torvalds-linux/crypto/xts.c
Eric Biggers bb40d32689 crypto: xts - use 'spawn' for underlying single-block cipher
Since commit adad556efc ("crypto: api - Fix built-in testing
dependency failures"), the following warning appears when booting an
x86_64 kernel that is configured with
CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y and CONFIG_CRYPTO_AES_NI_INTEL=y,
even when CONFIG_CRYPTO_XTS=y and CONFIG_CRYPTO_AES=y:

    alg: skcipher: skipping comparison tests for xts-aes-aesni because xts(ecb(aes-generic)) is unavailable

This is caused by an issue in the xts template where it allocates an
"aes" single-block cipher without declaring a dependency on it via the
crypto_spawn mechanism.  This issue was exposed by the above commit
because it reversed the order that the algorithms are tested in.

Specifically, when "xts(ecb(aes-generic))" is instantiated and tested
during the comparison tests for "xts-aes-aesni", the "xts" template
allocates an "aes" crypto_cipher for encrypting tweaks.  This resolves
to "aes-aesni".  (Getting "aes-aesni" instead of "aes-generic" here is a
bit weird, but it's apparently intended.)  Due to the above-mentioned
commit, the testing of "aes-aesni", and the finalization of its
registration, now happens at this point instead of before.  At the end
of that, crypto_remove_spawns() unregisters all algorithm instances that
depend on a lower-priority "aes" implementation such as "aes-generic"
but that do not depend on "aes-aesni".  However, because "xts" does not
use the crypto_spawn mechanism for its "aes", its dependency on
"aes-aesni" is not recognized by crypto_remove_spawns().  Thus,
crypto_remove_spawns() unexpectedly unregisters "xts(ecb(aes-generic))".

Fix this issue by making the "xts" template use the crypto_spawn
mechanism for its "aes" dependency, like what other templates do.

Note, this fix could be applied as far back as commit f1c131b454
("crypto: xts - Convert to skcipher").  However, the issue only got
exposed by the much more recent changes to how the crypto API runs the
self-tests, so there should be no need to backport this to very old
kernels.  Also, an alternative fix would be to flip the list iteration
order in crypto_start_tests() to restore the original testing order.
I'm thinking we should do that too, since the original order seems more
natural, but it shouldn't be relied on for correctness.

Fixes: adad556efc ("crypto: api - Fix built-in testing dependency failures")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2023-10-20 13:39:25 +08:00

477 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* XTS: as defined in IEEE1619/D16
* http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
*
* Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org>
*
* Based on ecb.c
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*/
#include <crypto/internal/cipher.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <crypto/xts.h>
#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
struct xts_tfm_ctx {
struct crypto_skcipher *child;
struct crypto_cipher *tweak;
};
struct xts_instance_ctx {
struct crypto_skcipher_spawn spawn;
struct crypto_cipher_spawn tweak_spawn;
};
struct xts_request_ctx {
le128 t;
struct scatterlist *tail;
struct scatterlist sg[2];
struct skcipher_request subreq;
};
static int xts_setkey(struct crypto_skcipher *parent, const u8 *key,
unsigned int keylen)
{
struct xts_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
struct crypto_skcipher *child;
struct crypto_cipher *tweak;
int err;
err = xts_verify_key(parent, key, keylen);
if (err)
return err;
keylen /= 2;
/* we need two cipher instances: one to compute the initial 'tweak'
* by encrypting the IV (usually the 'plain' iv) and the other
* one to encrypt and decrypt the data */
/* tweak cipher, uses Key2 i.e. the second half of *key */
tweak = ctx->tweak;
crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_cipher_setkey(tweak, key + keylen, keylen);
if (err)
return err;
/* data cipher, uses Key1 i.e. the first half of *key */
child = ctx->child;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(child, key, keylen);
}
/*
* We compute the tweak masks twice (both before and after the ECB encryption or
* decryption) to avoid having to allocate a temporary buffer and/or make
* mutliple calls to the 'ecb(..)' instance, which usually would be slower than
* just doing the gf128mul_x_ble() calls again.
*/
static int xts_xor_tweak(struct skcipher_request *req, bool second_pass,
bool enc)
{
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const bool cts = (req->cryptlen % XTS_BLOCK_SIZE);
const int bs = XTS_BLOCK_SIZE;
struct skcipher_walk w;
le128 t = rctx->t;
int err;
if (second_pass) {
req = &rctx->subreq;
/* set to our TFM to enforce correct alignment: */
skcipher_request_set_tfm(req, tfm);
}
err = skcipher_walk_virt(&w, req, false);
while (w.nbytes) {
unsigned int avail = w.nbytes;
le128 *wsrc;
le128 *wdst;
wsrc = w.src.virt.addr;
wdst = w.dst.virt.addr;
do {
if (unlikely(cts) &&
w.total - w.nbytes + avail < 2 * XTS_BLOCK_SIZE) {
if (!enc) {
if (second_pass)
rctx->t = t;
gf128mul_x_ble(&t, &t);
}
le128_xor(wdst, &t, wsrc);
if (enc && second_pass)
gf128mul_x_ble(&rctx->t, &t);
skcipher_walk_done(&w, avail - bs);
return 0;
}
le128_xor(wdst++, &t, wsrc++);
gf128mul_x_ble(&t, &t);
} while ((avail -= bs) >= bs);
err = skcipher_walk_done(&w, avail);
}
return err;
}
static int xts_xor_tweak_pre(struct skcipher_request *req, bool enc)
{
return xts_xor_tweak(req, false, enc);
}
static int xts_xor_tweak_post(struct skcipher_request *req, bool enc)
{
return xts_xor_tweak(req, true, enc);
}
static void xts_cts_done(void *data, int err)
{
struct skcipher_request *req = data;
le128 b;
if (!err) {
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 0);
le128_xor(&b, &rctx->t, &b);
scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 1);
}
skcipher_request_complete(req, err);
}
static int xts_cts_final(struct skcipher_request *req,
int (*crypt)(struct skcipher_request *req))
{
const struct xts_tfm_ctx *ctx =
crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
int offset = req->cryptlen & ~(XTS_BLOCK_SIZE - 1);
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq = &rctx->subreq;
int tail = req->cryptlen % XTS_BLOCK_SIZE;
le128 b[2];
int err;
rctx->tail = scatterwalk_ffwd(rctx->sg, req->dst,
offset - XTS_BLOCK_SIZE);
scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0);
b[1] = b[0];
scatterwalk_map_and_copy(b, req->src, offset, tail, 0);
le128_xor(b, &rctx->t, b);
scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE + tail, 1);
skcipher_request_set_tfm(subreq, ctx->child);
skcipher_request_set_callback(subreq, req->base.flags, xts_cts_done,
req);
skcipher_request_set_crypt(subreq, rctx->tail, rctx->tail,
XTS_BLOCK_SIZE, NULL);
err = crypt(subreq);
if (err)
return err;
scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0);
le128_xor(b, &rctx->t, b);
scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 1);
return 0;
}
static void xts_encrypt_done(void *data, int err)
{
struct skcipher_request *req = data;
if (!err) {
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
rctx->subreq.base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
err = xts_xor_tweak_post(req, true);
if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) {
err = xts_cts_final(req, crypto_skcipher_encrypt);
if (err == -EINPROGRESS || err == -EBUSY)
return;
}
}
skcipher_request_complete(req, err);
}
static void xts_decrypt_done(void *data, int err)
{
struct skcipher_request *req = data;
if (!err) {
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
rctx->subreq.base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
err = xts_xor_tweak_post(req, false);
if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) {
err = xts_cts_final(req, crypto_skcipher_decrypt);
if (err == -EINPROGRESS || err == -EBUSY)
return;
}
}
skcipher_request_complete(req, err);
}
static int xts_init_crypt(struct skcipher_request *req,
crypto_completion_t compl)
{
const struct xts_tfm_ctx *ctx =
crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq = &rctx->subreq;
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
skcipher_request_set_tfm(subreq, ctx->child);
skcipher_request_set_callback(subreq, req->base.flags, compl, req);
skcipher_request_set_crypt(subreq, req->dst, req->dst,
req->cryptlen & ~(XTS_BLOCK_SIZE - 1), NULL);
/* calculate first value of T */
crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv);
return 0;
}
static int xts_encrypt(struct skcipher_request *req)
{
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq = &rctx->subreq;
int err;
err = xts_init_crypt(req, xts_encrypt_done) ?:
xts_xor_tweak_pre(req, true) ?:
crypto_skcipher_encrypt(subreq) ?:
xts_xor_tweak_post(req, true);
if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0))
return err;
return xts_cts_final(req, crypto_skcipher_encrypt);
}
static int xts_decrypt(struct skcipher_request *req)
{
struct xts_request_ctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq = &rctx->subreq;
int err;
err = xts_init_crypt(req, xts_decrypt_done) ?:
xts_xor_tweak_pre(req, false) ?:
crypto_skcipher_decrypt(subreq) ?:
xts_xor_tweak_post(req, false);
if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0))
return err;
return xts_cts_final(req, crypto_skcipher_decrypt);
}
static int xts_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst);
struct xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *child;
struct crypto_cipher *tweak;
child = crypto_spawn_skcipher(&ictx->spawn);
if (IS_ERR(child))
return PTR_ERR(child);
ctx->child = child;
tweak = crypto_spawn_cipher(&ictx->tweak_spawn);
if (IS_ERR(tweak)) {
crypto_free_skcipher(ctx->child);
return PTR_ERR(tweak);
}
ctx->tweak = tweak;
crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
sizeof(struct xts_request_ctx));
return 0;
}
static void xts_exit_tfm(struct crypto_skcipher *tfm)
{
struct xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(ctx->child);
crypto_free_cipher(ctx->tweak);
}
static void xts_free_instance(struct skcipher_instance *inst)
{
struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst);
crypto_drop_skcipher(&ictx->spawn);
crypto_drop_cipher(&ictx->tweak_spawn);
kfree(inst);
}
static int xts_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct skcipher_alg_common *alg;
char name[CRYPTO_MAX_ALG_NAME];
struct skcipher_instance *inst;
struct xts_instance_ctx *ctx;
const char *cipher_name;
u32 mask;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
if (err)
return err;
cipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cipher_name))
return PTR_ERR(cipher_name);
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ctx = skcipher_instance_ctx(inst);
err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
cipher_name, 0, mask);
if (err == -ENOENT) {
err = -ENAMETOOLONG;
if (snprintf(name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
cipher_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
err = crypto_grab_skcipher(&ctx->spawn,
skcipher_crypto_instance(inst),
name, 0, mask);
}
if (err)
goto err_free_inst;
alg = crypto_spawn_skcipher_alg_common(&ctx->spawn);
err = -EINVAL;
if (alg->base.cra_blocksize != XTS_BLOCK_SIZE)
goto err_free_inst;
if (alg->ivsize)
goto err_free_inst;
err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts",
&alg->base);
if (err)
goto err_free_inst;
err = -EINVAL;
cipher_name = alg->base.cra_name;
/* Alas we screwed up the naming so we have to mangle the
* cipher name.
*/
if (!strncmp(cipher_name, "ecb(", 4)) {
int len;
len = strscpy(name, cipher_name + 4, sizeof(name));
if (len < 2)
goto err_free_inst;
if (name[len - 1] != ')')
goto err_free_inst;
name[len - 1] = 0;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"xts(%s)", name) >= CRYPTO_MAX_ALG_NAME) {
err = -ENAMETOOLONG;
goto err_free_inst;
}
} else
goto err_free_inst;
err = crypto_grab_cipher(&ctx->tweak_spawn,
skcipher_crypto_instance(inst), name, 0, mask);
if (err)
goto err_free_inst;
inst->alg.base.cra_priority = alg->base.cra_priority;
inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE;
inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
(__alignof__(u64) - 1);
inst->alg.ivsize = XTS_BLOCK_SIZE;
inst->alg.min_keysize = alg->min_keysize * 2;
inst->alg.max_keysize = alg->max_keysize * 2;
inst->alg.base.cra_ctxsize = sizeof(struct xts_tfm_ctx);
inst->alg.init = xts_init_tfm;
inst->alg.exit = xts_exit_tfm;
inst->alg.setkey = xts_setkey;
inst->alg.encrypt = xts_encrypt;
inst->alg.decrypt = xts_decrypt;
inst->free = xts_free_instance;
err = skcipher_register_instance(tmpl, inst);
if (err) {
err_free_inst:
xts_free_instance(inst);
}
return err;
}
static struct crypto_template xts_tmpl = {
.name = "xts",
.create = xts_create,
.module = THIS_MODULE,
};
static int __init xts_module_init(void)
{
return crypto_register_template(&xts_tmpl);
}
static void __exit xts_module_exit(void)
{
crypto_unregister_template(&xts_tmpl);
}
subsys_initcall(xts_module_init);
module_exit(xts_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("XTS block cipher mode");
MODULE_ALIAS_CRYPTO("xts");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
MODULE_SOFTDEP("pre: ecb");