Kent Overstreet b601a0f2c3 Update bcachefs sources to 92092a772970 bcachefs: fix bch2_can_do_write_btree()
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2025-12-03 16:58:06 -05:00

1104 lines
33 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_H
#define _BCACHEFS_H
/*
* SOME HIGH LEVEL CODE DOCUMENTATION:
*
* Bcache mostly works with cache sets, cache devices, and backing devices.
*
* Support for multiple cache devices hasn't quite been finished off yet, but
* it's about 95% plumbed through. A cache set and its cache devices is sort of
* like a md raid array and its component devices. Most of the code doesn't care
* about individual cache devices, the main abstraction is the cache set.
*
* Multiple cache devices is intended to give us the ability to mirror dirty
* cached data and metadata, without mirroring clean cached data.
*
* Backing devices are different, in that they have a lifetime independent of a
* cache set. When you register a newly formatted backing device it'll come up
* in passthrough mode, and then you can attach and detach a backing device from
* a cache set at runtime - while it's mounted and in use. Detaching implicitly
* invalidates any cached data for that backing device.
*
* A cache set can have multiple (many) backing devices attached to it.
*
* There's also flash only volumes - this is the reason for the distinction
* between struct cached_dev and struct bcache_device. A flash only volume
* works much like a bcache device that has a backing device, except the
* "cached" data is always dirty. The end result is that we get thin
* provisioning with very little additional code.
*
* Flash only volumes work but they're not production ready because the moving
* garbage collector needs more work. More on that later.
*
* BUCKETS/ALLOCATION:
*
* Bcache is primarily designed for caching, which means that in normal
* operation all of our available space will be allocated. Thus, we need an
* efficient way of deleting things from the cache so we can write new things to
* it.
*
* To do this, we first divide the cache device up into buckets. A bucket is the
* unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
* works efficiently.
*
* Each bucket has a 16 bit priority, and an 8 bit generation associated with
* it. The gens and priorities for all the buckets are stored contiguously and
* packed on disk (in a linked list of buckets - aside from the superblock, all
* of bcache's metadata is stored in buckets).
*
* The priority is used to implement an LRU. We reset a bucket's priority when
* we allocate it or on cache it, and every so often we decrement the priority
* of each bucket. It could be used to implement something more sophisticated,
* if anyone ever gets around to it.
*
* The generation is used for invalidating buckets. Each pointer also has an 8
* bit generation embedded in it; for a pointer to be considered valid, its gen
* must match the gen of the bucket it points into. Thus, to reuse a bucket all
* we have to do is increment its gen (and write its new gen to disk; we batch
* this up).
*
* Bcache is entirely COW - we never write twice to a bucket, even buckets that
* contain metadata (including btree nodes).
*
* THE BTREE:
*
* Bcache is in large part design around the btree.
*
* At a high level, the btree is just an index of key -> ptr tuples.
*
* Keys represent extents, and thus have a size field. Keys also have a variable
* number of pointers attached to them (potentially zero, which is handy for
* invalidating the cache).
*
* The key itself is an inode:offset pair. The inode number corresponds to a
* backing device or a flash only volume. The offset is the ending offset of the
* extent within the inode - not the starting offset; this makes lookups
* slightly more convenient.
*
* Pointers contain the cache device id, the offset on that device, and an 8 bit
* generation number. More on the gen later.
*
* Index lookups are not fully abstracted - cache lookups in particular are
* still somewhat mixed in with the btree code, but things are headed in that
* direction.
*
* Updates are fairly well abstracted, though. There are two different ways of
* updating the btree; insert and replace.
*
* BTREE_INSERT will just take a list of keys and insert them into the btree -
* overwriting (possibly only partially) any extents they overlap with. This is
* used to update the index after a write.
*
* BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
* overwriting a key that matches another given key. This is used for inserting
* data into the cache after a cache miss, and for background writeback, and for
* the moving garbage collector.
*
* There is no "delete" operation; deleting things from the index is
* accomplished by either by invalidating pointers (by incrementing a bucket's
* gen) or by inserting a key with 0 pointers - which will overwrite anything
* previously present at that location in the index.
*
* This means that there are always stale/invalid keys in the btree. They're
* filtered out by the code that iterates through a btree node, and removed when
* a btree node is rewritten.
*
* BTREE NODES:
*
* Our unit of allocation is a bucket, and we can't arbitrarily allocate and
* free smaller than a bucket - so, that's how big our btree nodes are.
*
* (If buckets are really big we'll only use part of the bucket for a btree node
* - no less than 1/4th - but a bucket still contains no more than a single
* btree node. I'd actually like to change this, but for now we rely on the
* bucket's gen for deleting btree nodes when we rewrite/split a node.)
*
* Anyways, btree nodes are big - big enough to be inefficient with a textbook
* btree implementation.
*
* The way this is solved is that btree nodes are internally log structured; we
* can append new keys to an existing btree node without rewriting it. This
* means each set of keys we write is sorted, but the node is not.
*
* We maintain this log structure in memory - keeping 1Mb of keys sorted would
* be expensive, and we have to distinguish between the keys we have written and
* the keys we haven't. So to do a lookup in a btree node, we have to search
* each sorted set. But we do merge written sets together lazily, so the cost of
* these extra searches is quite low (normally most of the keys in a btree node
* will be in one big set, and then there'll be one or two sets that are much
* smaller).
*
* This log structure makes bcache's btree more of a hybrid between a
* conventional btree and a compacting data structure, with some of the
* advantages of both.
*
* GARBAGE COLLECTION:
*
* We can't just invalidate any bucket - it might contain dirty data or
* metadata. If it once contained dirty data, other writes might overwrite it
* later, leaving no valid pointers into that bucket in the index.
*
* Thus, the primary purpose of garbage collection is to find buckets to reuse.
* It also counts how much valid data it each bucket currently contains, so that
* allocation can reuse buckets sooner when they've been mostly overwritten.
*
* It also does some things that are really internal to the btree
* implementation. If a btree node contains pointers that are stale by more than
* some threshold, it rewrites the btree node to avoid the bucket's generation
* wrapping around. It also merges adjacent btree nodes if they're empty enough.
*
* THE JOURNAL:
*
* Bcache's journal is not necessary for consistency; we always strictly
* order metadata writes so that the btree and everything else is consistent on
* disk in the event of an unclean shutdown, and in fact bcache had writeback
* caching (with recovery from unclean shutdown) before journalling was
* implemented.
*
* Rather, the journal is purely a performance optimization; we can't complete a
* write until we've updated the index on disk, otherwise the cache would be
* inconsistent in the event of an unclean shutdown. This means that without the
* journal, on random write workloads we constantly have to update all the leaf
* nodes in the btree, and those writes will be mostly empty (appending at most
* a few keys each) - highly inefficient in terms of amount of metadata writes,
* and it puts more strain on the various btree resorting/compacting code.
*
* The journal is just a log of keys we've inserted; on startup we just reinsert
* all the keys in the open journal entries. That means that when we're updating
* a node in the btree, we can wait until a 4k block of keys fills up before
* writing them out.
*
* For simplicity, we only journal updates to leaf nodes; updates to parent
* nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
* the complexity to deal with journalling them (in particular, journal replay)
* - updates to non leaf nodes just happen synchronously (see btree_split()).
*/
#undef pr_fmt
#ifdef __KERNEL__
#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
#else
#define pr_fmt(fmt) "%s() " fmt "\n", __func__
#endif
#ifdef CONFIG_BCACHEFS_DEBUG
#define ENUMERATED_REF_DEBUG
#endif
#ifdef __KERNEL__
#define CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS
#endif
#ifndef dynamic_fault
#define dynamic_fault(...) 0
#endif
#define race_fault(...) dynamic_fault("bcachefs:race")
#include <linux/backing-dev-defs.h>
#include <linux/bug.h>
#include <linux/bio.h>
#include <linux/kobject.h>
#include <linux/list.h>
#include <linux/math64.h>
#include <linux/mutex.h>
#include <linux/percpu-refcount.h>
#include <linux/percpu-rwsem.h>
#include <linux/refcount.h>
#include <linux/rhashtable.h>
#include <linux/rwsem.h>
#include <linux/semaphore.h>
#include <linux/seqlock.h>
#include <linux/shrinker.h>
#include <linux/srcu.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/zstd.h>
#include <linux/unicode.h>
#include "bcachefs_format.h"
#include "errcode.h"
#include "opts.h"
#include "closure.h"
#include "util/clock_types.h"
#include "util/enumerated_ref_types.h"
#include "util/fast_list.h"
#include "util/fifo.h"
#include "util/seqmutex.h"
#include "util/time_stats.h"
#include "util/thread_with_file_types.h"
#include "util/util.h"
#include "alloc/accounting_types.h"
#include "alloc/buckets_types.h"
#include "alloc/buckets_waiting_for_journal_types.h"
#include "alloc/disk_groups_types.h"
#include "alloc/replicas_types.h"
#include "alloc/types.h"
#include "btree/check_types.h"
#include "btree/journal_overlay_types.h"
#include "btree/types.h"
#include "data/compress_types.h"
#include "data/copygc_types.h"
#include "data/ec_types.h"
#include "data/keylist_types.h"
#include "data/nocow_locking_types.h"
#include "data/reconcile_types.h"
#include "debug/async_objs_types.h"
#include "debug/trace.h"
#include "fs/quota_types.h"
#include "init/error_types.h"
#include "init/passes_types.h"
#include "init/dev_types.h"
#include "journal/types.h"
#include "sb/counters_types.h"
#include "sb/io_types.h"
#include "sb/members_types.h"
#include "snapshots/snapshot_types.h"
#include "snapshots/subvolume_types.h"
#include "vfs/types.h"
#define bch2_fs_init_fault(name) \
dynamic_fault("bcachefs:bch_fs_init:" name)
#define bch2_meta_read_fault(name) \
dynamic_fault("bcachefs:meta:read:" name)
#define bch2_meta_write_fault(name) \
dynamic_fault("bcachefs:meta:write:" name)
#ifdef __KERNEL__
#define BCACHEFS_LOG_PREFIX
#endif
#ifdef BCACHEFS_LOG_PREFIX
#define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, bch2_fs_name(_c)
#define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", bch2_dev_name(_ca)
#define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
#define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
"bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
#else
#define bch2_log_msg(_c, fmt) fmt
#define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name)
#define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
#define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum)
#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
"inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
#endif
#define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n")
void bch2_print_str_loglevel(struct bch_fs *, int, const char *);
void bch2_print_str(struct bch_fs *, const char *, const char *);
__printf(2, 3)
void bch2_print_opts(struct bch_opts *, const char *, ...);
__printf(2, 3)
void __bch2_print(struct bch_fs *c, const char *fmt, ...);
#define maybe_dev_to_fs(_c) _Generic((_c), \
struct bch_dev *: ((struct bch_dev *) (_c))->fs, \
struct bch_fs *: (_c))
#define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
#define __bch2_ratelimit(_c, _rs) \
(!(_c)->opts.ratelimit_errors || !__ratelimit(_rs))
#define bch2_ratelimit(_c) \
({ \
static DEFINE_RATELIMIT_STATE(rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
\
__bch2_ratelimit(_c, &rs); \
})
#define bch2_print_ratelimited(_c, ...) \
do { \
if (!bch2_ratelimit(_c)) \
bch2_print(_c, __VA_ARGS__); \
} while (0)
#define bch_log(c, loglevel, fmt, ...) \
bch2_print(c, loglevel bch2_fmt(c, fmt), ##__VA_ARGS__)
#define bch_log_ratelimited(c, loglevel, fmt, ...) \
bch2_print_ratelimited(c, loglevel bch2_fmt(c, fmt), ##__VA_ARGS__)
#define bch_err(c, ...) bch_log(c, KERN_ERR, __VA_ARGS__)
#define bch_err_ratelimited(c, ...) bch_log_ratelimited(c, KERN_ERR, __VA_ARGS__)
#define bch_warn(c, ...) bch_log(c, KERN_WARNING, __VA_ARGS__)
#define bch_warn_ratelimited(c, ...) bch_log_ratelimited(c, KERN_WARNING, __VA_ARGS__)
#define bch_notice(c, ...) bch_log(c, KERN_NOTICE, __VA_ARGS__)
#define bch_info(c, ...) bch_log(c, KERN_INFO, __VA_ARGS__)
#define bch_info_ratelimited(c, ...) bch_log_ratelimited(c, KERN_INFO, __VA_ARGS__)
#define bch_verbose(c, ...) bch_log(c, KERN_DEBUG, __VA_ARGS__)
#define bch_verbose_ratelimited(c, ...) bch_log_ratelimited(c, KERN_DEBUG, __VA_ARGS__)
#define bch_dev_log(ca, loglevel, fmt, ...) \
bch2_print(ca->fs, loglevel bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
#define bch_err_dev(ca, ...) bch_dev_log(ca, KERN_ERR, __VA_ARGS__)
#define bch_notice_dev(ca, ...) bch_dev_log(ca, KERN_NOTICE, __VA_ARGS__)
#define bch_info_dev(ca, ...) bch_dev_log(ca, KERN_INFO, __VA_ARGS__)
#define bch_verbose_dev(ca, ...) bch_dev_log(ca, KERN_DEBUG, __VA_ARGS__)
#define bch_err_dev_ratelimited(ca, ...) \
do { \
if (!bch2_ratelimit(ca->fs)) \
bch_err_dev(ca, __VA_ARGS__); \
} while (0)
static inline bool should_print_err(int err)
{
return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
}
#define bch_err_fn(_c, _ret) \
do { \
if (should_print_err(_ret)) \
bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
} while (0)
#define bch_err_fn_ratelimited(_c, _ret) \
do { \
if (should_print_err(_ret)) \
bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
} while (0)
#define bch_err_msg(_c, _ret, _msg, ...) \
do { \
if (should_print_err(_ret)) \
bch_err(_c, "%s(): error " _msg " %s", __func__, \
##__VA_ARGS__, bch2_err_str(_ret)); \
} while (0)
#define bch_err_fn_dev(_ca, _ret) \
do { \
if (should_print_err(_ret)) \
bch_err_dev(_ca, "%s(): error %s", __func__, bch2_err_str(_ret));\
} while (0)
#define bch_err_msg_dev(_ca, _ret, _msg, ...) \
do { \
if (should_print_err(_ret)) \
bch_err_dev(_ca, "%s(): error " _msg " %s", __func__, \
##__VA_ARGS__, bch2_err_str(_ret)); \
} while (0)
/* Parameters that are useful for debugging, but should always be compiled in: */
#define BCH_DEBUG_PARAMS_ALWAYS() \
BCH_DEBUG_PARAM(key_merging_disabled, \
"Disables merging of extents") \
BCH_DEBUG_PARAM(btree_node_merging_disabled, \
"Disables merging of btree nodes") \
BCH_DEBUG_PARAM(btree_gc_always_rewrite, \
"Causes mark and sweep to compact and rewrite every " \
"btree node it traverses") \
BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \
"Disables rewriting of btree nodes during mark and sweep")\
BCH_DEBUG_PARAM(btree_shrinker_disabled, \
"Disables the shrinker callback for the btree node cache")\
BCH_DEBUG_PARAM(verify_btree_ondisk, \
"Reread btree nodes at various points to verify the " \
"mergesort in the read path against modifications " \
"done in memory") \
BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \
"Don't use the write buffer for backpointers, enabling "\
"extra runtime checks") \
BCH_DEBUG_PARAM(debug_check_btree_locking, \
"Enable additional asserts for btree locking") \
BCH_DEBUG_PARAM(debug_check_iterators, \
"Enables extra verification for btree iterators") \
BCH_DEBUG_PARAM(debug_check_bset_lookups, \
"Enables extra verification for bset lookups") \
BCH_DEBUG_PARAM(debug_check_btree_accounting, \
"Verify btree accounting for keys within a node") \
BCH_DEBUG_PARAM(debug_check_bkey_unpack, \
"Enables extra verification for bkey unpack")
/* Parameters that should only be compiled in debug mode: */
#define BCH_DEBUG_PARAMS_DEBUG() \
BCH_DEBUG_PARAM(journal_seq_verify, \
"Store the journal sequence number in the version " \
"number of every btree key, and verify that btree " \
"update ordering is preserved during recovery") \
BCH_DEBUG_PARAM(inject_invalid_keys, \
"Store the journal sequence number in the version " \
"number of every btree key, and verify that btree " \
"update ordering is preserved during recovery") \
BCH_DEBUG_PARAM(test_alloc_startup, \
"Force allocator startup to use the slowpath where it" \
"can't find enough free buckets without invalidating" \
"cached data") \
BCH_DEBUG_PARAM(force_reconstruct_read, \
"Force reads to use the reconstruct path, when reading" \
"from erasure coded extents") \
BCH_DEBUG_PARAM(test_restart_gc, \
"Test restarting mark and sweep gc when bucket gens change")
#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
#ifdef CONFIG_BCACHEFS_DEBUG
#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
#else
#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
#endif
#define BCH_DEBUG_PARAM(name, description) extern struct static_key_false bch2_##name;
BCH_DEBUG_PARAMS_ALL()
#undef BCH_DEBUG_PARAM
#define BCH_TIME_STATS() \
x(btree_node_mem_alloc) \
x(btree_node_split) \
x(btree_node_compact) \
x(btree_node_merge) \
x(btree_node_sort) \
x(btree_node_read) \
x(btree_node_read_done) \
x(btree_node_write) \
x(btree_interior_update_foreground) \
x(btree_interior_update_total) \
x(btree_write_buffer_flush) \
x(btree_gc) \
x(data_write) \
x(data_read) \
x(data_promote) \
x(journal_flush_write) \
x(journal_noflush_write) \
x(journal_flush_seq) \
x(blocked_journal_low_on_space) \
x(blocked_journal_low_on_pin) \
x(blocked_journal_max_in_flight) \
x(blocked_journal_max_open) \
x(blocked_key_cache_flush) \
x(blocked_allocate) \
x(blocked_allocate_open_bucket) \
x(blocked_write_buffer_full) \
x(blocked_writeback_throttle) \
x(nocow_lock_contended)
enum bch_time_stats {
#define x(name) BCH_TIME_##name,
BCH_TIME_STATS()
#undef x
BCH_TIME_STAT_NR
};
/* Number of nodes btree coalesce will try to coalesce at once */
#define GC_MERGE_NODES 4U
#define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
struct btree;
struct io_count {
u64 sectors[2][BCH_DATA_NR];
};
struct discard_in_flight {
bool in_progress:1;
u64 bucket:63;
};
#define BCH_DEV_READ_REFS() \
x(bch2_online_devs) \
x(trans_mark_dev_sbs) \
x(read_fua_test) \
x(sb_field_resize) \
x(write_super) \
x(journal_read) \
x(fs_journal_alloc) \
x(fs_resize_on_mount) \
x(sb_journal_sort) \
x(btree_node_read) \
x(btree_node_read_all_replicas) \
x(btree_node_scrub) \
x(btree_node_write) \
x(btree_node_scan) \
x(btree_verify_replicas) \
x(btree_node_ondisk_to_text) \
x(io_read) \
x(check_extent_checksums) \
x(ec_block)
enum bch_dev_read_ref {
#define x(n) BCH_DEV_READ_REF_##n,
BCH_DEV_READ_REFS()
#undef x
BCH_DEV_READ_REF_NR,
};
#define BCH_DEV_WRITE_REFS() \
x(journal_write) \
x(journal_do_discards) \
x(dev_do_discards) \
x(discard_one_bucket_fast) \
x(do_invalidates) \
x(nocow_flush) \
x(io_write) \
x(ec_block) \
x(ec_bucket_zero)
enum bch_dev_write_ref {
#define x(n) BCH_DEV_WRITE_REF_##n,
BCH_DEV_WRITE_REFS()
#undef x
BCH_DEV_WRITE_REF_NR,
};
struct bucket_bitmap {
unsigned long *buckets;
u64 nr;
struct mutex lock;
};
struct bch_dev {
struct kobject kobj;
#ifdef CONFIG_BCACHEFS_DEBUG
atomic_long_t ref;
bool dying;
unsigned long last_put;
#else
struct percpu_ref ref;
#endif
struct completion ref_completion;
struct enumerated_ref io_ref[2];
struct bch_fs *fs;
u8 dev_idx;
/*
* Cached version of this device's member info from superblock
* Committed by bch2_write_super() -> bch_fs_mi_update()
*/
struct bch_member_cpu mi;
u64 btree_allocated_bitmap_gc;
atomic64_t errors[BCH_MEMBER_ERROR_NR];
unsigned long write_errors_start;
__uuid_t uuid;
char name[BDEVNAME_SIZE];
struct bch_sb_handle disk_sb;
struct bch_sb *sb_read_scratch;
int sb_write_error;
dev_t dev;
atomic_t flush_seq;
struct bch_devs_mask self;
/*
* Buckets:
* Per-bucket arrays are protected by either rcu_read_lock or
* state_lock, for device resize.
*/
GENRADIX(struct bucket) buckets_gc;
struct bucket_gens __rcu *bucket_gens;
u8 *oldest_gen;
unsigned long *buckets_nouse;
struct bucket_bitmap bucket_backpointer_mismatch;
struct bucket_bitmap bucket_backpointer_empty;
struct bch_dev_usage_full __percpu
*usage;
/* Allocator: */
u64 alloc_cursor[3];
unsigned nr_open_buckets;
unsigned nr_partial_buckets;
unsigned nr_btree_reserve;
struct work_struct invalidate_work;
struct work_struct discard_work;
struct mutex discard_buckets_in_flight_lock;
DARRAY(struct discard_in_flight) discard_buckets_in_flight;
struct work_struct discard_fast_work;
atomic64_t rebalance_work;
struct journal_device journal;
u64 prev_journal_sector;
struct work_struct io_error_work;
/* The rest of this all shows up in sysfs */
atomic64_t cur_latency[2];
struct bch2_time_stats_quantiles io_latency[2];
#define CONGESTED_MAX 1024
atomic_t congested;
u64 congested_last;
struct io_count __percpu *io_done;
};
/*
* initial_gc_unfixed
* error
* topology error
*/
#define BCH_FS_FLAGS() \
x(new_fs) \
x(started) \
x(clean_recovery) \
x(btree_running) \
x(accounting_replay_done) \
x(may_go_rw) \
x(may_upgrade_downgrade) \
x(rw) \
x(rw_init_done) \
x(was_rw) \
x(stopping) \
x(emergency_ro) \
x(going_ro) \
x(write_disable_complete) \
x(clean_shutdown) \
x(in_recovery) \
x(in_fsck) \
x(initial_gc_unfixed) \
x(need_delete_dead_snapshots) \
x(error) \
x(topology_error) \
x(errors_fixed) \
x(errors_fixed_silent) \
x(errors_not_fixed) \
x(no_invalid_checks) \
x(discard_mount_opt_set) \
enum bch_fs_flags {
#define x(n) BCH_FS_##n,
BCH_FS_FLAGS()
#undef x
};
struct btree_debug {
unsigned id;
};
#define BCH_LINK_MAX U32_MAX
struct journal_seq_blacklist_table {
size_t nr;
struct journal_seq_blacklist_table_entry {
u64 start;
u64 end;
bool dirty;
} entries[];
};
#define BCH_WRITE_REFS() \
x(journal) \
x(trans) \
x(write) \
x(promote) \
x(node_rewrite) \
x(stripe_create) \
x(stripe_delete) \
x(reflink) \
x(fallocate) \
x(fsync) \
x(dio_write) \
x(discard) \
x(discard_fast) \
x(check_discard_freespace_key) \
x(invalidate) \
x(delete_dead_snapshots) \
x(gc_gens) \
x(snapshot_delete_pagecache) \
x(sysfs) \
x(btree_write_buffer) \
x(btree_node_scrub) \
x(async_recovery_passes) \
x(ioctl_data)
enum bch_write_ref {
#define x(n) BCH_WRITE_REF_##n,
BCH_WRITE_REFS()
#undef x
BCH_WRITE_REF_NR,
};
#define BCH_FS_DEFAULT_UTF8_ENCODING UNICODE_AGE(12, 1, 0)
struct bch_fs {
struct closure cl;
struct list_head list;
struct kobject kobj;
struct kobject counters_kobj;
struct kobject internal;
struct kobject opts_dir;
struct kobject time_stats;
unsigned long flags;
int minor;
struct device *chardev;
struct super_block *vfs_sb;
dev_t dev;
char name[40];
struct stdio_redirect *stdio;
struct task_struct *stdio_filter;
unsigned loglevel;
unsigned prev_loglevel;
/*
* Certain operations are only allowed in single threaded mode, during
* recovery, and we want to assert that this is the case:
*/
struct task_struct *recovery_task;
/* ro/rw, add/remove/resize devices: */
struct rw_semaphore state_lock;
/* Counts outstanding writes, for clean transition to read-only */
struct enumerated_ref writes;
/*
* Analagous to c->writes, for asynchronous ops that don't necessarily
* need fs to be read-write
*/
refcount_t ro_ref;
wait_queue_head_t ro_ref_wait;
struct work_struct read_only_work;
struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX];
struct bch_devs_mask devs_online;
struct bch_devs_mask devs_removed;
struct bch_devs_mask devs_rotational;
u8 extent_type_u64s[31];
u8 extent_types_known;
struct bch_opts opts;
atomic_t opt_change_cookie;
struct bch_sb_cpu sb;
struct bch_sb_handle disk_sb;
struct closure sb_write;
struct mutex sb_lock;
unsigned long incompat_versions_requested[BITS_TO_LONGS(BCH_VERSION_MINOR(bcachefs_metadata_version_current))];
struct unicode_map *cf_encoding;
unsigned short block_bits; /* ilog2(block_size) */
struct delayed_work maybe_schedule_btree_bitmap_gc;
struct bch_fs_counters counters;
struct bch2_time_stats times[BCH_TIME_STAT_NR];
struct bch_fs_errors errors;
#ifdef CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS
struct async_obj_list async_objs[BCH_ASYNC_OBJ_NR];
#endif
struct journal journal;
u64 journal_replay_seq_start;
u64 journal_replay_seq_end;
GENRADIX(struct journal_replay *) journal_entries;
u64 journal_entries_base_seq;
struct journal_keys journal_keys;
struct list_head journal_iters;
struct journal_seq_blacklist_table *journal_seq_blacklist_table;
struct bch_fs_recovery recovery;
struct bch_fs_btree btree;
struct bch_fs_gc gc;
struct bch_fs_gc_gens gc_gens;
struct bch_accounting_mem accounting;
struct bch_replicas_cpu replicas;
struct bch_disk_groups_cpu __rcu *disk_groups;
struct bch_fs_capacity capacity;
struct bch_fs_allocator allocator;
struct buckets_waiting_for_journal buckets_waiting_for_journal;
struct bch_fs_snapshots snapshots;
spinlock_t write_error_lock;
/*
* Use a dedicated wq for write ref holder tasks. Required to avoid
* dependency problems with other wq tasks that can block on ref
* draining, such as read-only transition.
*/
struct workqueue_struct *write_ref_wq;
struct workqueue_struct *promote_wq;
struct semaphore __percpu *promote_limit;
struct io_clock io_clock[2];
struct journal_entry_res clock_journal_res;
/* IO PATH */
struct workqueue_struct *btree_update_wq;
struct bio_set bio_read;
struct bio_set bio_read_split;
struct bio_set bio_write;
struct bio_set replica_set;
struct mutex bio_bounce_pages_lock;
mempool_t bio_bounce_bufs;
struct bucket_nocow_lock_table
nocow_locks;
struct rhashtable promote_table;
struct bch_key chacha20_key;
bool chacha20_key_set;
atomic64_t key_version;
/* MOVE.C */
struct list_head moving_context_list;
struct mutex moving_context_lock;
struct bch_fs_compress compress;
struct bch_fs_reconcile reconcile;
struct bch_fs_copygc copygc;
struct bch_fs_ec ec;
/* REFLINK */
reflink_gc_table reflink_gc_table;
size_t reflink_gc_nr;
#ifndef NO_BCACHEFS_FS
struct bch_fs_vfs vfs;
#endif
/* QUOTAS */
struct bch_memquota_type quotas[QTYP_NR];
/* DEBUG JUNK */
struct dentry *fs_debug_dir;
struct dentry *btree_debug_dir;
struct dentry *async_obj_dir;
struct btree_debug btree_debug[BTREE_ID_NR];
struct btree *verify_data;
struct btree_node *verify_ondisk;
struct mutex verify_lock;
};
static inline int __bch2_err_throw(struct bch_fs *c, int err)
{
this_cpu_inc(c->counters.now[BCH_COUNTER_error_throw]);
trace_error_throw(c, bch2_err_str(err));
return err;
}
#define bch_err_throw(_c, _err) __bch2_err_throw(_c, -BCH_ERR_##_err)
static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
{
if (test_bit(BCH_FS_stopping, &c->flags))
return false;
return refcount_inc_not_zero(&c->ro_ref);
}
static inline void bch2_ro_ref_put(struct bch_fs *c)
{
if (c && refcount_dec_and_test(&c->ro_ref))
wake_up(&c->ro_ref_wait);
}
static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
{
#ifndef NO_BCACHEFS_FS
if (c->vfs_sb)
c->vfs_sb->s_bdi->ra_pages = ra_pages;
#endif
}
static inline unsigned bucket_bytes(const struct bch_dev *ca)
{
return ca->mi.bucket_size << 9;
}
static inline unsigned block_bytes(const struct bch_fs *c)
{
return c->opts.block_size;
}
static inline unsigned block_sectors(const struct bch_fs *c)
{
return c->opts.block_size >> 9;
}
static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
{
struct timespec64 t;
s64 sec;
s32 rem;
time += c->sb.time_base_lo;
sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit);
return t;
}
static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
{
return (ts.tv_sec * c->sb.time_units_per_sec +
(int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
}
static inline s64 bch2_current_time(const struct bch_fs *c)
{
struct timespec64 now;
ktime_get_coarse_real_ts64(&now);
return timespec_to_bch2_time(c, now);
}
static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw)
{
return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX);
}
static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
{
struct stdio_redirect *stdio = c->stdio;
if (c->stdio_filter && c->stdio_filter != current)
stdio = NULL;
return stdio;
}
static inline unsigned metadata_replicas_required(struct bch_fs *c)
{
return min(c->opts.metadata_replicas,
c->opts.metadata_replicas_required);
}
static inline unsigned data_replicas_required(struct bch_fs *c)
{
return min(c->opts.data_replicas,
c->opts.data_replicas_required);
}
#define BKEY_PADDED_ONSTACK(key, pad) \
struct { struct bkey_i key; __u64 key ## _pad[pad]; }
/*
* This is needed because discard is both a filesystem option and a device
* option, and mount options are supposed to apply to that mount and not be
* persisted, i.e. if it's set as a mount option we can't propagate it to the
* device.
*/
static inline bool bch2_discard_opt_enabled(struct bch_fs *c, struct bch_dev *ca)
{
return test_bit(BCH_FS_discard_mount_opt_set, &c->flags)
? c->opts.discard
: ca->mi.discard;
}
static inline int bch2_fs_casefold_enabled(struct bch_fs *c)
{
if (!IS_ENABLED(CONFIG_UNICODE))
return bch_err_throw(c, no_casefolding_without_utf8);
if (c->opts.casefold_disabled)
return bch_err_throw(c, casefolding_disabled);
return 0;
}
static inline const char *strip_bch2(const char *msg)
{
if (!strncmp("bch2_", msg, 5))
return msg + 5;
return msg;
}
static inline const char *bch2_fs_name(const struct bch_fs *c)
{
return c->name;
}
static inline const char *bch2_dev_name(const struct bch_dev *ca)
{
return ca->name;
}
static inline bool bch2_dev_rotational(struct bch_fs *c, unsigned dev)
{
return dev != BCH_SB_MEMBER_INVALID && test_bit(dev, c->devs_rotational.d);
}
void __bch2_log_msg_start(const char *, struct printbuf *);
static inline void bch2_log_msg_start(struct bch_fs *c, struct printbuf *out)
{
__bch2_log_msg_start(c->name, out);
}
struct bch_log_msg {
struct bch_fs *c;
u8 loglevel;
struct printbuf m;
};
static inline void bch2_log_msg_exit(struct bch_log_msg *msg)
{
if (!msg->m.suppress)
bch2_print_str_loglevel(msg->c, msg->loglevel, msg->m.buf);
printbuf_exit(&msg->m);
}
static inline struct bch_log_msg bch2_log_msg_init(struct bch_fs *c,
unsigned loglevel,
bool suppress)
{
struct printbuf buf = PRINTBUF;
bch2_log_msg_start(c, &buf);
return (struct bch_log_msg) {
.c = c,
.loglevel = loglevel,
.m = buf,
};
}
DEFINE_CLASS(bch_log_msg, struct bch_log_msg,
bch2_log_msg_exit(&_T),
bch2_log_msg_init(c, 3, false), /* 3 == KERN_ERR */
struct bch_fs *c)
EXTEND_CLASS(bch_log_msg, _level,
bch2_log_msg_init(c, loglevel, false),
struct bch_fs *c, unsigned loglevel)
/*
* Open coded EXTEND_CLASS, because we need the constructor to be a macro for
* ratelimiting to work correctly
*/
typedef class_bch_log_msg_t class_bch_log_msg_ratelimited_t;
static inline void class_bch_log_msg_ratelimited_destructor(class_bch_log_msg_t *p)
{ bch2_log_msg_exit(p); }
#define class_bch_log_msg_ratelimited_constructor(_c) bch2_log_msg_init(_c, 3, bch2_ratelimit(_c))
#endif /* _BCACHEFS_H */