torvalds-linux/security/selinux/avc.c
Jaihind Yadav 030b995ad9 selinux: ensure we cleanup the internal AVC counters on error in avc_update()
In AVC update we don't call avc_node_kill() when avc_xperms_populate()
fails, resulting in the avc->avc_cache.active_nodes counter having a
false value.  In last patch this changes was missed , so correcting it.

Fixes: fa1aa143ac ("selinux: extended permissions for ioctls")
Signed-off-by: Jaihind Yadav <jaihindyadav@codeaurora.org>
Signed-off-by: Ravi Kumar Siddojigari <rsiddoji@codeaurora.org>
[PM: merge fuzz, minor description cleanup]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-12-21 10:59:21 -05:00

1234 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Implementation of the kernel access vector cache (AVC).
*
* Authors: Stephen Smalley, <sds@tycho.nsa.gov>
* James Morris <jmorris@redhat.com>
*
* Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
* Replaced the avc_lock spinlock by RCU.
*
* Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/percpu.h>
#include <linux/list.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
#include <linux/ip.h>
#include <linux/audit.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include "avc.h"
#include "avc_ss.h"
#include "classmap.h"
#define AVC_CACHE_SLOTS 512
#define AVC_DEF_CACHE_THRESHOLD 512
#define AVC_CACHE_RECLAIM 16
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
#else
#define avc_cache_stats_incr(field) do {} while (0)
#endif
struct avc_entry {
u32 ssid;
u32 tsid;
u16 tclass;
struct av_decision avd;
struct avc_xperms_node *xp_node;
};
struct avc_node {
struct avc_entry ae;
struct hlist_node list; /* anchored in avc_cache->slots[i] */
struct rcu_head rhead;
};
struct avc_xperms_decision_node {
struct extended_perms_decision xpd;
struct list_head xpd_list; /* list of extended_perms_decision */
};
struct avc_xperms_node {
struct extended_perms xp;
struct list_head xpd_head; /* list head of extended_perms_decision */
};
struct avc_cache {
struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
atomic_t lru_hint; /* LRU hint for reclaim scan */
atomic_t active_nodes;
u32 latest_notif; /* latest revocation notification */
};
struct avc_callback_node {
int (*callback) (u32 event);
u32 events;
struct avc_callback_node *next;
};
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
#endif
struct selinux_avc {
unsigned int avc_cache_threshold;
struct avc_cache avc_cache;
};
static struct selinux_avc selinux_avc;
void selinux_avc_init(struct selinux_avc **avc)
{
int i;
selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
}
atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
*avc = &selinux_avc;
}
unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
{
return avc->avc_cache_threshold;
}
void avc_set_cache_threshold(struct selinux_avc *avc,
unsigned int cache_threshold)
{
avc->avc_cache_threshold = cache_threshold;
}
static struct avc_callback_node *avc_callbacks;
static struct kmem_cache *avc_node_cachep;
static struct kmem_cache *avc_xperms_data_cachep;
static struct kmem_cache *avc_xperms_decision_cachep;
static struct kmem_cache *avc_xperms_cachep;
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
{
return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
}
/**
* avc_init - Initialize the AVC.
*
* Initialize the access vector cache.
*/
void __init avc_init(void)
{
avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
0, SLAB_PANIC, NULL);
avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
sizeof(struct avc_xperms_node),
0, SLAB_PANIC, NULL);
avc_xperms_decision_cachep = kmem_cache_create(
"avc_xperms_decision_node",
sizeof(struct avc_xperms_decision_node),
0, SLAB_PANIC, NULL);
avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
sizeof(struct extended_perms_data),
0, SLAB_PANIC, NULL);
}
int avc_get_hash_stats(struct selinux_avc *avc, char *page)
{
int i, chain_len, max_chain_len, slots_used;
struct avc_node *node;
struct hlist_head *head;
rcu_read_lock();
slots_used = 0;
max_chain_len = 0;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
head = &avc->avc_cache.slots[i];
if (!hlist_empty(head)) {
slots_used++;
chain_len = 0;
hlist_for_each_entry_rcu(node, head, list)
chain_len++;
if (chain_len > max_chain_len)
max_chain_len = chain_len;
}
}
rcu_read_unlock();
return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
"longest chain: %d\n",
atomic_read(&avc->avc_cache.active_nodes),
slots_used, AVC_CACHE_SLOTS, max_chain_len);
}
/*
* using a linked list for extended_perms_decision lookup because the list is
* always small. i.e. less than 5, typically 1
*/
static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
struct avc_xperms_node *xp_node)
{
struct avc_xperms_decision_node *xpd_node;
list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
if (xpd_node->xpd.driver == driver)
return &xpd_node->xpd;
}
return NULL;
}
static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision *xpd,
u8 perm, u8 which)
{
unsigned int rc = 0;
if ((which == XPERMS_ALLOWED) &&
(xpd->used & XPERMS_ALLOWED))
rc = security_xperm_test(xpd->allowed->p, perm);
else if ((which == XPERMS_AUDITALLOW) &&
(xpd->used & XPERMS_AUDITALLOW))
rc = security_xperm_test(xpd->auditallow->p, perm);
else if ((which == XPERMS_DONTAUDIT) &&
(xpd->used & XPERMS_DONTAUDIT))
rc = security_xperm_test(xpd->dontaudit->p, perm);
return rc;
}
static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
u8 driver, u8 perm)
{
struct extended_perms_decision *xpd;
security_xperm_set(xp_node->xp.drivers.p, driver);
xpd = avc_xperms_decision_lookup(driver, xp_node);
if (xpd && xpd->allowed)
security_xperm_set(xpd->allowed->p, perm);
}
static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
{
struct extended_perms_decision *xpd;
xpd = &xpd_node->xpd;
if (xpd->allowed)
kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
if (xpd->auditallow)
kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
if (xpd->dontaudit)
kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
}
static void avc_xperms_free(struct avc_xperms_node *xp_node)
{
struct avc_xperms_decision_node *xpd_node, *tmp;
if (!xp_node)
return;
list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
list_del(&xpd_node->xpd_list);
avc_xperms_decision_free(xpd_node);
}
kmem_cache_free(avc_xperms_cachep, xp_node);
}
static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
struct extended_perms_decision *src)
{
dest->driver = src->driver;
dest->used = src->used;
if (dest->used & XPERMS_ALLOWED)
memcpy(dest->allowed->p, src->allowed->p,
sizeof(src->allowed->p));
if (dest->used & XPERMS_AUDITALLOW)
memcpy(dest->auditallow->p, src->auditallow->p,
sizeof(src->auditallow->p));
if (dest->used & XPERMS_DONTAUDIT)
memcpy(dest->dontaudit->p, src->dontaudit->p,
sizeof(src->dontaudit->p));
}
/*
* similar to avc_copy_xperms_decision, but only copy decision
* information relevant to this perm
*/
static inline void avc_quick_copy_xperms_decision(u8 perm,
struct extended_perms_decision *dest,
struct extended_perms_decision *src)
{
/*
* compute index of the u32 of the 256 bits (8 u32s) that contain this
* command permission
*/
u8 i = perm >> 5;
dest->used = src->used;
if (dest->used & XPERMS_ALLOWED)
dest->allowed->p[i] = src->allowed->p[i];
if (dest->used & XPERMS_AUDITALLOW)
dest->auditallow->p[i] = src->auditallow->p[i];
if (dest->used & XPERMS_DONTAUDIT)
dest->dontaudit->p[i] = src->dontaudit->p[i];
}
static struct avc_xperms_decision_node
*avc_xperms_decision_alloc(u8 which)
{
struct avc_xperms_decision_node *xpd_node;
struct extended_perms_decision *xpd;
xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
if (!xpd_node)
return NULL;
xpd = &xpd_node->xpd;
if (which & XPERMS_ALLOWED) {
xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
GFP_NOWAIT);
if (!xpd->allowed)
goto error;
}
if (which & XPERMS_AUDITALLOW) {
xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
GFP_NOWAIT);
if (!xpd->auditallow)
goto error;
}
if (which & XPERMS_DONTAUDIT) {
xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
GFP_NOWAIT);
if (!xpd->dontaudit)
goto error;
}
return xpd_node;
error:
avc_xperms_decision_free(xpd_node);
return NULL;
}
static int avc_add_xperms_decision(struct avc_node *node,
struct extended_perms_decision *src)
{
struct avc_xperms_decision_node *dest_xpd;
node->ae.xp_node->xp.len++;
dest_xpd = avc_xperms_decision_alloc(src->used);
if (!dest_xpd)
return -ENOMEM;
avc_copy_xperms_decision(&dest_xpd->xpd, src);
list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
return 0;
}
static struct avc_xperms_node *avc_xperms_alloc(void)
{
struct avc_xperms_node *xp_node;
xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
if (!xp_node)
return xp_node;
INIT_LIST_HEAD(&xp_node->xpd_head);
return xp_node;
}
static int avc_xperms_populate(struct avc_node *node,
struct avc_xperms_node *src)
{
struct avc_xperms_node *dest;
struct avc_xperms_decision_node *dest_xpd;
struct avc_xperms_decision_node *src_xpd;
if (src->xp.len == 0)
return 0;
dest = avc_xperms_alloc();
if (!dest)
return -ENOMEM;
memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
dest->xp.len = src->xp.len;
/* for each source xpd allocate a destination xpd and copy */
list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
if (!dest_xpd)
goto error;
avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
list_add(&dest_xpd->xpd_list, &dest->xpd_head);
}
node->ae.xp_node = dest;
return 0;
error:
avc_xperms_free(dest);
return -ENOMEM;
}
static inline u32 avc_xperms_audit_required(u32 requested,
struct av_decision *avd,
struct extended_perms_decision *xpd,
u8 perm,
int result,
u32 *deniedp)
{
u32 denied, audited;
denied = requested & ~avd->allowed;
if (unlikely(denied)) {
audited = denied & avd->auditdeny;
if (audited && xpd) {
if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
audited &= ~requested;
}
} else if (result) {
audited = denied = requested;
} else {
audited = requested & avd->auditallow;
if (audited && xpd) {
if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
audited &= ~requested;
}
}
*deniedp = denied;
return audited;
}
static inline int avc_xperms_audit(struct selinux_state *state,
u32 ssid, u32 tsid, u16 tclass,
u32 requested, struct av_decision *avd,
struct extended_perms_decision *xpd,
u8 perm, int result,
struct common_audit_data *ad)
{
u32 audited, denied;
audited = avc_xperms_audit_required(
requested, avd, xpd, perm, result, &denied);
if (likely(!audited))
return 0;
return slow_avc_audit(state, ssid, tsid, tclass, requested,
audited, denied, result, ad);
}
static void avc_node_free(struct rcu_head *rhead)
{
struct avc_node *node = container_of(rhead, struct avc_node, rhead);
avc_xperms_free(node->ae.xp_node);
kmem_cache_free(avc_node_cachep, node);
avc_cache_stats_incr(frees);
}
static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
{
hlist_del_rcu(&node->list);
call_rcu(&node->rhead, avc_node_free);
atomic_dec(&avc->avc_cache.active_nodes);
}
static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
{
avc_xperms_free(node->ae.xp_node);
kmem_cache_free(avc_node_cachep, node);
avc_cache_stats_incr(frees);
atomic_dec(&avc->avc_cache.active_nodes);
}
static void avc_node_replace(struct selinux_avc *avc,
struct avc_node *new, struct avc_node *old)
{
hlist_replace_rcu(&old->list, &new->list);
call_rcu(&old->rhead, avc_node_free);
atomic_dec(&avc->avc_cache.active_nodes);
}
static inline int avc_reclaim_node(struct selinux_avc *avc)
{
struct avc_node *node;
int hvalue, try, ecx;
unsigned long flags;
struct hlist_head *head;
spinlock_t *lock;
for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
(AVC_CACHE_SLOTS - 1);
head = &avc->avc_cache.slots[hvalue];
lock = &avc->avc_cache.slots_lock[hvalue];
if (!spin_trylock_irqsave(lock, flags))
continue;
rcu_read_lock();
hlist_for_each_entry(node, head, list) {
avc_node_delete(avc, node);
avc_cache_stats_incr(reclaims);
ecx++;
if (ecx >= AVC_CACHE_RECLAIM) {
rcu_read_unlock();
spin_unlock_irqrestore(lock, flags);
goto out;
}
}
rcu_read_unlock();
spin_unlock_irqrestore(lock, flags);
}
out:
return ecx;
}
static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
{
struct avc_node *node;
node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
if (!node)
goto out;
INIT_HLIST_NODE(&node->list);
avc_cache_stats_incr(allocations);
if (atomic_inc_return(&avc->avc_cache.active_nodes) >
avc->avc_cache_threshold)
avc_reclaim_node(avc);
out:
return node;
}
static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
{
node->ae.ssid = ssid;
node->ae.tsid = tsid;
node->ae.tclass = tclass;
memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
}
static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
u32 ssid, u32 tsid, u16 tclass)
{
struct avc_node *node, *ret = NULL;
int hvalue;
struct hlist_head *head;
hvalue = avc_hash(ssid, tsid, tclass);
head = &avc->avc_cache.slots[hvalue];
hlist_for_each_entry_rcu(node, head, list) {
if (ssid == node->ae.ssid &&
tclass == node->ae.tclass &&
tsid == node->ae.tsid) {
ret = node;
break;
}
}
return ret;
}
/**
* avc_lookup - Look up an AVC entry.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
*
* Look up an AVC entry that is valid for the
* (@ssid, @tsid), interpreting the permissions
* based on @tclass. If a valid AVC entry exists,
* then this function returns the avc_node.
* Otherwise, this function returns NULL.
*/
static struct avc_node *avc_lookup(struct selinux_avc *avc,
u32 ssid, u32 tsid, u16 tclass)
{
struct avc_node *node;
avc_cache_stats_incr(lookups);
node = avc_search_node(avc, ssid, tsid, tclass);
if (node)
return node;
avc_cache_stats_incr(misses);
return NULL;
}
static int avc_latest_notif_update(struct selinux_avc *avc,
int seqno, int is_insert)
{
int ret = 0;
static DEFINE_SPINLOCK(notif_lock);
unsigned long flag;
spin_lock_irqsave(&notif_lock, flag);
if (is_insert) {
if (seqno < avc->avc_cache.latest_notif) {
pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
seqno, avc->avc_cache.latest_notif);
ret = -EAGAIN;
}
} else {
if (seqno > avc->avc_cache.latest_notif)
avc->avc_cache.latest_notif = seqno;
}
spin_unlock_irqrestore(&notif_lock, flag);
return ret;
}
/**
* avc_insert - Insert an AVC entry.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @avd: resulting av decision
* @xp_node: resulting extended permissions
*
* Insert an AVC entry for the SID pair
* (@ssid, @tsid) and class @tclass.
* The access vectors and the sequence number are
* normally provided by the security server in
* response to a security_compute_av() call. If the
* sequence number @avd->seqno is not less than the latest
* revocation notification, then the function copies
* the access vectors into a cache entry, returns
* avc_node inserted. Otherwise, this function returns NULL.
*/
static struct avc_node *avc_insert(struct selinux_avc *avc,
u32 ssid, u32 tsid, u16 tclass,
struct av_decision *avd,
struct avc_xperms_node *xp_node)
{
struct avc_node *pos, *node = NULL;
int hvalue;
unsigned long flag;
spinlock_t *lock;
struct hlist_head *head;
if (avc_latest_notif_update(avc, avd->seqno, 1))
return NULL;
node = avc_alloc_node(avc);
if (!node)
return NULL;
avc_node_populate(node, ssid, tsid, tclass, avd);
if (avc_xperms_populate(node, xp_node)) {
avc_node_kill(avc, node);
return NULL;
}
hvalue = avc_hash(ssid, tsid, tclass);
head = &avc->avc_cache.slots[hvalue];
lock = &avc->avc_cache.slots_lock[hvalue];
spin_lock_irqsave(lock, flag);
hlist_for_each_entry(pos, head, list) {
if (pos->ae.ssid == ssid &&
pos->ae.tsid == tsid &&
pos->ae.tclass == tclass) {
avc_node_replace(avc, node, pos);
goto found;
}
}
hlist_add_head_rcu(&node->list, head);
found:
spin_unlock_irqrestore(lock, flag);
return node;
}
/**
* avc_audit_pre_callback - SELinux specific information
* will be called by generic audit code
* @ab: the audit buffer
* @a: audit_data
*/
static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
{
struct common_audit_data *ad = a;
struct selinux_audit_data *sad = ad->selinux_audit_data;
u32 av = sad->audited;
const char **perms;
int i, perm;
audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
if (av == 0) {
audit_log_format(ab, " null");
return;
}
perms = secclass_map[sad->tclass-1].perms;
audit_log_format(ab, " {");
i = 0;
perm = 1;
while (i < (sizeof(av) * 8)) {
if ((perm & av) && perms[i]) {
audit_log_format(ab, " %s", perms[i]);
av &= ~perm;
}
i++;
perm <<= 1;
}
if (av)
audit_log_format(ab, " 0x%x", av);
audit_log_format(ab, " } for ");
}
/**
* avc_audit_post_callback - SELinux specific information
* will be called by generic audit code
* @ab: the audit buffer
* @a: audit_data
*/
static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
{
struct common_audit_data *ad = a;
struct selinux_audit_data *sad = ad->selinux_audit_data;
char *scontext;
u32 scontext_len;
int rc;
rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
&scontext_len);
if (rc)
audit_log_format(ab, " ssid=%d", sad->ssid);
else {
audit_log_format(ab, " scontext=%s", scontext);
kfree(scontext);
}
rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
&scontext_len);
if (rc)
audit_log_format(ab, " tsid=%d", sad->tsid);
else {
audit_log_format(ab, " tcontext=%s", scontext);
kfree(scontext);
}
audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
if (sad->denied)
audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
/* in case of invalid context report also the actual context string */
rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
&scontext_len);
if (!rc && scontext) {
if (scontext_len && scontext[scontext_len - 1] == '\0')
scontext_len--;
audit_log_format(ab, " srawcon=");
audit_log_n_untrustedstring(ab, scontext, scontext_len);
kfree(scontext);
}
rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
&scontext_len);
if (!rc && scontext) {
if (scontext_len && scontext[scontext_len - 1] == '\0')
scontext_len--;
audit_log_format(ab, " trawcon=");
audit_log_n_untrustedstring(ab, scontext, scontext_len);
kfree(scontext);
}
}
/* This is the slow part of avc audit with big stack footprint */
noinline int slow_avc_audit(struct selinux_state *state,
u32 ssid, u32 tsid, u16 tclass,
u32 requested, u32 audited, u32 denied, int result,
struct common_audit_data *a)
{
struct common_audit_data stack_data;
struct selinux_audit_data sad;
if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
return -EINVAL;
if (!a) {
a = &stack_data;
a->type = LSM_AUDIT_DATA_NONE;
}
sad.tclass = tclass;
sad.requested = requested;
sad.ssid = ssid;
sad.tsid = tsid;
sad.audited = audited;
sad.denied = denied;
sad.result = result;
sad.state = state;
a->selinux_audit_data = &sad;
common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
return 0;
}
/**
* avc_add_callback - Register a callback for security events.
* @callback: callback function
* @events: security events
*
* Register a callback function for events in the set @events.
* Returns %0 on success or -%ENOMEM if insufficient memory
* exists to add the callback.
*/
int __init avc_add_callback(int (*callback)(u32 event), u32 events)
{
struct avc_callback_node *c;
int rc = 0;
c = kmalloc(sizeof(*c), GFP_KERNEL);
if (!c) {
rc = -ENOMEM;
goto out;
}
c->callback = callback;
c->events = events;
c->next = avc_callbacks;
avc_callbacks = c;
out:
return rc;
}
/**
* avc_update_node Update an AVC entry
* @event : Updating event
* @perms : Permission mask bits
* @ssid,@tsid,@tclass : identifier of an AVC entry
* @seqno : sequence number when decision was made
* @xpd: extended_perms_decision to be added to the node
* @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
*
* if a valid AVC entry doesn't exist,this function returns -ENOENT.
* if kmalloc() called internal returns NULL, this function returns -ENOMEM.
* otherwise, this function updates the AVC entry. The original AVC-entry object
* will release later by RCU.
*/
static int avc_update_node(struct selinux_avc *avc,
u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
u32 tsid, u16 tclass, u32 seqno,
struct extended_perms_decision *xpd,
u32 flags)
{
int hvalue, rc = 0;
unsigned long flag;
struct avc_node *pos, *node, *orig = NULL;
struct hlist_head *head;
spinlock_t *lock;
/*
* If we are in a non-blocking code path, e.g. VFS RCU walk,
* then we must not add permissions to a cache entry
* because we will not audit the denial. Otherwise,
* during the subsequent blocking retry (e.g. VFS ref walk), we
* will find the permissions already granted in the cache entry
* and won't audit anything at all, leading to silent denials in
* permissive mode that only appear when in enforcing mode.
*
* See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
* and selinux_inode_permission().
*/
if (flags & AVC_NONBLOCKING)
return 0;
node = avc_alloc_node(avc);
if (!node) {
rc = -ENOMEM;
goto out;
}
/* Lock the target slot */
hvalue = avc_hash(ssid, tsid, tclass);
head = &avc->avc_cache.slots[hvalue];
lock = &avc->avc_cache.slots_lock[hvalue];
spin_lock_irqsave(lock, flag);
hlist_for_each_entry(pos, head, list) {
if (ssid == pos->ae.ssid &&
tsid == pos->ae.tsid &&
tclass == pos->ae.tclass &&
seqno == pos->ae.avd.seqno){
orig = pos;
break;
}
}
if (!orig) {
rc = -ENOENT;
avc_node_kill(avc, node);
goto out_unlock;
}
/*
* Copy and replace original node.
*/
avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
if (orig->ae.xp_node) {
rc = avc_xperms_populate(node, orig->ae.xp_node);
if (rc) {
avc_node_kill(avc, node);
goto out_unlock;
}
}
switch (event) {
case AVC_CALLBACK_GRANT:
node->ae.avd.allowed |= perms;
if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
break;
case AVC_CALLBACK_TRY_REVOKE:
case AVC_CALLBACK_REVOKE:
node->ae.avd.allowed &= ~perms;
break;
case AVC_CALLBACK_AUDITALLOW_ENABLE:
node->ae.avd.auditallow |= perms;
break;
case AVC_CALLBACK_AUDITALLOW_DISABLE:
node->ae.avd.auditallow &= ~perms;
break;
case AVC_CALLBACK_AUDITDENY_ENABLE:
node->ae.avd.auditdeny |= perms;
break;
case AVC_CALLBACK_AUDITDENY_DISABLE:
node->ae.avd.auditdeny &= ~perms;
break;
case AVC_CALLBACK_ADD_XPERMS:
avc_add_xperms_decision(node, xpd);
break;
}
avc_node_replace(avc, node, orig);
out_unlock:
spin_unlock_irqrestore(lock, flag);
out:
return rc;
}
/**
* avc_flush - Flush the cache
*/
static void avc_flush(struct selinux_avc *avc)
{
struct hlist_head *head;
struct avc_node *node;
spinlock_t *lock;
unsigned long flag;
int i;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
head = &avc->avc_cache.slots[i];
lock = &avc->avc_cache.slots_lock[i];
spin_lock_irqsave(lock, flag);
/*
* With preemptable RCU, the outer spinlock does not
* prevent RCU grace periods from ending.
*/
rcu_read_lock();
hlist_for_each_entry(node, head, list)
avc_node_delete(avc, node);
rcu_read_unlock();
spin_unlock_irqrestore(lock, flag);
}
}
/**
* avc_ss_reset - Flush the cache and revalidate migrated permissions.
* @seqno: policy sequence number
*/
int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
{
struct avc_callback_node *c;
int rc = 0, tmprc;
avc_flush(avc);
for (c = avc_callbacks; c; c = c->next) {
if (c->events & AVC_CALLBACK_RESET) {
tmprc = c->callback(AVC_CALLBACK_RESET);
/* save the first error encountered for the return
value and continue processing the callbacks */
if (!rc)
rc = tmprc;
}
}
avc_latest_notif_update(avc, seqno, 0);
return rc;
}
/*
* Slow-path helper function for avc_has_perm_noaudit,
* when the avc_node lookup fails. We get called with
* the RCU read lock held, and need to return with it
* still held, but drop if for the security compute.
*
* Don't inline this, since it's the slow-path and just
* results in a bigger stack frame.
*/
static noinline
struct avc_node *avc_compute_av(struct selinux_state *state,
u32 ssid, u32 tsid,
u16 tclass, struct av_decision *avd,
struct avc_xperms_node *xp_node)
{
rcu_read_unlock();
INIT_LIST_HEAD(&xp_node->xpd_head);
security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
rcu_read_lock();
return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
}
static noinline int avc_denied(struct selinux_state *state,
u32 ssid, u32 tsid,
u16 tclass, u32 requested,
u8 driver, u8 xperm, unsigned int flags,
struct av_decision *avd)
{
if (flags & AVC_STRICT)
return -EACCES;
if (enforcing_enabled(state) &&
!(avd->flags & AVD_FLAGS_PERMISSIVE))
return -EACCES;
avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
return 0;
}
/*
* The avc extended permissions logic adds an additional 256 bits of
* permissions to an avc node when extended permissions for that node are
* specified in the avtab. If the additional 256 permissions is not adequate,
* as-is the case with ioctls, then multiple may be chained together and the
* driver field is used to specify which set contains the permission.
*/
int avc_has_extended_perms(struct selinux_state *state,
u32 ssid, u32 tsid, u16 tclass, u32 requested,
u8 driver, u8 xperm, struct common_audit_data *ad)
{
struct avc_node *node;
struct av_decision avd;
u32 denied;
struct extended_perms_decision local_xpd;
struct extended_perms_decision *xpd = NULL;
struct extended_perms_data allowed;
struct extended_perms_data auditallow;
struct extended_perms_data dontaudit;
struct avc_xperms_node local_xp_node;
struct avc_xperms_node *xp_node;
int rc = 0, rc2;
xp_node = &local_xp_node;
if (WARN_ON(!requested))
return -EACCES;
rcu_read_lock();
node = avc_lookup(state->avc, ssid, tsid, tclass);
if (unlikely(!node)) {
node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
} else {
memcpy(&avd, &node->ae.avd, sizeof(avd));
xp_node = node->ae.xp_node;
}
/* if extended permissions are not defined, only consider av_decision */
if (!xp_node || !xp_node->xp.len)
goto decision;
local_xpd.allowed = &allowed;
local_xpd.auditallow = &auditallow;
local_xpd.dontaudit = &dontaudit;
xpd = avc_xperms_decision_lookup(driver, xp_node);
if (unlikely(!xpd)) {
/*
* Compute the extended_perms_decision only if the driver
* is flagged
*/
if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
avd.allowed &= ~requested;
goto decision;
}
rcu_read_unlock();
security_compute_xperms_decision(state, ssid, tsid, tclass,
driver, &local_xpd);
rcu_read_lock();
avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
driver, xperm, ssid, tsid, tclass, avd.seqno,
&local_xpd, 0);
} else {
avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
}
xpd = &local_xpd;
if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
avd.allowed &= ~requested;
decision:
denied = requested & ~(avd.allowed);
if (unlikely(denied))
rc = avc_denied(state, ssid, tsid, tclass, requested,
driver, xperm, AVC_EXTENDED_PERMS, &avd);
rcu_read_unlock();
rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
&avd, xpd, xperm, rc, ad);
if (rc2)
return rc2;
return rc;
}
/**
* avc_has_perm_noaudit - Check permissions but perform no auditing.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @flags: AVC_STRICT, AVC_NONBLOCKING, or 0
* @avd: access vector decisions
*
* Check the AVC to determine whether the @requested permissions are granted
* for the SID pair (@ssid, @tsid), interpreting the permissions
* based on @tclass, and call the security server on a cache miss to obtain
* a new decision and add it to the cache. Return a copy of the decisions
* in @avd. Return %0 if all @requested permissions are granted,
* -%EACCES if any permissions are denied, or another -errno upon
* other errors. This function is typically called by avc_has_perm(),
* but may also be called directly to separate permission checking from
* auditing, e.g. in cases where a lock must be held for the check but
* should be released for the auditing.
*/
inline int avc_has_perm_noaudit(struct selinux_state *state,
u32 ssid, u32 tsid,
u16 tclass, u32 requested,
unsigned int flags,
struct av_decision *avd)
{
struct avc_node *node;
struct avc_xperms_node xp_node;
int rc = 0;
u32 denied;
if (WARN_ON(!requested))
return -EACCES;
rcu_read_lock();
node = avc_lookup(state->avc, ssid, tsid, tclass);
if (unlikely(!node))
node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
else
memcpy(avd, &node->ae.avd, sizeof(*avd));
denied = requested & ~(avd->allowed);
if (unlikely(denied))
rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
flags, avd);
rcu_read_unlock();
return rc;
}
/**
* avc_has_perm - Check permissions and perform any appropriate auditing.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @auditdata: auxiliary audit data
*
* Check the AVC to determine whether the @requested permissions are granted
* for the SID pair (@ssid, @tsid), interpreting the permissions
* based on @tclass, and call the security server on a cache miss to obtain
* a new decision and add it to the cache. Audit the granting or denial of
* permissions in accordance with the policy. Return %0 if all @requested
* permissions are granted, -%EACCES if any permissions are denied, or
* another -errno upon other errors.
*/
int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
u32 requested, struct common_audit_data *auditdata)
{
struct av_decision avd;
int rc, rc2;
rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
&avd);
rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
auditdata, 0);
if (rc2)
return rc2;
return rc;
}
int avc_has_perm_flags(struct selinux_state *state,
u32 ssid, u32 tsid, u16 tclass, u32 requested,
struct common_audit_data *auditdata,
int flags)
{
struct av_decision avd;
int rc, rc2;
rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
(flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
&avd);
rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
auditdata, flags);
if (rc2)
return rc2;
return rc;
}
u32 avc_policy_seqno(struct selinux_state *state)
{
return state->avc->avc_cache.latest_notif;
}
void avc_disable(void)
{
/*
* If you are looking at this because you have realized that we are
* not destroying the avc_node_cachep it might be easy to fix, but
* I don't know the memory barrier semantics well enough to know. It's
* possible that some other task dereferenced security_ops when
* it still pointed to selinux operations. If that is the case it's
* possible that it is about to use the avc and is about to need the
* avc_node_cachep. I know I could wrap the security.c security_ops call
* in an rcu_lock, but seriously, it's not worth it. Instead I just flush
* the cache and get that memory back.
*/
if (avc_node_cachep) {
avc_flush(selinux_state.avc);
/* kmem_cache_destroy(avc_node_cachep); */
}
}