, old.idx, need_write_just_set);
return JOURNAL_UNLOCKED;
}
void bch2_journal_halt(struct journal *j)
{
union journal_res_state old, new;
u64 v = atomic64_read(&j->reservations.counter);
do {
old.v = new.v = v;
if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL)
return;
new.cur_entry_offset = JOURNAL_ENTRY_ERROR_VAL;
} while ((v = atomic64_cmpxchg(&j->reservations.counter,
old.v, new.v)) != old.v);
wake_up(&j->wait);
closure_wake_up(&journal_cur_buf(j)->wait);
closure_wake_up(&journal_prev_buf(j)->wait);
}
static unsigned journal_dev_buckets_available(struct journal *j,
struct bch_dev *ca)
{
struct journal_device *ja = &ca->journal;
unsigned next = (ja->cur_idx + 1) % ja->nr;
unsigned available = (ja->last_idx + ja->nr - next) % ja->nr;
/*
* Hack to avoid a deadlock during journal replay:
* journal replay might require setting a new btree
* root, which requires writing another journal entry -
* thus, if the journal is full (and this happens when
* replaying the first journal bucket's entries) we're
* screwed.
*
* So don't let the journal fill up unless we're in
* replay:
*/
if (test_bit(JOURNAL_REPLAY_DONE, &j->flags))
available = max((int) available - 2, 0);
/*
* Don't use the last bucket unless writing the new last_seq
* will make another bucket available:
*/
if (ja->bucket_seq[ja->last_idx] >= last_seq(j))
available = max((int) available - 1, 0);
return available;
}
/* returns number of sectors available for next journal entry: */
static int journal_entry_sectors(struct journal *j)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct bch_dev *ca;
struct bkey_s_extent e = bkey_i_to_s_extent(&j->key);
unsigned sectors_available = UINT_MAX;
unsigned i, nr_online = 0, nr_devs = 0;
lockdep_assert_held(&j->lock);
rcu_read_lock();
for_each_member_device_rcu(ca, c, i,
&c->rw_devs[BCH_DATA_JOURNAL]) {
struct journal_device *ja = &ca->journal;
unsigned buckets_required = 0;
if (!ja->nr)
continue;
sectors_available = min_t(unsigned, sectors_available,
ca->mi.bucket_size);
/*
* Note that we don't allocate the space for a journal entry
* until we write it out - thus, if we haven't started the write
* for the previous entry we have to make sure we have space for
* it too:
*/
if (bch2_extent_has_device(e.c, ca->dev_idx)) {
if (j->prev_buf_sectors > ja->sectors_free)
buckets_required++;
if (j->prev_buf_sectors + sectors_available >
ja->sectors_free)
buckets_required++;
} else {
if (j->prev_buf_sectors + sectors_available >
ca->mi.bucket_size)
buckets_required++;
buckets_required++;
}
if (journal_dev_buckets_available(j, ca) >= buckets_required)
nr_devs++;
nr_online++;
}
rcu_read_unlock();
if (nr_online < c->opts.metadata_replicas_required)
return -EROFS;
if (nr_devs < min_t(unsigned, nr_online, c->opts.metadata_replicas))
return 0;
return sectors_available;
}
/*
* should _only_ called from journal_res_get() - when we actually want a
* journal reservation - journal entry is open means journal is dirty:
*/
static int journal_entry_open(struct journal *j)
{
struct journal_buf *buf = journal_cur_buf(j);
ssize_t u64s;
int ret = 0, sectors;
lockdep_assert_held(&j->lock);
BUG_ON(journal_entry_is_open(j));
if (!fifo_free(&j->pin))
return 0;
sectors = journal_entry_sectors(j);
if (sectors <= 0)
return sectors;
buf->disk_sectors = sectors;
sectors = min_t(unsigned, sectors, buf->size >> 9);
j->cur_buf_sectors = sectors;
u64s = (sectors << 9) / sizeof(u64);
/* Subtract the journal header */
u64s -= sizeof(struct jset) / sizeof(u64);
/*
* Btree roots, prio pointers don't get added until right before we do
* the write:
*/
u64s -= journal_entry_u64s_reserve(buf);
u64s = max_t(ssize_t, 0L, u64s);
BUG_ON(u64s >= JOURNAL_ENTRY_CLOSED_VAL);
if (u64s > le32_to_cpu(buf->data->u64s)) {
union journal_res_state old, new;
u64 v = atomic64_read(&j->reservations.counter);
/*
* Must be set before marking the journal entry as open:
*/
j->cur_entry_u64s = u64s;
do {
old.v = new.v = v;
if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL)
return false;
/* Handle any already added entries */
new.cur_entry_offset = le32_to_cpu(buf->data->u64s);
} while ((v = atomic64_cmpxchg(&j->reservations.counter,
old.v, new.v)) != old.v);
ret = 1;
wake_up(&j->wait);
if (j->res_get_blocked_start) {
__bch2_time_stats_update(j->blocked_time,
j->res_get_blocked_start);
j->res_get_blocked_start = 0;
}
mod_delayed_work(system_freezable_wq,
&j->write_work,
msecs_to_jiffies(j->write_delay_ms));
}
return ret;
}
void bch2_journal_start(struct bch_fs *c)
{
struct journal *j = &c->journal;
struct journal_seq_blacklist *bl;
u64 new_seq = 0;
list_for_each_entry(bl, &j->seq_blacklist, list)
new_seq = max(new_seq, bl->seq);
spin_lock(&j->lock);
set_bit(JOURNAL_STARTED, &j->flags);
while (atomic64_read(&j->seq) < new_seq)
__journal_entry_new(j, 0);
/*
* journal_buf_switch() only inits the next journal entry when it
* closes an open journal entry - the very first journal entry gets
* initialized here:
*/
__bch2_journal_next_entry(j);
/*
* Adding entries to the next journal entry before allocating space on
* disk for the next journal entry - this is ok, because these entries
* only have to go down with the next journal entry we write:
*/
list_for_each_entry(bl, &j->seq_blacklist, list)
if (!bl->written) {
bch2_journal_add_entry_noreservation(journal_cur_buf(j),
JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED,
0, 0, &bl->seq, 1);
journal_pin_add_entry(j,
&fifo_peek_back(&j->pin),
&bl->pin,
journal_seq_blacklist_flush);
bl->written = true;
}
spin_unlock(&j->lock);
queue_delayed_work(system_freezable_wq, &j->reclaim_work, 0);
}
int bch2_journal_replay(struct bch_fs *c, struct list_head *list)
{
struct journal *j = &c->journal;
struct bkey_i *k, *_n;
struct jset_entry *entry;
struct journal_replay *i, *n;
int ret = 0, did_replay = 0;
list_for_each_entry_safe(i, n, list, list) {
j->replay_pin_list =
journal_seq_pin(j, le64_to_cpu(i->j.seq));
for_each_jset_key(k, _n, entry, &i->j) {
struct disk_reservation disk_res;
if (entry->btree_id == BTREE_ID_ALLOC) {
/*
* allocation code handles replay for
* BTREE_ID_ALLOC keys:
*/
ret = bch2_alloc_replay_key(c, k->k.p);
} else {
/*
* We might cause compressed extents to be
* split, so we need to pass in a
* disk_reservation:
*/
BUG_ON(bch2_disk_reservation_get(c, &disk_res, 0, 0));
ret = bch2_btree_insert(c, entry->btree_id, k,
&disk_res, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_JOURNAL_REPLAY);
bch2_disk_reservation_put(c, &disk_res);
}
if (ret) {
bch_err(c, "journal replay: error %d while replaying key",
ret);
goto err;
}
cond_resched();
did_replay = true;
}
if (atomic_dec_and_test(&j->replay_pin_list->count))
wake_up(&j->wait);
}
j->replay_pin_list = NULL;
bch2_journal_set_replay_done(j);
if (did_replay) {
bch2_journal_flush_pins(&c->journal, U64_MAX);
/*
* Write a new journal entry _before_ we start journalling new data -
* otherwise, we could end up with btree node bsets with journal seqs
* arbitrarily far in the future vs. the most recently written journal
* entry on disk, if we crash before writing the next journal entry:
*/
ret = bch2_journal_meta(j);
if (ret) {
bch_err(c, "journal replay: error %d flushing journal", ret);
goto err;
}
}
err:
bch2_journal_entries_free(list);
return ret;
}
/*
* Allocate more journal space at runtime - not currently making use if it, but
* the code works:
*/
static int bch2_set_nr_journal_buckets(struct bch_fs *c, struct bch_dev *ca,
unsigned nr)
{
struct journal *j = &c->journal;
struct journal_device *ja = &ca->journal;
struct bch_sb_field_journal *journal_buckets;
struct disk_reservation disk_res = { 0, 0 };
struct closure cl;
u64 *new_bucket_seq = NULL, *new_buckets = NULL;
int ret = 0;
closure_init_stack(&cl);
/* don't handle reducing nr of buckets yet: */
if (nr <= ja->nr)
return 0;
/*
* note: journal buckets aren't really counted as _sectors_ used yet, so
* we don't need the disk reservation to avoid the BUG_ON() in buckets.c
* when space used goes up without a reservation - but we do need the
* reservation to ensure we'll actually be able to allocate:
*/
if (bch2_disk_reservation_get(c, &disk_res,
bucket_to_sector(ca, nr - ja->nr), 0))
return -ENOSPC;
mutex_lock(&c->sb_lock);
ret = -ENOMEM;
new_buckets = kzalloc(nr * sizeof(u64), GFP_KERNEL);
new_bucket_seq = kzalloc(nr * sizeof(u64), GFP_KERNEL);
if (!new_buckets || !new_bucket_seq)
goto err;
journal_buckets = bch2_sb_resize_journal(&ca->disk_sb,
nr + sizeof(*journal_buckets) / sizeof(u64));
if (!journal_buckets)
goto err;
spin_lock(&j->lock);
memcpy(new_buckets, ja->buckets, ja->nr * sizeof(u64));
memcpy(new_bucket_seq, ja->bucket_seq, ja->nr * sizeof(u64));
swap(new_buckets, ja->buckets);
swap(new_bucket_seq, ja->bucket_seq);
spin_unlock(&j->lock);
while (ja->nr < nr) {
struct open_bucket *ob;
size_t bucket;
int ob_idx;
ob_idx = bch2_bucket_alloc(c, ca, RESERVE_ALLOC, false, &cl);
if (ob_idx < 0) {
if (!closure_wait(&c->freelist_wait, &cl))
closure_sync(&cl);
continue;
}
ob = c->open_buckets + ob_idx;
bucket = sector_to_bucket(ca, ob->ptr.offset);
spin_lock(&j->lock);
__array_insert_item(ja->buckets, ja->nr, ja->last_idx);
__array_insert_item(ja->bucket_seq, ja->nr, ja->last_idx);
__array_insert_item(journal_buckets->buckets, ja->nr, ja->last_idx);
ja->buckets[ja->last_idx] = bucket;
ja->bucket_seq[ja->last_idx] = 0;
journal_buckets->buckets[ja->last_idx] = cpu_to_le64(bucket);
if (ja->last_idx < ja->nr) {
if (ja->cur_idx >= ja->last_idx)
ja->cur_idx++;
ja->last_idx++;
}
ja->nr++;
spin_unlock(&j->lock);
bch2_mark_metadata_bucket(c, ca, &ca->buckets[bucket],
BUCKET_JOURNAL,
gc_phase(GC_PHASE_SB), 0);
bch2_open_bucket_put(c, ob);
}
BUG_ON(bch2_sb_validate_journal(ca->disk_sb.sb, ca->mi));
bch2_write_super(c);
ret = 0;
err:
mutex_unlock(&c->sb_lock);
kfree(new_bucket_seq);
kfree(new_buckets);
bch2_disk_reservation_put(c, &disk_res);
if (!ret)
bch2_dev_allocator_add(c, ca);
closure_sync(&cl);
return ret;
}
int bch2_dev_journal_alloc(struct bch_dev *ca)
{
unsigned nr;
if (dynamic_fault("bcachefs:add:journal_alloc"))
return -ENOMEM;
/*
* clamp journal size to 1024 buckets or 512MB (in sectors), whichever
* is smaller:
*/
nr = clamp_t(unsigned, ca->mi.nbuckets >> 8,
BCH_JOURNAL_BUCKETS_MIN,
min(1 << 10,
(1 << 20) / ca->mi.bucket_size));
return bch2_set_nr_journal_buckets(ca->fs, ca, nr);
}
/* Journalling */
/**
* journal_reclaim_fast - do the fast part of journal reclaim
*
* Called from IO submission context, does not block. Cleans up after btree
* write completions by advancing the journal pin and each cache's last_idx,
* kicking off discards and background reclaim as necessary.
*/
static void journal_reclaim_fast(struct journal *j)
{
struct journal_entry_pin_list temp;
bool popped = false;
lockdep_assert_held(&j->lock);
/*
* Unpin journal entries whose reference counts reached zero, meaning
* all btree nodes got written out
*/
while (!atomic_read(&fifo_peek_front(&j->pin).count)) {
BUG_ON(!list_empty(&fifo_peek_front(&j->pin).list));
BUG_ON(!fifo_pop(&j->pin, temp));
popped = true;
}
if (popped)
wake_up(&j->wait);
}
/*
* Journal entry pinning - machinery for holding a reference on a given journal
* entry, marking it as dirty:
*/
static inline void __journal_pin_add(struct journal *j,
struct journal_entry_pin_list *pin_list,
struct journal_entry_pin *pin,
journal_pin_flush_fn flush_fn)
{
BUG_ON(journal_pin_active(pin));
atomic_inc(&pin_list->count);
pin->pin_list = pin_list;
pin->flush = flush_fn;
if (flush_fn)
list_add(&pin->list, &pin_list->list);
else
INIT_LIST_HEAD(&pin->list);
}
static void journal_pin_add_entry(struct journal *j,
struct journal_entry_pin_list *pin_list,
struct journal_entry_pin *pin,
journal_pin_flush_fn flush_fn)
{
spin_lock_irq(&j->pin_lock);
__journal_pin_add(j, pin_list, pin, flush_fn);
spin_unlock_irq(&j->pin_lock);
}
void bch2_journal_pin_add(struct journal *j,
struct journal_res *res,
struct journal_entry_pin *pin,
journal_pin_flush_fn flush_fn)
{
struct journal_entry_pin_list *pin_list = res->ref
? journal_seq_pin(j, res->seq)
: j->replay_pin_list;
spin_lock_irq(&j->pin_lock);
__journal_pin_add(j, pin_list, pin, flush_fn);
spin_unlock_irq(&j->pin_lock);
}
static inline bool __journal_pin_drop(struct journal *j,
struct journal_entry_pin *pin)
{
struct journal_entry_pin_list *pin_list = pin->pin_list;
pin->pin_list = NULL;
/* journal_reclaim_work() might have already taken us off the list */
if (!list_empty_careful(&pin->list))
list_del_init(&pin->list);
return atomic_dec_and_test(&pin_list->count);
}
void bch2_journal_pin_drop(struct journal *j,
struct journal_entry_pin *pin)
{
unsigned long flags;
bool wakeup = false;
spin_lock_irqsave(&j->pin_lock, flags);
if (journal_pin_active(pin))
wakeup = __journal_pin_drop(j, pin);
spin_unlock_irqrestore(&j->pin_lock, flags);
/*
* Unpinning a journal entry make make journal_next_bucket() succeed, if
* writing a new last_seq will now make another bucket available:
*
* Nested irqsave is expensive, don't do the wakeup with lock held:
*/
if (wakeup)
wake_up(&j->wait);
}
void bch2_journal_pin_add_if_older(struct journal *j,
struct journal_entry_pin *src_pin,
struct journal_entry_pin *pin,
journal_pin_flush_fn flush_fn)
{
spin_lock_irq(&j->pin_lock);
if (journal_pin_active(src_pin) &&
(!journal_pin_active(pin) ||
fifo_entry_idx(&j->pin, src_pin->pin_list) <
fifo_entry_idx(&j->pin, pin->pin_list))) {
if (journal_pin_active(pin))
__journal_pin_drop(j, pin);
__journal_pin_add(j, src_pin->pin_list, pin, flush_fn);
}
spin_unlock_irq(&j->pin_lock);
}
static struct journal_entry_pin *
journal_get_next_pin(struct journal *j, u64 seq_to_flush, u64 *seq)
{
struct journal_entry_pin_list *pin_list;
struct journal_entry_pin *ret = NULL;
unsigned iter;
/* so we don't iterate over empty fifo entries below: */
if (!atomic_read(&fifo_peek_front(&j->pin).count)) {
spin_lock(&j->lock);
journal_reclaim_fast(j);
spin_unlock(&j->lock);
}
spin_lock_irq(&j->pin_lock);
fifo_for_each_entry_ptr(pin_list, &j->pin, iter) {
if (journal_pin_seq(j, pin_list) > seq_to_flush)
break;
ret = list_first_entry_or_null(&pin_list->list,
struct journal_entry_pin, list);
if (ret) {
/* must be list_del_init(), see bch2_journal_pin_drop() */
list_move(&ret->list, &pin_list->flushed);
*seq = journal_pin_seq(j, pin_list);
break;
}
}
spin_unlock_irq(&j->pin_lock);
return ret;
}
static bool journal_flush_done(struct journal *j, u64 seq_to_flush)
{
bool ret;
spin_lock(&j->lock);
journal_reclaim_fast(j);
ret = (fifo_used(&j->pin) == 1 &&
atomic_read(&fifo_peek_front(&j->pin).count) == 1) ||
last_seq(j) > seq_to_flush;
spin_unlock(&j->lock);
return ret;
}
void bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush)
{
struct journal_entry_pin *pin;
u64 pin_seq;
if (!test_bit(JOURNAL_STARTED, &j->flags))
return;
while ((pin = journal_get_next_pin(j, seq_to_flush, &pin_seq)))
pin->flush(j, pin, pin_seq);
/*
* If journal replay hasn't completed, the unreplayed journal entries
* hold refs on their corresponding sequence numbers and thus this would
* deadlock:
*/
if (!test_bit(JOURNAL_REPLAY_DONE, &j->flags))
return;
wait_event(j->wait,
journal_flush_done(j, seq_to_flush) ||
bch2_journal_error(j));
}
int bch2_journal_flush_all_pins(struct journal *j)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
bool flush;
bch2_journal_flush_pins(j, U64_MAX);
spin_lock(&j->lock);
flush = last_seq(j) != j->last_seq_ondisk ||
c->btree_roots_dirty;
spin_unlock(&j->lock);
return flush ? bch2_journal_meta(j) : 0;
}
static bool should_discard_bucket(struct journal *j, struct journal_device *ja)
{
bool ret;
spin_lock(&j->lock);
ret = ja->nr &&
(ja->last_idx != ja->cur_idx &&
ja->bucket_seq[ja->last_idx] < j->last_seq_ondisk);
spin_unlock(&j->lock);
return ret;
}
/**
* journal_reclaim_work - free up journal buckets
*
* Background journal reclaim writes out btree nodes. It should be run
* early enough so that we never completely run out of journal buckets.
*
* High watermarks for triggering background reclaim:
* - FIFO has fewer than 512 entries left
* - fewer than 25% journal buckets free
*
* Background reclaim runs until low watermarks are reached:
* - FIFO has more than 1024 entries left
* - more than 50% journal buckets free
*
* As long as a reclaim can complete in the time it takes to fill up
* 512 journal entries or 25% of all journal buckets, then
* journal_next_bucket() should not stall.
*/
static void journal_reclaim_work(struct work_struct *work)
{
struct bch_fs *c = container_of(to_delayed_work(work),
struct bch_fs, journal.reclaim_work);
struct journal *j = &c->journal;
struct bch_dev *ca;
struct journal_entry_pin *pin;
u64 seq, seq_to_flush = 0;
unsigned iter, bucket_to_flush;
unsigned long next_flush;
bool reclaim_lock_held = false, need_flush;
/*
* Advance last_idx to point to the oldest journal entry containing
* btree node updates that have not yet been written out
*/
for_each_rw_member(ca, c, iter) {
struct journal_device *ja = &ca->journal;
if (!ja->nr)
continue;
while (should_discard_bucket(j, ja)) {
if (!reclaim_lock_held) {
/*
* ugh:
* might be called from __journal_res_get()
* under wait_event() - have to go back to
* TASK_RUNNING before doing something that
* would block, but only if we're doing work:
*/
__set_current_state(TASK_RUNNING);
mutex_lock(&j->reclaim_lock);
reclaim_lock_held = true;
/* recheck under reclaim_lock: */
continue;
}
if (ca->mi.discard &&
blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev)))
blkdev_issue_discard(ca->disk_sb.bdev,
bucket_to_sector(ca,
ja->buckets[ja->last_idx]),
ca->mi.bucket_size, GFP_NOIO, 0);
spin_lock(&j->lock);
ja->last_idx = (ja->last_idx + 1) % ja->nr;
spin_unlock(&j->lock);
wake_up(&j->wait);
}
/*
* Write out enough btree nodes to free up 50% journal
* buckets
*/
spin_lock(&j->lock);
bucket_to_flush = (ja->cur_idx + (ja->nr >> 1)) % ja->nr;
seq_to_flush = max_t(u64, seq_to_flush,
ja->bucket_seq[bucket_to_flush]);
spin_unlock(&j->lock);
}
if (reclaim_lock_held)
mutex_unlock(&j->reclaim_lock);
/* Also flush if the pin fifo is more than half full */
seq_to_flush = max_t(s64, seq_to_flush,
(s64) atomic64_read(&j->seq) -
(j->pin.size >> 1));
/*
* If it's been longer than j->reclaim_delay_ms since we last flushed,
* make sure to flush at least one journal pin:
*/
next_flush = j->last_flushed + msecs_to_jiffies(j->reclaim_delay_ms);
need_flush = time_after(jiffies, next_flush);
while ((pin = journal_get_next_pin(j, need_flush
? U64_MAX
: seq_to_flush, &seq))) {
__set_current_state(TASK_RUNNING);
pin->flush(j, pin, seq);
need_flush = false;
j->last_flushed = jiffies;
}
if (!test_bit(BCH_FS_RO, &c->flags))
queue_delayed_work(system_freezable_wq, &j->reclaim_work,
msecs_to_jiffies(j->reclaim_delay_ms));
}
/**
* journal_next_bucket - move on to the next journal bucket if possible
*/
static int journal_write_alloc(struct journal *j, unsigned sectors)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct bkey_s_extent e = bkey_i_to_s_extent(&j->key);
struct bch_extent_ptr *ptr;
struct journal_device *ja;
struct bch_dev *ca;
struct dev_alloc_list devs_sorted;
unsigned i, replicas, replicas_want =
READ_ONCE(c->opts.metadata_replicas);
spin_lock(&j->lock);
/*
* Drop any pointers to devices that have been removed, are no longer
* empty, or filled up their current journal bucket:
*
* Note that a device may have had a small amount of free space (perhaps
* one sector) that wasn't enough for the smallest possible journal
* entry - that's why we drop pointers to devices <= current free space,
* i.e. whichever device was limiting the current journal entry size.
*/
extent_for_each_ptr_backwards(e, ptr) {
ca = bch_dev_bkey_exists(c, ptr->dev);
if (ca->mi.state != BCH_MEMBER_STATE_RW ||
ca->journal.sectors_free <= sectors)
__bch2_extent_drop_ptr(e, ptr);
else
ca->journal.sectors_free -= sectors;
}
replicas = bch2_extent_nr_ptrs(e.c);
rcu_read_lock();
devs_sorted = bch2_wp_alloc_list(c, &j->wp,
&c->rw_devs[BCH_DATA_JOURNAL]);
for (i = 0; i < devs_sorted.nr; i++) {
ca = rcu_dereference(c->devs[devs_sorted.devs[i]]);
if (!ca)
continue;
ja = &ca->journal;
if (!ja->nr)
continue;
if (replicas >= replicas_want)
break;
/*
* Check that we can use this device, and aren't already using
* it:
*/
if (bch2_extent_has_device(e.c, ca->dev_idx) ||
!journal_dev_buckets_available(j, ca) ||
sectors > ca->mi.bucket_size)
continue;
j->wp.next_alloc[ca->dev_idx] += U32_MAX;
bch2_wp_rescale(c, ca, &j->wp);
ja->sectors_free = ca->mi.bucket_size - sectors;
ja->cur_idx = (ja->cur_idx + 1) % ja->nr;
ja->bucket_seq[ja->cur_idx] = atomic64_read(&j->seq);
extent_ptr_append(bkey_i_to_extent(&j->key),
(struct bch_extent_ptr) {
.offset = bucket_to_sector(ca,
ja->buckets[ja->cur_idx]),
.dev = ca->dev_idx,
});
replicas++;
}
rcu_read_unlock();
j->prev_buf_sectors = 0;
spin_unlock(&j->lock);
if (replicas < c->opts.metadata_replicas_required)
return -EROFS;
BUG_ON(!replicas);
return 0;
}
static void journal_write_compact(struct jset *jset)
{
struct jset_entry *i, *next, *prev = NULL;
/*
* Simple compaction, dropping empty jset_entries (from journal
* reservations that weren't fully used) and merging jset_entries that
* can be.
*
* If we wanted to be really fancy here, we could sort all the keys in
* the jset and drop keys that were overwritten - probably not worth it:
*/
vstruct_for_each_safe(jset, i, next) {
unsigned u64s = le16_to_cpu(i->u64s);
/* Empty entry: */
if (!u64s)
continue;
/* Can we merge with previous entry? */
if (prev &&
i->btree_id == prev->btree_id &&
i->level == prev->level &&
i->type == prev->type &&
i->type == JOURNAL_ENTRY_BTREE_KEYS &&
le16_to_cpu(prev->u64s) + u64s <= U16_MAX) {
memmove_u64s_down(vstruct_next(prev),
i->_data,
u64s);
le16_add_cpu(&prev->u64s, u64s);
continue;
}
/* Couldn't merge, move i into new position (after prev): */
prev = prev ? vstruct_next(prev) : jset->start;
if (i != prev)
memmove_u64s_down(prev, i, jset_u64s(u64s));
}
prev = prev ? vstruct_next(prev) : jset->start;
jset->u64s = cpu_to_le32((u64 *) prev - jset->_data);
}
static void journal_buf_realloc(struct journal *j, struct journal_buf *buf)
{
/* we aren't holding j->lock: */
unsigned new_size = READ_ONCE(j->buf_size_want);
void *new_buf;
if (buf->size >= new_size)
return;
new_buf = kvpmalloc(new_size, GFP_NOIO|__GFP_NOWARN);
if (!new_buf)
return;
memcpy(new_buf, buf->data, buf->size);
kvpfree(buf->data, buf->size);
buf->data = new_buf;
buf->size = new_size;
}
static void journal_write_done(struct closure *cl)
{
struct journal *j = container_of(cl, struct journal, io);
struct journal_buf *w = journal_prev_buf(j);
__bch2_time_stats_update(j->write_time, j->write_start_time);
spin_lock(&j->lock);
j->last_seq_ondisk = le64_to_cpu(w->data->last_seq);
/*
* Updating last_seq_ondisk may let journal_reclaim_work() discard more
* buckets:
*
* Must come before signaling write completion, for
* bch2_fs_journal_stop():
*/
mod_delayed_work(system_freezable_wq, &j->reclaim_work, 0);
/* also must come before signalling write completion: */
closure_debug_destroy(cl);
BUG_ON(!j->reservations.prev_buf_unwritten);
atomic64_sub(((union journal_res_state) { .prev_buf_unwritten = 1 }).v,
&j->reservations.counter);
closure_wake_up(&w->wait);
wake_up(&j->wait);
if (test_bit(JOURNAL_NEED_WRITE, &j->flags))
mod_delayed_work(system_freezable_wq, &j->write_work, 0);
spin_unlock(&j->lock);
}
static void journal_write_error(struct closure *cl)
{
struct journal *j = container_of(cl, struct journal, io);
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct bkey_s_extent e = bkey_i_to_s_extent(&j->key);
while (j->replicas_failed) {
unsigned idx = __fls(j->replicas_failed);
bch2_extent_drop_ptr_idx(e, idx);
j->replicas_failed ^= 1 << idx;
}
if (!bch2_extent_nr_ptrs(e.c)) {
bch_err(c, "unable to write journal to sufficient devices");
goto err;
}
if (bch2_check_mark_super(c, e.c, BCH_DATA_JOURNAL))
goto err;
out:
journal_write_done(cl);
return;
err:
bch2_fatal_error(c);
bch2_journal_halt(j);
goto out;
}
static void journal_write_endio(struct bio *bio)
{
struct bch_dev *ca = bio->bi_private;
struct journal *j = &ca->fs->journal;
if (bch2_dev_io_err_on(bio->bi_status, ca, "journal write") ||
bch2_meta_write_fault("journal")) {
/* Was this a flush or an actual journal write? */
if (ca->journal.ptr_idx != U8_MAX) {
set_bit(ca->journal.ptr_idx, &j->replicas_failed);
set_closure_fn(&j->io, journal_write_error,
system_highpri_wq);
}
}
closure_put(&j->io);
percpu_ref_put(&ca->io_ref);
}
static void journal_write(struct closure *cl)
{
struct journal *j = container_of(cl, struct journal, io);
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct bch_dev *ca;
struct journal_buf *w = journal_prev_buf(j);
struct jset *jset;
struct bio *bio;
struct bch_extent_ptr *ptr;
unsigned i, sectors, bytes, ptr_idx = 0;
journal_buf_realloc(j, w);
jset = w->data;
j->write_start_time = local_clock();
mutex_lock(&c->btree_root_lock);
for (i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = &c->btree_roots[i];
if (r->alive)
bch2_journal_add_btree_root(w, i, &r->key, r->level);
}
c->btree_roots_dirty = false;
mutex_unlock(&c->btree_root_lock);
journal_write_compact(jset);
jset->read_clock = cpu_to_le16(c->prio_clock[READ].hand);
jset->write_clock = cpu_to_le16(c->prio_clock[WRITE].hand);
jset->magic = cpu_to_le64(jset_magic(c));
jset->version = cpu_to_le32(BCACHE_JSET_VERSION);
SET_JSET_BIG_ENDIAN(jset, CPU_BIG_ENDIAN);
SET_JSET_CSUM_TYPE(jset, bch2_meta_checksum_type(c));
if (bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset)) &&
journal_entry_validate_entries(c, jset, WRITE))
goto err;
bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset),
jset->encrypted_start,
vstruct_end(jset) - (void *) jset->encrypted_start);
jset->csum = csum_vstruct(c, JSET_CSUM_TYPE(jset),
journal_nonce(jset), jset);
if (!bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset)) &&
journal_entry_validate_entries(c, jset, WRITE))
goto err;
sectors = vstruct_sectors(jset, c->block_bits);
BUG_ON(sectors > j->prev_buf_sectors);
bytes = vstruct_bytes(w->data);
memset((void *) w->data + bytes, 0, (sectors << 9) - bytes);
if (journal_write_alloc(j, sectors)) {
bch2_journal_halt(j);
bch_err(c, "Unable to allocate journal write");
bch2_fatal_error(c);
continue_at(cl, journal_write_done, system_highpri_wq);
}
if (bch2_check_mark_super(c, bkey_i_to_s_c_extent(&j->key),
BCH_DATA_JOURNAL))
goto err;
journal_seq_pin(j, le64_to_cpu(jset->seq))->devs =
bch2_extent_devs(bkey_i_to_s_c_extent(&j->key));
/*
* XXX: we really should just disable the entire journal in nochanges
* mode
*/
if (c->opts.nochanges)
goto no_io;
extent_for_each_ptr(bkey_i_to_s_extent(&j->key), ptr) {
ca = bch_dev_bkey_exists(c, ptr->dev);
if (!percpu_ref_tryget(&ca->io_ref)) {
/* XXX: fix this */
bch_err(c, "missing device for journal write\n");
continue;
}
this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_JOURNAL],
sectors);
ca->journal.ptr_idx = ptr_idx++;
bio = ca->journal.bio;
bio_reset(bio);
bio->bi_iter.bi_sector = ptr->offset;
bio->bi_bdev = ca->disk_sb.bdev;
bio->bi_iter.bi_size = sectors << 9;
bio->bi_end_io = journal_write_endio;
bio->bi_private = ca;
bio_set_op_attrs(bio, REQ_OP_WRITE,
REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
bch2_bio_map(bio, jset);
trace_journal_write(bio);
closure_bio_submit(bio, cl);
ca->journal.bucket_seq[ca->journal.cur_idx] = le64_to_cpu(w->data->seq);
}
for_each_rw_member(ca, c, i)
if (journal_flushes_device(ca) &&
!bch2_extent_has_device(bkey_i_to_s_c_extent(&j->key), i)) {
percpu_ref_get(&ca->io_ref);
ca->journal.ptr_idx = U8_MAX;
bio = ca->journal.bio;
bio_reset(bio);
bio->bi_bdev = ca->disk_sb.bdev;
bio->bi_opf = REQ_OP_FLUSH;
bio->bi_end_io = journal_write_endio;
bio->bi_private = ca;
closure_bio_submit(bio, cl);
}
no_io:
extent_for_each_ptr(bkey_i_to_s_extent(&j->key), ptr)
ptr->offset += sectors;
continue_at(cl, journal_write_done, system_highpri_wq);
err:
bch2_inconsistent_error(c);
continue_at(cl, journal_write_done, system_highpri_wq);
}
static void journal_write_work(struct work_struct *work)
{
struct journal *j = container_of(to_delayed_work(work),
struct journal, write_work);
spin_lock(&j->lock);
if (!journal_entry_is_open(j)) {
spin_unlock(&j->lock);
return;
}
set_bit(JOURNAL_NEED_WRITE, &j->flags);
if (journal_buf_switch(j, false) != JOURNAL_UNLOCKED)
spin_unlock(&j->lock);
}
/*
* Given an inode number, if that inode number has data in the journal that
* hasn't yet been flushed, return the journal sequence number that needs to be
* flushed:
*/
u64 bch2_inode_journal_seq(struct journal *j, u64 inode)
{
size_t h = hash_64(inode, ilog2(sizeof(j->buf[0].has_inode) * 8));
u64 seq = 0;
if (!test_bit(h, j->buf[0].has_inode) &&
!test_bit(h, j->buf[1].has_inode))
return 0;
spin_lock(&j->lock);
if (test_bit(h, journal_cur_buf(j)->has_inode))
seq = atomic64_read(&j->seq);
else if (test_bit(h, journal_prev_buf(j)->has_inode))
seq = atomic64_read(&j->seq) - 1;
spin_unlock(&j->lock);
return seq;
}
static int __journal_res_get(struct journal *j, struct journal_res *res,
unsigned u64s_min, unsigned u64s_max)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct journal_buf *buf;
int ret;
retry:
ret = journal_res_get_fast(j, res, u64s_min, u64s_max);
if (ret)
return ret;
spin_lock(&j->lock);
/*
* Recheck after taking the lock, so we don't race with another thread
* that just did journal_entry_open() and call journal_entry_close()
* unnecessarily
*/
ret = journal_res_get_fast(j, res, u64s_min, u64s_max);
if (ret) {
spin_unlock(&j->lock);
return 1;
}
/*
* If we couldn't get a reservation because the current buf filled up,
* and we had room for a bigger entry on disk, signal that we want to
* realloc the journal bufs:
*/
buf = journal_cur_buf(j);
if (journal_entry_is_open(j) &&
buf->size >> 9 < buf->disk_sectors &&
buf->size < JOURNAL_ENTRY_SIZE_MAX)
j->buf_size_want = max(j->buf_size_want, buf->size << 1);
/*
* Close the current journal entry if necessary, then try to start a new
* one:
*/
switch (journal_buf_switch(j, false)) {
case JOURNAL_ENTRY_ERROR:
spin_unlock(&j->lock);
return -EROFS;
case JOURNAL_ENTRY_INUSE:
/* haven't finished writing out the previous one: */
spin_unlock(&j->lock);
trace_journal_entry_full(c);
goto blocked;
case JOURNAL_ENTRY_CLOSED:
break;
case JOURNAL_UNLOCKED:
goto retry;
}
/* We now have a new, closed journal buf - see if we can open it: */
ret = journal_entry_open(j);
spin_unlock(&j->lock);
if (ret < 0)
return ret;
if (ret)
goto retry;
/* Journal's full, we have to wait */
/*
* Direct reclaim - can't rely on reclaim from work item
* due to freezing..
*/
journal_reclaim_work(&j->reclaim_work.work);
trace_journal_full(c);
blocked:
if (!j->res_get_blocked_start)
j->res_get_blocked_start = local_clock() ?: 1;
return 0;
}
/*
* Essentially the entry function to the journaling code. When bcachefs is doing
* a btree insert, it calls this function to get the current journal write.
* Journal write is the structure used set up journal writes. The calling
* function will then add its keys to the structure, queuing them for the next
* write.
*
* To ensure forward progress, the current task must not be holding any
* btree node write locks.
*/
int bch2_journal_res_get_slowpath(struct journal *j, struct journal_res *res,
unsigned u64s_min, unsigned u64s_max)
{
int ret;
wait_event(j->wait,
(ret = __journal_res_get(j, res, u64s_min,
u64s_max)));
return ret < 0 ? ret : 0;
}
void bch2_journal_wait_on_seq(struct journal *j, u64 seq, struct closure *parent)
{
spin_lock(&j->lock);
BUG_ON(seq > atomic64_read(&j->seq));
if (bch2_journal_error(j)) {
spin_unlock(&j->lock);
return;
}
if (seq == atomic64_read(&j->seq)) {
if (!closure_wait(&journal_cur_buf(j)->wait, parent))
BUG();
} else if (seq + 1 == atomic64_read(&j->seq) &&
j->reservations.prev_buf_unwritten) {
if (!closure_wait(&journal_prev_buf(j)->wait, parent))
BUG();
smp_mb();
/* check if raced with write completion (or failure) */
if (!j->reservations.prev_buf_unwritten ||
bch2_journal_error(j))
closure_wake_up(&journal_prev_buf(j)->wait);
}
spin_unlock(&j->lock);
}
void bch2_journal_flush_seq_async(struct journal *j, u64 seq, struct closure *parent)
{
struct journal_buf *buf;
spin_lock(&j->lock);
BUG_ON(seq > atomic64_read(&j->seq));
if (bch2_journal_error(j)) {
spin_unlock(&j->lock);
return;
}
if (seq == atomic64_read(&j->seq)) {
bool set_need_write = false;
buf = journal_cur_buf(j);
if (parent && !closure_wait(&buf->wait, parent))
BUG();
if (!test_and_set_bit(JOURNAL_NEED_WRITE, &j->flags)) {
j->need_write_time = local_clock();
set_need_write = true;
}
switch (journal_buf_switch(j, set_need_write)) {
case JOURNAL_ENTRY_ERROR:
if (parent)
closure_wake_up(&buf->wait);
break;
case JOURNAL_ENTRY_CLOSED:
/*
* Journal entry hasn't been opened yet, but caller
* claims it has something (seq == j->seq):
*/
BUG();
case JOURNAL_ENTRY_INUSE:
break;
case JOURNAL_UNLOCKED:
return;
}
} else if (parent &&
seq + 1 == atomic64_read(&j->seq) &&
j->reservations.prev_buf_unwritten) {
buf = journal_prev_buf(j);
if (!closure_wait(&buf->wait, parent))
BUG();
smp_mb();
/* check if raced with write completion (or failure) */
if (!j->reservations.prev_buf_unwritten ||
bch2_journal_error(j))
closure_wake_up(&buf->wait);
}
spin_unlock(&j->lock);
}
static int journal_seq_flushed(struct journal *j, u64 seq)
{
struct journal_buf *buf;
int ret = 1;
spin_lock(&j->lock);
BUG_ON(seq > atomic64_read(&j->seq));
if (seq == atomic64_read(&j->seq)) {
bool set_need_write = false;
ret = 0;
buf = journal_cur_buf(j);
if (!test_and_set_bit(JOURNAL_NEED_WRITE, &j->flags)) {
j->need_write_time = local_clock();
set_need_write = true;
}
switch (journal_buf_switch(j, set_need_write)) {
case JOURNAL_ENTRY_ERROR:
ret = -EIO;
break;
case JOURNAL_ENTRY_CLOSED:
/*
* Journal entry hasn't been opened yet, but caller
* claims it has something (seq == j->seq):
*/
BUG();
case JOURNAL_ENTRY_INUSE:
break;
case JOURNAL_UNLOCKED:
return 0;
}
} else if (seq + 1 == atomic64_read(&j->seq) &&
j->reservations.prev_buf_unwritten) {
ret = bch2_journal_error(j);
}
spin_unlock(&j->lock);
return ret;
}
int bch2_journal_flush_seq(struct journal *j, u64 seq)
{
u64 start_time = local_clock();
int ret, ret2;
ret = wait_event_killable(j->wait, (ret2 = journal_seq_flushed(j, seq)));
bch2_time_stats_update(j->flush_seq_time, start_time);
return ret ?: ret2 < 0 ? ret2 : 0;
}
void bch2_journal_meta_async(struct journal *j, struct closure *parent)
{
struct journal_res res;
unsigned u64s = jset_u64s(0);
memset(&res, 0, sizeof(res));
bch2_journal_res_get(j, &res, u64s, u64s);
bch2_journal_res_put(j, &res);
bch2_journal_flush_seq_async(j, res.seq, parent);
}
int bch2_journal_meta(struct journal *j)
{
struct journal_res res;
unsigned u64s = jset_u64s(0);
int ret;
memset(&res, 0, sizeof(res));
ret = bch2_journal_res_get(j, &res, u64s, u64s);
if (ret)
return ret;
bch2_journal_res_put(j, &res);
return bch2_journal_flush_seq(j, res.seq);
}
void bch2_journal_flush_async(struct journal *j, struct closure *parent)
{
u64 seq, journal_seq;
spin_lock(&j->lock);
journal_seq = atomic64_read(&j->seq);
if (journal_entry_is_open(j)) {
seq = journal_seq;
} else if (journal_seq) {
seq = journal_seq - 1;
} else {
spin_unlock(&j->lock);
return;
}
spin_unlock(&j->lock);
bch2_journal_flush_seq_async(j, seq, parent);
}
int bch2_journal_flush(struct journal *j)
{
u64 seq, journal_seq;
spin_lock(&j->lock);
journal_seq = atomic64_read(&j->seq);
if (journal_entry_is_open(j)) {
seq = journal_seq;
} else if (journal_seq) {
seq = journal_seq - 1;
} else {
spin_unlock(&j->lock);
return 0;
}
spin_unlock(&j->lock);
return bch2_journal_flush_seq(j, seq);
}
int bch2_journal_flush_device(struct journal *j, unsigned dev_idx)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct journal_entry_pin_list *p;
struct bch_devs_list devs;
u64 seq = 0;
unsigned iter;
int ret = 0;
spin_lock(&j->lock);
fifo_for_each_entry_ptr(p, &j->pin, iter)
if (bch2_dev_list_has_dev(p->devs, dev_idx))
seq = journal_pin_seq(j, p);
spin_unlock(&j->lock);
bch2_journal_flush_pins(j, seq);
mutex_lock(&c->replicas_gc_lock);
bch2_replicas_gc_start(c, 1 << BCH_DATA_JOURNAL);
seq = 0;
spin_lock(&j->lock);
while (!ret && seq < atomic64_read(&j->seq)) {
seq = max(seq, last_seq(j));
devs = journal_seq_pin(j, seq)->devs;
seq++;
spin_unlock(&j->lock);
ret = bch2_check_mark_super_devlist(c, &devs, BCH_DATA_JOURNAL);
spin_lock(&j->lock);
}
spin_unlock(&j->lock);
bch2_replicas_gc_end(c, ret);
mutex_unlock(&c->replicas_gc_lock);
return ret;
}
ssize_t bch2_journal_print_debug(struct journal *j, char *buf)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
union journal_res_state *s = &j->reservations;
struct bch_dev *ca;
unsigned iter;
ssize_t ret = 0;
rcu_read_lock();
spin_lock(&j->lock);
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"active journal entries:\t%zu\n"
"seq:\t\t\t%llu\n"
"last_seq:\t\t%llu\n"
"last_seq_ondisk:\t%llu\n"
"reservation count:\t%u\n"
"reservation offset:\t%u\n"
"current entry u64s:\t%u\n"
"io in flight:\t\t%i\n"
"need write:\t\t%i\n"
"dirty:\t\t\t%i\n"
"replay done:\t\t%i\n",
fifo_used(&j->pin),
(u64) atomic64_read(&j->seq),
last_seq(j),
j->last_seq_ondisk,
journal_state_count(*s, s->idx),
s->cur_entry_offset,
j->cur_entry_u64s,
s->prev_buf_unwritten,
test_bit(JOURNAL_NEED_WRITE, &j->flags),
journal_entry_is_open(j),
test_bit(JOURNAL_REPLAY_DONE, &j->flags));
for_each_member_device_rcu(ca, c, iter,
&c->rw_devs[BCH_DATA_JOURNAL]) {
struct journal_device *ja = &ca->journal;
if (!ja->nr)
continue;
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"dev %u:\n"
"\tnr\t\t%u\n"
"\tcur_idx\t\t%u (seq %llu)\n"
"\tlast_idx\t%u (seq %llu)\n",
iter, ja->nr,
ja->cur_idx, ja->bucket_seq[ja->cur_idx],
ja->last_idx, ja->bucket_seq[ja->last_idx]);
}
spin_unlock(&j->lock);
rcu_read_unlock();
return ret;
}
ssize_t bch2_journal_print_pins(struct journal *j, char *buf)
{
struct journal_entry_pin_list *pin_list;
struct journal_entry_pin *pin;
ssize_t ret = 0;
unsigned i;
spin_lock_irq(&j->pin_lock);
fifo_for_each_entry_ptr(pin_list, &j->pin, i) {
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"%llu: count %u\n",
journal_pin_seq(j, pin_list),
atomic_read(&pin_list->count));
list_for_each_entry(pin, &pin_list->list, list)
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"\t%p %pf\n",
pin, pin->flush);
if (!list_empty(&pin_list->flushed))
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"flushed:\n");
list_for_each_entry(pin, &pin_list->flushed, list)
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"\t%p %pf\n",
pin, pin->flush);
}
spin_unlock_irq(&j->pin_lock);
return ret;
}
static bool bch2_journal_writing_to_device(struct bch_dev *ca)
{
struct journal *j = &ca->fs->journal;
bool ret;
spin_lock(&j->lock);
ret = bch2_extent_has_device(bkey_i_to_s_c_extent(&j->key),
ca->dev_idx);
spin_unlock(&j->lock);
return ret;
}
/*
* This asumes that ca has already been marked read-only so that
* journal_next_bucket won't pick buckets out of ca any more.
* Hence, if the journal is not currently pointing to ca, there
* will be no new writes to journal entries in ca after all the
* pending ones have been flushed to disk.
*
* If the journal is being written to ca, write a new record, and
* journal_next_bucket will notice that the device is no longer
* writeable and pick a new set of devices to write to.
*/
int bch2_journal_move(struct bch_dev *ca)
{
struct journal_device *ja = &ca->journal;
struct journal *j = &ca->fs->journal;
u64 seq_to_flush = 0;
unsigned i;
int ret;
if (bch2_journal_writing_to_device(ca)) {
/*
* bch_journal_meta will write a record and we'll wait
* for the write to complete.
* Actually writing the journal (journal_write_locked)
* will call journal_next_bucket which notices that the
* device is no longer writeable, and picks a new one.
*/
bch2_journal_meta(j);
BUG_ON(bch2_journal_writing_to_device(ca));
}
for (i = 0; i < ja->nr; i++)
seq_to_flush = max(seq_to_flush, ja->bucket_seq[i]);
bch2_journal_flush_pins(j, seq_to_flush);
/*
* Force a meta-data journal entry to be written so that
* we have newer journal entries in devices other than ca,
* and wait for the meta data write to complete.
*/
bch2_journal_meta(j);
/*
* Verify that we no longer need any of the journal entries in
* the device
*/
spin_lock(&j->lock);
ret = j->last_seq_ondisk > seq_to_flush ? 0 : -EIO;
spin_unlock(&j->lock);
return ret;
}
void bch2_fs_journal_stop(struct journal *j)
{
if (!test_bit(JOURNAL_STARTED, &j->flags))
return;
/*
* Empty out the journal by first flushing everything pinning existing
* journal entries, then force a brand new empty journal entry to be
* written:
*/
bch2_journal_flush_all_pins(j);
cancel_delayed_work_sync(&j->write_work);
cancel_delayed_work_sync(&j->reclaim_work);
}
void bch2_dev_journal_exit(struct bch_dev *ca)
{
kfree(ca->journal.bio);
kfree(ca->journal.buckets);
kfree(ca->journal.bucket_seq);
ca->journal.bio = NULL;
ca->journal.buckets = NULL;
ca->journal.bucket_seq = NULL;
}
int bch2_dev_journal_init(struct bch_dev *ca, struct bch_sb *sb)
{
struct journal_device *ja = &ca->journal;
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(sb);
unsigned i;
ja->nr = bch2_nr_journal_buckets(journal_buckets);
ja->bucket_seq = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL);
if (!ja->bucket_seq)
return -ENOMEM;
ca->journal.bio = bio_kmalloc(GFP_KERNEL,
DIV_ROUND_UP(JOURNAL_ENTRY_SIZE_MAX, PAGE_SIZE));
if (!ca->journal.bio)
return -ENOMEM;
ja->buckets = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL);
if (!ja->buckets)
return -ENOMEM;
for (i = 0; i < ja->nr; i++)
ja->buckets[i] = le64_to_cpu(journal_buckets->buckets[i]);
return 0;
}
void bch2_fs_journal_exit(struct journal *j)
{
kvpfree(j->buf[1].data, j->buf[1].size);
kvpfree(j->buf[0].data, j->buf[0].size);
free_fifo(&j->pin);
}
int bch2_fs_journal_init(struct journal *j)
{
static struct lock_class_key res_key;
spin_lock_init(&j->lock);
spin_lock_init(&j->pin_lock);
init_waitqueue_head(&j->wait);
INIT_DELAYED_WORK(&j->write_work, journal_write_work);
INIT_DELAYED_WORK(&j->reclaim_work, journal_reclaim_work);
mutex_init(&j->blacklist_lock);
INIT_LIST_HEAD(&j->seq_blacklist);
mutex_init(&j->reclaim_lock);
lockdep_init_map(&j->res_map, "journal res", &res_key, 0);
j->buf[0].size = JOURNAL_ENTRY_SIZE_MIN;
j->buf[1].size = JOURNAL_ENTRY_SIZE_MIN;
j->write_delay_ms = 100;
j->reclaim_delay_ms = 100;
bkey_extent_init(&j->key);
atomic64_set(&j->reservations.counter,
((union journal_res_state)
{ .cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL }).v);
if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
!(j->buf[0].data = kvpmalloc(j->buf[0].size, GFP_KERNEL)) ||
!(j->buf[1].data = kvpmalloc(j->buf[1].size, GFP_KERNEL)))
return -ENOMEM;
j->pin.front = j->pin.back = 1;
return 0;
}