bcachefs/kernel/power/suspend.c
Anna-Maria Behnsen 3c89a068bf PM: s2idle: Make sure CPUs will wakeup directly on resume
s2idle works like a regular suspend with freezing processes and freezing
devices. All CPUs except the control CPU go into idle. Once this is
completed the control CPU kicks all other CPUs out of idle, so that they
reenter the idle loop and then enter s2idle state. The control CPU then
issues an swait() on the suspend state and therefore enters the idle loop
as well.

Due to being kicked out of idle, the other CPUs leave their NOHZ states,
which means the tick is active and the corresponding hrtimer is programmed
to the next jiffie.

On entering s2idle the CPUs shut down their local clockevent device to
prevent wakeups. The last CPU which enters s2idle shuts down its local
clockevent and freezes timekeeping.

On resume, one of the CPUs receives the wakeup interrupt, unfreezes
timekeeping and its local clockevent and starts the resume process. At that
point all other CPUs are still in s2idle with their clockevents switched
off. They only resume when they are kicked by another CPU or after resuming
devices and then receiving a device interrupt.

That means there is no guarantee that all CPUs will wakeup directly on
resume. As a consequence there is no guarantee that timers which are queued
on those CPUs and should expire directly after resume, are handled. Also
timer list timers which are remotely queued to one of those CPUs after
resume will not result in a reprogramming IPI as the tick is
active. Queueing a hrtimer will also not result in a reprogramming IPI
because the first hrtimer event is already in the past.

The recent introduction of the timer pull model (7ee9887703 ("timers:
Implement the hierarchical pull model")) amplifies this problem, if the
current migrator is one of the non woken up CPUs. When a non pinned timer
list timer is queued and the queuing CPU goes idle, it relies on the still
suspended migrator CPU to expire the timer which will happen by chance.

The problem exists since commit 8d89835b04 ("PM: suspend: Do not pause
cpuidle in the suspend-to-idle path"). There the cpuidle_pause() call which
in turn invoked a wakeup for all idle CPUs was moved to a later point in
the resume process. This might not be reached or reached very late because
it waits on a timer of a still suspended CPU.

Address this by kicking all CPUs out of idle after the control CPU returns
from swait() so that they resume their timers and restore consistent system
state.

Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218641
Fixes: 8d89835b04 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path")
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: 5.16+ <stable@kernel.org> # 5.16+
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-04-08 15:36:54 +02:00

631 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/power/suspend.c - Suspend to RAM and standby functionality.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
* Copyright (c) 2009 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
*/
#define pr_fmt(fmt) "PM: " fmt
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/suspend.h>
#include <linux/syscore_ops.h>
#include <linux/swait.h>
#include <linux/ftrace.h>
#include <trace/events/power.h>
#include <linux/compiler.h>
#include <linux/moduleparam.h>
#include "power.h"
const char * const pm_labels[] = {
[PM_SUSPEND_TO_IDLE] = "freeze",
[PM_SUSPEND_STANDBY] = "standby",
[PM_SUSPEND_MEM] = "mem",
};
const char *pm_states[PM_SUSPEND_MAX];
static const char * const mem_sleep_labels[] = {
[PM_SUSPEND_TO_IDLE] = "s2idle",
[PM_SUSPEND_STANDBY] = "shallow",
[PM_SUSPEND_MEM] = "deep",
};
const char *mem_sleep_states[PM_SUSPEND_MAX];
suspend_state_t mem_sleep_current = PM_SUSPEND_TO_IDLE;
suspend_state_t mem_sleep_default = PM_SUSPEND_MAX;
suspend_state_t pm_suspend_target_state;
EXPORT_SYMBOL_GPL(pm_suspend_target_state);
unsigned int pm_suspend_global_flags;
EXPORT_SYMBOL_GPL(pm_suspend_global_flags);
static const struct platform_suspend_ops *suspend_ops;
static const struct platform_s2idle_ops *s2idle_ops;
static DECLARE_SWAIT_QUEUE_HEAD(s2idle_wait_head);
enum s2idle_states __read_mostly s2idle_state;
static DEFINE_RAW_SPINLOCK(s2idle_lock);
/**
* pm_suspend_default_s2idle - Check if suspend-to-idle is the default suspend.
*
* Return 'true' if suspend-to-idle has been selected as the default system
* suspend method.
*/
bool pm_suspend_default_s2idle(void)
{
return mem_sleep_current == PM_SUSPEND_TO_IDLE;
}
EXPORT_SYMBOL_GPL(pm_suspend_default_s2idle);
void s2idle_set_ops(const struct platform_s2idle_ops *ops)
{
unsigned int sleep_flags;
sleep_flags = lock_system_sleep();
s2idle_ops = ops;
unlock_system_sleep(sleep_flags);
}
static void s2idle_begin(void)
{
s2idle_state = S2IDLE_STATE_NONE;
}
static void s2idle_enter(void)
{
trace_suspend_resume(TPS("machine_suspend"), PM_SUSPEND_TO_IDLE, true);
raw_spin_lock_irq(&s2idle_lock);
if (pm_wakeup_pending())
goto out;
s2idle_state = S2IDLE_STATE_ENTER;
raw_spin_unlock_irq(&s2idle_lock);
cpus_read_lock();
/* Push all the CPUs into the idle loop. */
wake_up_all_idle_cpus();
/* Make the current CPU wait so it can enter the idle loop too. */
swait_event_exclusive(s2idle_wait_head,
s2idle_state == S2IDLE_STATE_WAKE);
/*
* Kick all CPUs to ensure that they resume their timers and restore
* consistent system state.
*/
wake_up_all_idle_cpus();
cpus_read_unlock();
raw_spin_lock_irq(&s2idle_lock);
out:
s2idle_state = S2IDLE_STATE_NONE;
raw_spin_unlock_irq(&s2idle_lock);
trace_suspend_resume(TPS("machine_suspend"), PM_SUSPEND_TO_IDLE, false);
}
static void s2idle_loop(void)
{
pm_pr_dbg("suspend-to-idle\n");
/*
* Suspend-to-idle equals:
* frozen processes + suspended devices + idle processors.
* Thus s2idle_enter() should be called right after all devices have
* been suspended.
*
* Wakeups during the noirq suspend of devices may be spurious, so try
* to avoid them upfront.
*/
for (;;) {
if (s2idle_ops && s2idle_ops->wake) {
if (s2idle_ops->wake())
break;
} else if (pm_wakeup_pending()) {
break;
}
if (s2idle_ops && s2idle_ops->check)
s2idle_ops->check();
s2idle_enter();
}
pm_pr_dbg("resume from suspend-to-idle\n");
}
void s2idle_wake(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&s2idle_lock, flags);
if (s2idle_state > S2IDLE_STATE_NONE) {
s2idle_state = S2IDLE_STATE_WAKE;
swake_up_one(&s2idle_wait_head);
}
raw_spin_unlock_irqrestore(&s2idle_lock, flags);
}
EXPORT_SYMBOL_GPL(s2idle_wake);
static bool valid_state(suspend_state_t state)
{
/*
* The PM_SUSPEND_STANDBY and PM_SUSPEND_MEM states require low-level
* support and need to be valid to the low-level implementation.
*
* No ->valid() or ->enter() callback implies that none are valid.
*/
return suspend_ops && suspend_ops->valid && suspend_ops->valid(state) &&
suspend_ops->enter;
}
void __init pm_states_init(void)
{
/* "mem" and "freeze" are always present in /sys/power/state. */
pm_states[PM_SUSPEND_MEM] = pm_labels[PM_SUSPEND_MEM];
pm_states[PM_SUSPEND_TO_IDLE] = pm_labels[PM_SUSPEND_TO_IDLE];
/*
* Suspend-to-idle should be supported even without any suspend_ops,
* initialize mem_sleep_states[] accordingly here.
*/
mem_sleep_states[PM_SUSPEND_TO_IDLE] = mem_sleep_labels[PM_SUSPEND_TO_IDLE];
}
static int __init mem_sleep_default_setup(char *str)
{
suspend_state_t state;
for (state = PM_SUSPEND_TO_IDLE; state <= PM_SUSPEND_MEM; state++)
if (mem_sleep_labels[state] &&
!strcmp(str, mem_sleep_labels[state])) {
mem_sleep_default = state;
mem_sleep_current = state;
break;
}
return 1;
}
__setup("mem_sleep_default=", mem_sleep_default_setup);
/**
* suspend_set_ops - Set the global suspend method table.
* @ops: Suspend operations to use.
*/
void suspend_set_ops(const struct platform_suspend_ops *ops)
{
unsigned int sleep_flags;
sleep_flags = lock_system_sleep();
suspend_ops = ops;
if (valid_state(PM_SUSPEND_STANDBY)) {
mem_sleep_states[PM_SUSPEND_STANDBY] = mem_sleep_labels[PM_SUSPEND_STANDBY];
pm_states[PM_SUSPEND_STANDBY] = pm_labels[PM_SUSPEND_STANDBY];
if (mem_sleep_default == PM_SUSPEND_STANDBY)
mem_sleep_current = PM_SUSPEND_STANDBY;
}
if (valid_state(PM_SUSPEND_MEM)) {
mem_sleep_states[PM_SUSPEND_MEM] = mem_sleep_labels[PM_SUSPEND_MEM];
if (mem_sleep_default >= PM_SUSPEND_MEM)
mem_sleep_current = PM_SUSPEND_MEM;
}
unlock_system_sleep(sleep_flags);
}
EXPORT_SYMBOL_GPL(suspend_set_ops);
/**
* suspend_valid_only_mem - Generic memory-only valid callback.
* @state: Target system sleep state.
*
* Platform drivers that implement mem suspend only and only need to check for
* that in their .valid() callback can use this instead of rolling their own
* .valid() callback.
*/
int suspend_valid_only_mem(suspend_state_t state)
{
return state == PM_SUSPEND_MEM;
}
EXPORT_SYMBOL_GPL(suspend_valid_only_mem);
static bool sleep_state_supported(suspend_state_t state)
{
return state == PM_SUSPEND_TO_IDLE ||
(valid_state(state) && !cxl_mem_active());
}
static int platform_suspend_prepare(suspend_state_t state)
{
return state != PM_SUSPEND_TO_IDLE && suspend_ops->prepare ?
suspend_ops->prepare() : 0;
}
static int platform_suspend_prepare_late(suspend_state_t state)
{
return state == PM_SUSPEND_TO_IDLE && s2idle_ops && s2idle_ops->prepare ?
s2idle_ops->prepare() : 0;
}
static int platform_suspend_prepare_noirq(suspend_state_t state)
{
if (state == PM_SUSPEND_TO_IDLE)
return s2idle_ops && s2idle_ops->prepare_late ?
s2idle_ops->prepare_late() : 0;
return suspend_ops->prepare_late ? suspend_ops->prepare_late() : 0;
}
static void platform_resume_noirq(suspend_state_t state)
{
if (state == PM_SUSPEND_TO_IDLE) {
if (s2idle_ops && s2idle_ops->restore_early)
s2idle_ops->restore_early();
} else if (suspend_ops->wake) {
suspend_ops->wake();
}
}
static void platform_resume_early(suspend_state_t state)
{
if (state == PM_SUSPEND_TO_IDLE && s2idle_ops && s2idle_ops->restore)
s2idle_ops->restore();
}
static void platform_resume_finish(suspend_state_t state)
{
if (state != PM_SUSPEND_TO_IDLE && suspend_ops->finish)
suspend_ops->finish();
}
static int platform_suspend_begin(suspend_state_t state)
{
if (state == PM_SUSPEND_TO_IDLE && s2idle_ops && s2idle_ops->begin)
return s2idle_ops->begin();
else if (suspend_ops && suspend_ops->begin)
return suspend_ops->begin(state);
else
return 0;
}
static void platform_resume_end(suspend_state_t state)
{
if (state == PM_SUSPEND_TO_IDLE && s2idle_ops && s2idle_ops->end)
s2idle_ops->end();
else if (suspend_ops && suspend_ops->end)
suspend_ops->end();
}
static void platform_recover(suspend_state_t state)
{
if (state != PM_SUSPEND_TO_IDLE && suspend_ops->recover)
suspend_ops->recover();
}
static bool platform_suspend_again(suspend_state_t state)
{
return state != PM_SUSPEND_TO_IDLE && suspend_ops->suspend_again ?
suspend_ops->suspend_again() : false;
}
#ifdef CONFIG_PM_DEBUG
static unsigned int pm_test_delay = 5;
module_param(pm_test_delay, uint, 0644);
MODULE_PARM_DESC(pm_test_delay,
"Number of seconds to wait before resuming from suspend test");
#endif
static int suspend_test(int level)
{
#ifdef CONFIG_PM_DEBUG
if (pm_test_level == level) {
pr_info("suspend debug: Waiting for %d second(s).\n",
pm_test_delay);
mdelay(pm_test_delay * 1000);
return 1;
}
#endif /* !CONFIG_PM_DEBUG */
return 0;
}
/**
* suspend_prepare - Prepare for entering system sleep state.
* @state: Target system sleep state.
*
* Common code run for every system sleep state that can be entered (except for
* hibernation). Run suspend notifiers, allocate the "suspend" console and
* freeze processes.
*/
static int suspend_prepare(suspend_state_t state)
{
int error;
if (!sleep_state_supported(state))
return -EPERM;
pm_prepare_console();
error = pm_notifier_call_chain_robust(PM_SUSPEND_PREPARE, PM_POST_SUSPEND);
if (error)
goto Restore;
trace_suspend_resume(TPS("freeze_processes"), 0, true);
error = suspend_freeze_processes();
trace_suspend_resume(TPS("freeze_processes"), 0, false);
if (!error)
return 0;
dpm_save_failed_step(SUSPEND_FREEZE);
pm_notifier_call_chain(PM_POST_SUSPEND);
Restore:
pm_restore_console();
return error;
}
/* default implementation */
void __weak arch_suspend_disable_irqs(void)
{
local_irq_disable();
}
/* default implementation */
void __weak arch_suspend_enable_irqs(void)
{
local_irq_enable();
}
/**
* suspend_enter - Make the system enter the given sleep state.
* @state: System sleep state to enter.
* @wakeup: Returns information that the sleep state should not be re-entered.
*
* This function should be called after devices have been suspended.
*/
static int suspend_enter(suspend_state_t state, bool *wakeup)
{
int error;
error = platform_suspend_prepare(state);
if (error)
goto Platform_finish;
error = dpm_suspend_late(PMSG_SUSPEND);
if (error) {
pr_err("late suspend of devices failed\n");
goto Platform_finish;
}
error = platform_suspend_prepare_late(state);
if (error)
goto Devices_early_resume;
error = dpm_suspend_noirq(PMSG_SUSPEND);
if (error) {
pr_err("noirq suspend of devices failed\n");
goto Platform_early_resume;
}
error = platform_suspend_prepare_noirq(state);
if (error)
goto Platform_wake;
if (suspend_test(TEST_PLATFORM))
goto Platform_wake;
if (state == PM_SUSPEND_TO_IDLE) {
s2idle_loop();
goto Platform_wake;
}
error = pm_sleep_disable_secondary_cpus();
if (error || suspend_test(TEST_CPUS))
goto Enable_cpus;
arch_suspend_disable_irqs();
BUG_ON(!irqs_disabled());
system_state = SYSTEM_SUSPEND;
error = syscore_suspend();
if (!error) {
*wakeup = pm_wakeup_pending();
if (!(suspend_test(TEST_CORE) || *wakeup)) {
trace_suspend_resume(TPS("machine_suspend"),
state, true);
error = suspend_ops->enter(state);
trace_suspend_resume(TPS("machine_suspend"),
state, false);
} else if (*wakeup) {
error = -EBUSY;
}
syscore_resume();
}
system_state = SYSTEM_RUNNING;
arch_suspend_enable_irqs();
BUG_ON(irqs_disabled());
Enable_cpus:
pm_sleep_enable_secondary_cpus();
Platform_wake:
platform_resume_noirq(state);
dpm_resume_noirq(PMSG_RESUME);
Platform_early_resume:
platform_resume_early(state);
Devices_early_resume:
dpm_resume_early(PMSG_RESUME);
Platform_finish:
platform_resume_finish(state);
return error;
}
/**
* suspend_devices_and_enter - Suspend devices and enter system sleep state.
* @state: System sleep state to enter.
*/
int suspend_devices_and_enter(suspend_state_t state)
{
int error;
bool wakeup = false;
if (!sleep_state_supported(state))
return -ENOSYS;
pm_suspend_target_state = state;
if (state == PM_SUSPEND_TO_IDLE)
pm_set_suspend_no_platform();
error = platform_suspend_begin(state);
if (error)
goto Close;
suspend_console();
suspend_test_start();
error = dpm_suspend_start(PMSG_SUSPEND);
if (error) {
pr_err("Some devices failed to suspend, or early wake event detected\n");
goto Recover_platform;
}
suspend_test_finish("suspend devices");
if (suspend_test(TEST_DEVICES))
goto Recover_platform;
do {
error = suspend_enter(state, &wakeup);
} while (!error && !wakeup && platform_suspend_again(state));
Resume_devices:
suspend_test_start();
dpm_resume_end(PMSG_RESUME);
suspend_test_finish("resume devices");
trace_suspend_resume(TPS("resume_console"), state, true);
resume_console();
trace_suspend_resume(TPS("resume_console"), state, false);
Close:
platform_resume_end(state);
pm_suspend_target_state = PM_SUSPEND_ON;
return error;
Recover_platform:
platform_recover(state);
goto Resume_devices;
}
/**
* suspend_finish - Clean up before finishing the suspend sequence.
*
* Call platform code to clean up, restart processes, and free the console that
* we've allocated. This routine is not called for hibernation.
*/
static void suspend_finish(void)
{
suspend_thaw_processes();
pm_notifier_call_chain(PM_POST_SUSPEND);
pm_restore_console();
}
/**
* enter_state - Do common work needed to enter system sleep state.
* @state: System sleep state to enter.
*
* Make sure that no one else is trying to put the system into a sleep state.
* Fail if that's not the case. Otherwise, prepare for system suspend, make the
* system enter the given sleep state and clean up after wakeup.
*/
static int enter_state(suspend_state_t state)
{
int error;
trace_suspend_resume(TPS("suspend_enter"), state, true);
if (state == PM_SUSPEND_TO_IDLE) {
#ifdef CONFIG_PM_DEBUG
if (pm_test_level != TEST_NONE && pm_test_level <= TEST_CPUS) {
pr_warn("Unsupported test mode for suspend to idle, please choose none/freezer/devices/platform.\n");
return -EAGAIN;
}
#endif
} else if (!valid_state(state)) {
return -EINVAL;
}
if (!mutex_trylock(&system_transition_mutex))
return -EBUSY;
if (state == PM_SUSPEND_TO_IDLE)
s2idle_begin();
if (sync_on_suspend_enabled) {
trace_suspend_resume(TPS("sync_filesystems"), 0, true);
ksys_sync_helper();
trace_suspend_resume(TPS("sync_filesystems"), 0, false);
}
pm_pr_dbg("Preparing system for sleep (%s)\n", mem_sleep_labels[state]);
pm_suspend_clear_flags();
error = suspend_prepare(state);
if (error)
goto Unlock;
if (suspend_test(TEST_FREEZER))
goto Finish;
trace_suspend_resume(TPS("suspend_enter"), state, false);
pm_pr_dbg("Suspending system (%s)\n", mem_sleep_labels[state]);
pm_restrict_gfp_mask();
error = suspend_devices_and_enter(state);
pm_restore_gfp_mask();
Finish:
events_check_enabled = false;
pm_pr_dbg("Finishing wakeup.\n");
suspend_finish();
Unlock:
mutex_unlock(&system_transition_mutex);
return error;
}
/**
* pm_suspend - Externally visible function for suspending the system.
* @state: System sleep state to enter.
*
* Check if the value of @state represents one of the supported states,
* execute enter_state() and update system suspend statistics.
*/
int pm_suspend(suspend_state_t state)
{
int error;
if (state <= PM_SUSPEND_ON || state >= PM_SUSPEND_MAX)
return -EINVAL;
pr_info("suspend entry (%s)\n", mem_sleep_labels[state]);
error = enter_state(state);
dpm_save_errno(error);
pr_info("suspend exit\n");
return error;
}
EXPORT_SYMBOL(pm_suspend);