bcachefs-tools/libbcachefs/super-io.c

1591 lines
37 KiB
C

#include "bcachefs.h"
#include "checksum.h"
#include "error.h"
#include "io.h"
#include "super-io.h"
#include "super.h"
#include "vstructs.h"
#include <linux/backing-dev.h>
#include <linux/sort.h>
static int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *);
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *,
struct bch_replicas_cpu *);
/* superblock fields (optional/variable size sections: */
const char * const bch2_sb_fields[] = {
#define x(name, nr) #name,
BCH_SB_FIELDS()
#undef x
NULL
};
#define x(f, nr) \
static const char *bch2_sb_validate_##f(struct bch_sb *, struct bch_sb_field *);
BCH_SB_FIELDS()
#undef x
struct bch_sb_field_ops {
const char * (*validate)(struct bch_sb *, struct bch_sb_field *);
};
static const struct bch_sb_field_ops bch2_sb_field_ops[] = {
#define x(f, nr) \
[BCH_SB_FIELD_##f] = { \
.validate = bch2_sb_validate_##f, \
},
BCH_SB_FIELDS()
#undef x
};
static const char *bch2_sb_field_validate(struct bch_sb *sb,
struct bch_sb_field *f)
{
unsigned type = le32_to_cpu(f->type);
return type < BCH_SB_FIELD_NR
? bch2_sb_field_ops[type].validate(sb, f)
: NULL;
}
struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb,
enum bch_sb_field_type type)
{
struct bch_sb_field *f;
/* XXX: need locking around superblock to access optional fields */
vstruct_for_each(sb, f)
if (le32_to_cpu(f->type) == type)
return f;
return NULL;
}
static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb *sb,
struct bch_sb_field *f,
unsigned u64s)
{
unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0;
if (!f) {
f = vstruct_last(sb);
memset(f, 0, sizeof(u64) * u64s);
f->u64s = cpu_to_le32(u64s);
f->type = 0;
} else {
void *src, *dst;
src = vstruct_end(f);
f->u64s = cpu_to_le32(u64s);
dst = vstruct_end(f);
memmove(dst, src, vstruct_end(sb) - src);
if (dst > src)
memset(src, 0, dst - src);
}
le32_add_cpu(&sb->u64s, u64s - old_u64s);
return f;
}
/* Superblock realloc/free: */
void bch2_free_super(struct bch_sb_handle *sb)
{
if (sb->bio)
bio_put(sb->bio);
if (!IS_ERR_OR_NULL(sb->bdev))
blkdev_put(sb->bdev, sb->mode);
free_pages((unsigned long) sb->sb, sb->page_order);
memset(sb, 0, sizeof(*sb));
}
static int __bch2_super_realloc(struct bch_sb_handle *sb, unsigned order)
{
struct bch_sb *new_sb;
struct bio *bio;
if (sb->page_order >= order && sb->sb)
return 0;
if (dynamic_fault("bcachefs:add:super_realloc"))
return -ENOMEM;
bio = bio_kmalloc(GFP_KERNEL, 1 << order);
if (!bio)
return -ENOMEM;
if (sb->bio)
bio_put(sb->bio);
sb->bio = bio;
new_sb = (void *) __get_free_pages(GFP_KERNEL, order);
if (!new_sb)
return -ENOMEM;
if (sb->sb)
memcpy(new_sb, sb->sb, PAGE_SIZE << sb->page_order);
free_pages((unsigned long) sb->sb, sb->page_order);
sb->sb = new_sb;
sb->page_order = order;
return 0;
}
static int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s)
{
u64 new_bytes = __vstruct_bytes(struct bch_sb, u64s);
u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits;
if (new_bytes > max_bytes) {
char buf[BDEVNAME_SIZE];
pr_err("%s: superblock too big: want %llu but have %llu",
bdevname(sb->bdev, buf), new_bytes, max_bytes);
return -ENOSPC;
}
return __bch2_super_realloc(sb, get_order(new_bytes));
}
static int bch2_fs_sb_realloc(struct bch_fs *c, unsigned u64s)
{
u64 bytes = __vstruct_bytes(struct bch_sb, u64s);
struct bch_sb *sb;
unsigned order = get_order(bytes);
if (c->disk_sb && order <= c->disk_sb_order)
return 0;
sb = (void *) __get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
if (!sb)
return -ENOMEM;
if (c->disk_sb)
memcpy(sb, c->disk_sb, PAGE_SIZE << c->disk_sb_order);
free_pages((unsigned long) c->disk_sb, c->disk_sb_order);
c->disk_sb = sb;
c->disk_sb_order = order;
return 0;
}
struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb,
enum bch_sb_field_type type,
unsigned u64s)
{
struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type);
ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0;
ssize_t d = -old_u64s + u64s;
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d))
return NULL;
f = __bch2_sb_field_resize(sb->sb, f, u64s);
f->type = cpu_to_le32(type);
return f;
}
struct bch_sb_field *bch2_fs_sb_field_resize(struct bch_fs *c,
enum bch_sb_field_type type,
unsigned u64s)
{
struct bch_sb_field *f = bch2_sb_field_get(c->disk_sb, type);
ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0;
ssize_t d = -old_u64s + u64s;
struct bch_dev *ca;
unsigned i;
lockdep_assert_held(&c->sb_lock);
if (bch2_fs_sb_realloc(c, le32_to_cpu(c->disk_sb->u64s) + d))
return NULL;
/* XXX: we're not checking that offline device have enough space */
for_each_online_member(ca, c, i) {
struct bch_sb_handle *sb = &ca->disk_sb;
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) {
percpu_ref_put(&ca->ref);
return NULL;
}
}
f = __bch2_sb_field_resize(c->disk_sb, f, u64s);
f->type = cpu_to_le32(type);
return f;
}
/* Superblock validate: */
static inline void __bch2_sb_layout_size_assert(void)
{
BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512);
}
static const char *validate_sb_layout(struct bch_sb_layout *layout)
{
u64 offset, prev_offset, max_sectors;
unsigned i;
if (uuid_le_cmp(layout->magic, BCACHE_MAGIC))
return "Not a bcachefs superblock layout";
if (layout->layout_type != 0)
return "Invalid superblock layout type";
if (!layout->nr_superblocks)
return "Invalid superblock layout: no superblocks";
if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset))
return "Invalid superblock layout: too many superblocks";
max_sectors = 1 << layout->sb_max_size_bits;
prev_offset = le64_to_cpu(layout->sb_offset[0]);
for (i = 1; i < layout->nr_superblocks; i++) {
offset = le64_to_cpu(layout->sb_offset[i]);
if (offset < prev_offset + max_sectors)
return "Invalid superblock layout: superblocks overlap";
prev_offset = offset;
}
return NULL;
}
const char *bch2_sb_validate(struct bch_sb_handle *disk_sb)
{
struct bch_sb *sb = disk_sb->sb;
struct bch_sb_field *f;
struct bch_sb_field_members *mi;
const char *err;
u16 block_size;
if (le64_to_cpu(sb->version) < BCH_SB_VERSION_MIN ||
le64_to_cpu(sb->version) > BCH_SB_VERSION_MAX)
return"Unsupported superblock version";
if (le64_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_MAX) {
SET_BCH_SB_ENCODED_EXTENT_MAX_BITS(sb, 7);
SET_BCH_SB_POSIX_ACL(sb, 1);
}
block_size = le16_to_cpu(sb->block_size);
if (!is_power_of_2(block_size) ||
block_size > PAGE_SECTORS)
return "Bad block size";
if (bch2_is_zero(sb->user_uuid.b, sizeof(uuid_le)))
return "Bad user UUID";
if (bch2_is_zero(sb->uuid.b, sizeof(uuid_le)))
return "Bad internal UUID";
if (!sb->nr_devices ||
sb->nr_devices <= sb->dev_idx ||
sb->nr_devices > BCH_SB_MEMBERS_MAX)
return "Bad cache device number in set";
if (!BCH_SB_META_REPLICAS_WANT(sb) ||
BCH_SB_META_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of metadata replicas";
if (!BCH_SB_META_REPLICAS_REQ(sb) ||
BCH_SB_META_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of metadata replicas";
if (!BCH_SB_DATA_REPLICAS_WANT(sb) ||
BCH_SB_DATA_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of data replicas";
if (!BCH_SB_DATA_REPLICAS_REQ(sb) ||
BCH_SB_DATA_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of data replicas";
if (BCH_SB_META_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR)
return "Invalid metadata checksum type";
if (BCH_SB_DATA_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR)
return "Invalid metadata checksum type";
if (BCH_SB_COMPRESSION_TYPE(sb) >= BCH_COMPRESSION_OPT_NR)
return "Invalid compression type";
if (!BCH_SB_BTREE_NODE_SIZE(sb))
return "Btree node size not set";
if (!is_power_of_2(BCH_SB_BTREE_NODE_SIZE(sb)))
return "Btree node size not a power of two";
if (BCH_SB_BTREE_NODE_SIZE(sb) > BTREE_NODE_SIZE_MAX)
return "Btree node size too large";
if (BCH_SB_GC_RESERVE(sb) < 5)
return "gc reserve percentage too small";
if (!sb->time_precision ||
le32_to_cpu(sb->time_precision) > NSEC_PER_SEC)
return "invalid time precision";
/* validate layout */
err = validate_sb_layout(&sb->layout);
if (err)
return err;
vstruct_for_each(sb, f) {
if (!f->u64s)
return "Invalid superblock: invalid optional field";
if (vstruct_next(f) > vstruct_last(sb))
return "Invalid superblock: invalid optional field";
}
/* members must be validated first: */
mi = bch2_sb_get_members(sb);
if (!mi)
return "Invalid superblock: member info area missing";
err = bch2_sb_field_validate(sb, &mi->field);
if (err)
return err;
vstruct_for_each(sb, f) {
if (le32_to_cpu(f->type) == BCH_SB_FIELD_members)
continue;
err = bch2_sb_field_validate(sb, f);
if (err)
return err;
}
if (le64_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_NONCE_V1 &&
bch2_sb_get_crypt(sb) &&
BCH_SB_INITIALIZED(sb))
return "Incompatible extent nonces";
sb->version = cpu_to_le64(BCH_SB_VERSION_MAX);
return NULL;
}
/* device open: */
static const char *bch2_blkdev_open(const char *path, fmode_t mode,
void *holder, struct block_device **ret)
{
struct block_device *bdev;
*ret = NULL;
bdev = blkdev_get_by_path(path, mode, holder);
if (bdev == ERR_PTR(-EBUSY))
return "device busy";
if (IS_ERR(bdev))
return "failed to open device";
if (mode & FMODE_WRITE)
bdev_get_queue(bdev)->backing_dev_info->capabilities
|= BDI_CAP_STABLE_WRITES;
*ret = bdev;
return NULL;
}
static void bch2_sb_update(struct bch_fs *c)
{
struct bch_sb *src = c->disk_sb;
struct bch_sb_field_members *mi = bch2_sb_get_members(src);
struct bch_dev *ca;
unsigned i;
lockdep_assert_held(&c->sb_lock);
c->sb.uuid = src->uuid;
c->sb.user_uuid = src->user_uuid;
c->sb.nr_devices = src->nr_devices;
c->sb.clean = BCH_SB_CLEAN(src);
c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src);
c->sb.encoded_extent_max= 1 << BCH_SB_ENCODED_EXTENT_MAX_BITS(src);
c->sb.time_base_lo = le64_to_cpu(src->time_base_lo);
c->sb.time_base_hi = le32_to_cpu(src->time_base_hi);
c->sb.time_precision = le32_to_cpu(src->time_precision);
for_each_member_device(ca, c, i)
ca->mi = bch2_mi_to_cpu(mi->members + i);
}
/* doesn't copy member info */
static void __copy_super(struct bch_sb *dst, struct bch_sb *src)
{
struct bch_sb_field *src_f, *dst_f;
dst->version = src->version;
dst->seq = src->seq;
dst->uuid = src->uuid;
dst->user_uuid = src->user_uuid;
memcpy(dst->label, src->label, sizeof(dst->label));
dst->block_size = src->block_size;
dst->nr_devices = src->nr_devices;
dst->time_base_lo = src->time_base_lo;
dst->time_base_hi = src->time_base_hi;
dst->time_precision = src->time_precision;
memcpy(dst->flags, src->flags, sizeof(dst->flags));
memcpy(dst->features, src->features, sizeof(dst->features));
memcpy(dst->compat, src->compat, sizeof(dst->compat));
vstruct_for_each(src, src_f) {
if (src_f->type == BCH_SB_FIELD_journal)
continue;
dst_f = bch2_sb_field_get(dst, le32_to_cpu(src_f->type));
dst_f = __bch2_sb_field_resize(dst, dst_f,
le32_to_cpu(src_f->u64s));
memcpy(dst_f, src_f, vstruct_bytes(src_f));
}
}
int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src)
{
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(src);
unsigned journal_u64s = journal_buckets
? le32_to_cpu(journal_buckets->field.u64s)
: 0;
int ret;
lockdep_assert_held(&c->sb_lock);
ret = bch2_fs_sb_realloc(c, le32_to_cpu(src->u64s) - journal_u64s);
if (ret)
return ret;
__copy_super(c->disk_sb, src);
ret = bch2_sb_replicas_to_cpu_replicas(c);
if (ret)
return ret;
bch2_sb_update(c);
return 0;
}
int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_sb *src = c->disk_sb, *dst = ca->disk_sb.sb;
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(dst);
unsigned journal_u64s = journal_buckets
? le32_to_cpu(journal_buckets->field.u64s)
: 0;
unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s;
int ret;
ret = bch2_sb_realloc(&ca->disk_sb, u64s);
if (ret)
return ret;
__copy_super(dst, src);
return 0;
}
/* read superblock: */
static const char *read_one_super(struct bch_sb_handle *sb, u64 offset)
{
struct bch_csum csum;
size_t bytes;
unsigned order;
reread:
bio_reset(sb->bio);
sb->bio->bi_bdev = sb->bdev;
sb->bio->bi_iter.bi_sector = offset;
sb->bio->bi_iter.bi_size = PAGE_SIZE << sb->page_order;
bio_set_op_attrs(sb->bio, REQ_OP_READ, REQ_SYNC|REQ_META);
bch2_bio_map(sb->bio, sb->sb);
if (submit_bio_wait(sb->bio))
return "IO error";
if (uuid_le_cmp(sb->sb->magic, BCACHE_MAGIC))
return "Not a bcachefs superblock";
if (le64_to_cpu(sb->sb->version) < BCH_SB_VERSION_MIN ||
le64_to_cpu(sb->sb->version) > BCH_SB_VERSION_MAX)
return"Unsupported superblock version";
bytes = vstruct_bytes(sb->sb);
if (bytes > 512 << sb->sb->layout.sb_max_size_bits)
return "Bad superblock: too big";
order = get_order(bytes);
if (order > sb->page_order) {
if (__bch2_super_realloc(sb, order))
return "cannot allocate memory";
goto reread;
}
if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR)
return "unknown csum type";
/* XXX: verify MACs */
csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb),
null_nonce(), sb->sb);
if (bch2_crc_cmp(csum, sb->sb->csum))
return "bad checksum reading superblock";
return NULL;
}
const char *bch2_read_super(const char *path,
struct bch_opts opts,
struct bch_sb_handle *ret)
{
u64 offset = opt_get(opts, sb);
struct bch_sb_layout layout;
const char *err;
unsigned i;
memset(ret, 0, sizeof(*ret));
ret->mode = FMODE_READ;
if (!opt_get(opts, noexcl))
ret->mode |= FMODE_EXCL;
if (!opt_get(opts, nochanges))
ret->mode |= FMODE_WRITE;
err = bch2_blkdev_open(path, ret->mode, ret, &ret->bdev);
if (err)
return err;
err = "cannot allocate memory";
if (__bch2_super_realloc(ret, 0))
goto err;
err = "dynamic fault";
if (bch2_fs_init_fault("read_super"))
goto err;
err = read_one_super(ret, offset);
if (!err)
goto got_super;
if (offset != BCH_SB_SECTOR) {
pr_err("error reading superblock: %s", err);
goto err;
}
pr_err("error reading default superblock: %s", err);
/*
* Error reading primary superblock - read location of backup
* superblocks:
*/
bio_reset(ret->bio);
ret->bio->bi_bdev = ret->bdev;
ret->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR;
ret->bio->bi_iter.bi_size = sizeof(struct bch_sb_layout);
bio_set_op_attrs(ret->bio, REQ_OP_READ, REQ_SYNC|REQ_META);
/*
* use sb buffer to read layout, since sb buffer is page aligned but
* layout won't be:
*/
bch2_bio_map(ret->bio, ret->sb);
err = "IO error";
if (submit_bio_wait(ret->bio))
goto err;
memcpy(&layout, ret->sb, sizeof(layout));
err = validate_sb_layout(&layout);
if (err)
goto err;
for (i = 0; i < layout.nr_superblocks; i++) {
u64 offset = le64_to_cpu(layout.sb_offset[i]);
if (offset == BCH_SB_SECTOR)
continue;
err = read_one_super(ret, offset);
if (!err)
goto got_super;
}
goto err;
got_super:
pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
le64_to_cpu(ret->sb->version),
le64_to_cpu(ret->sb->flags[0]),
le64_to_cpu(ret->sb->seq),
le32_to_cpu(ret->sb->u64s));
err = "Superblock block size smaller than device block size";
if (le16_to_cpu(ret->sb->block_size) << 9 <
bdev_logical_block_size(ret->bdev))
goto err;
return NULL;
err:
bch2_free_super(ret);
return err;
}
/* write superblock: */
static void write_super_endio(struct bio *bio)
{
struct bch_dev *ca = bio->bi_private;
/* XXX: return errors directly */
if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write"))
ca->sb_write_error = 1;
closure_put(&ca->fs->sb_write);
percpu_ref_put(&ca->io_ref);
}
static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx)
{
struct bch_sb *sb = ca->disk_sb.sb;
struct bio *bio = ca->disk_sb.bio;
sb->offset = sb->layout.sb_offset[idx];
SET_BCH_SB_CSUM_TYPE(sb, c->opts.metadata_checksum);
sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb),
null_nonce(), sb);
bio_reset(bio);
bio->bi_bdev = ca->disk_sb.bdev;
bio->bi_iter.bi_sector = le64_to_cpu(sb->offset);
bio->bi_iter.bi_size =
roundup(vstruct_bytes(sb),
bdev_logical_block_size(ca->disk_sb.bdev));
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
bch2_bio_map(bio, sb);
this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_SB],
bio_sectors(bio));
percpu_ref_get(&ca->io_ref);
closure_bio_submit(bio, &c->sb_write);
}
void bch2_write_super(struct bch_fs *c)
{
struct closure *cl = &c->sb_write;
struct bch_dev *ca;
unsigned i, sb = 0, nr_wrote;
const char *err;
struct bch_devs_mask sb_written;
bool wrote, can_mount_without_written, can_mount_with_written;
lockdep_assert_held(&c->sb_lock);
closure_init_stack(cl);
memset(&sb_written, 0, sizeof(sb_written));
le64_add_cpu(&c->disk_sb->seq, 1);
for_each_online_member(ca, c, i)
bch2_sb_from_fs(c, ca);
for_each_online_member(ca, c, i) {
err = bch2_sb_validate(&ca->disk_sb);
if (err) {
bch2_fs_inconsistent(c, "sb invalid before write: %s", err);
goto out;
}
}
if (c->opts.nochanges ||
test_bit(BCH_FS_ERROR, &c->flags))
goto out;
for_each_online_member(ca, c, i) {
__set_bit(ca->dev_idx, sb_written.d);
ca->sb_write_error = 0;
}
do {
wrote = false;
for_each_online_member(ca, c, i)
if (sb < ca->disk_sb.sb->layout.nr_superblocks) {
write_one_super(c, ca, sb);
wrote = true;
}
closure_sync(cl);
sb++;
} while (wrote);
for_each_online_member(ca, c, i)
if (ca->sb_write_error)
__clear_bit(ca->dev_idx, sb_written.d);
nr_wrote = dev_mask_nr(&sb_written);
can_mount_with_written =
bch2_have_enough_devs(c,
__bch2_replicas_status(c, sb_written),
BCH_FORCE_IF_DEGRADED);
for (i = 0; i < ARRAY_SIZE(sb_written.d); i++)
sb_written.d[i] = ~sb_written.d[i];
can_mount_without_written =
bch2_have_enough_devs(c,
__bch2_replicas_status(c, sb_written),
BCH_FORCE_IF_DEGRADED);
/*
* If we would be able to mount _without_ the devices we successfully
* wrote superblocks to, we weren't able to write to enough devices:
*
* Exception: if we can mount without the successes because we haven't
* written anything (new filesystem), we continue if we'd be able to
* mount with the devices we did successfully write to:
*/
bch2_fs_fatal_err_on(!nr_wrote ||
(can_mount_without_written &&
!can_mount_with_written), c,
"Unable to write superblock to sufficient devices");
out:
/* Make new options visible after they're persistent: */
bch2_sb_update(c);
}
/* BCH_SB_FIELD_journal: */
static int u64_cmp(const void *_l, const void *_r)
{
u64 l = *((const u64 *) _l), r = *((const u64 *) _r);
return l < r ? -1 : l > r ? 1 : 0;
}
static const char *bch2_sb_validate_journal(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_journal *journal = field_to_type(f, journal);
struct bch_member *m = bch2_sb_get_members(sb)->members + sb->dev_idx;
const char *err;
unsigned nr;
unsigned i;
u64 *b;
journal = bch2_sb_get_journal(sb);
if (!journal)
return NULL;
nr = bch2_nr_journal_buckets(journal);
if (!nr)
return NULL;
b = kmalloc_array(sizeof(u64), nr, GFP_KERNEL);
if (!b)
return "cannot allocate memory";
for (i = 0; i < nr; i++)
b[i] = le64_to_cpu(journal->buckets[i]);
sort(b, nr, sizeof(u64), u64_cmp, NULL);
err = "journal bucket at sector 0";
if (!b[0])
goto err;
err = "journal bucket before first bucket";
if (m && b[0] < le16_to_cpu(m->first_bucket))
goto err;
err = "journal bucket past end of device";
if (m && b[nr - 1] >= le64_to_cpu(m->nbuckets))
goto err;
err = "duplicate journal buckets";
for (i = 0; i + 1 < nr; i++)
if (b[i] == b[i + 1])
goto err;
err = NULL;
err:
kfree(b);
return err;
}
/* BCH_SB_FIELD_members: */
static const char *bch2_sb_validate_members(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
struct bch_member *m;
if ((void *) (mi->members + sb->nr_devices) >
vstruct_end(&mi->field))
return "Invalid superblock: bad member info";
for (m = mi->members;
m < mi->members + sb->nr_devices;
m++) {
if (!bch2_member_exists(m))
continue;
if (le64_to_cpu(m->nbuckets) > LONG_MAX)
return "Too many buckets";
if (le64_to_cpu(m->nbuckets) -
le16_to_cpu(m->first_bucket) < 1 << 10)
return "Not enough buckets";
if (le16_to_cpu(m->bucket_size) <
le16_to_cpu(sb->block_size))
return "bucket size smaller than block size";
if (le16_to_cpu(m->bucket_size) <
BCH_SB_BTREE_NODE_SIZE(sb))
return "bucket size smaller than btree node size";
}
if (le64_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_MAX)
for (m = mi->members;
m < mi->members + sb->nr_devices;
m++)
SET_BCH_MEMBER_DATA_ALLOWED(m, ~0);
return NULL;
}
/* BCH_SB_FIELD_crypt: */
static const char *bch2_sb_validate_crypt(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
if (vstruct_bytes(&crypt->field) != sizeof(*crypt))
return "invalid field crypt: wrong size";
if (BCH_CRYPT_KDF_TYPE(crypt))
return "invalid field crypt: bad kdf type";
return NULL;
}
/* BCH_SB_FIELD_replicas: */
/* Replicas tracking - in memory: */
#define for_each_cpu_replicas_entry(_r, _i) \
for (_i = (_r)->entries; \
(void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size;\
_i = (void *) (_i) + (_r)->entry_size)
static inline struct bch_replicas_cpu_entry *
cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i)
{
return (void *) r->entries + r->entry_size * i;
}
static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r)
{
eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL);
}
static inline bool replicas_test_dev(struct bch_replicas_cpu_entry *e,
unsigned dev)
{
return (e->devs[dev >> 3] & (1 << (dev & 7))) != 0;
}
static inline void replicas_set_dev(struct bch_replicas_cpu_entry *e,
unsigned dev)
{
e->devs[dev >> 3] |= 1 << (dev & 7);
}
static inline unsigned replicas_dev_slots(struct bch_replicas_cpu *r)
{
return (r->entry_size -
offsetof(struct bch_replicas_cpu_entry, devs)) * 8;
}
int bch2_cpu_replicas_to_text(struct bch_replicas_cpu *r,
char *buf, size_t size)
{
char *out = buf, *end = out + size;
struct bch_replicas_cpu_entry *e;
bool first = true;
unsigned i;
for_each_cpu_replicas_entry(r, e) {
bool first_e = true;
if (!first)
out += scnprintf(out, end - out, " ");
first = false;
out += scnprintf(out, end - out, "%u: [", e->data_type);
for (i = 0; i < replicas_dev_slots(r); i++)
if (replicas_test_dev(e, i)) {
if (!first_e)
out += scnprintf(out, end - out, " ");
first_e = false;
out += scnprintf(out, end - out, "%u", i);
}
out += scnprintf(out, end - out, "]");
}
return out - buf;
}
static inline unsigned bkey_to_replicas(struct bkey_s_c_extent e,
enum bch_data_type data_type,
struct bch_replicas_cpu_entry *r,
unsigned *max_dev)
{
const struct bch_extent_ptr *ptr;
unsigned nr = 0;
BUG_ON(!data_type ||
data_type == BCH_DATA_SB ||
data_type >= BCH_DATA_NR);
memset(r, 0, sizeof(*r));
r->data_type = data_type;
*max_dev = 0;
extent_for_each_ptr(e, ptr)
if (!ptr->cached) {
*max_dev = max_t(unsigned, *max_dev, ptr->dev);
replicas_set_dev(r, ptr->dev);
nr++;
}
return nr;
}
static inline void devlist_to_replicas(struct bch_devs_list devs,
enum bch_data_type data_type,
struct bch_replicas_cpu_entry *r,
unsigned *max_dev)
{
unsigned i;
BUG_ON(!data_type ||
data_type == BCH_DATA_SB ||
data_type >= BCH_DATA_NR);
memset(r, 0, sizeof(*r));
r->data_type = data_type;
*max_dev = 0;
for (i = 0; i < devs.nr; i++) {
*max_dev = max_t(unsigned, *max_dev, devs.devs[i]);
replicas_set_dev(r, devs.devs[i]);
}
}
static struct bch_replicas_cpu *
cpu_replicas_add_entry(struct bch_replicas_cpu *old,
struct bch_replicas_cpu_entry new_entry,
unsigned max_dev)
{
struct bch_replicas_cpu *new;
unsigned i, nr, entry_size;
entry_size = offsetof(struct bch_replicas_cpu_entry, devs) +
DIV_ROUND_UP(max_dev + 1, 8);
entry_size = max(entry_size, old->entry_size);
nr = old->nr + 1;
new = kzalloc(sizeof(struct bch_replicas_cpu) +
nr * entry_size, GFP_NOIO);
if (!new)
return NULL;
new->nr = nr;
new->entry_size = entry_size;
for (i = 0; i < old->nr; i++)
memcpy(cpu_replicas_entry(new, i),
cpu_replicas_entry(old, i),
min(new->entry_size, old->entry_size));
memcpy(cpu_replicas_entry(new, old->nr),
&new_entry,
new->entry_size);
bch2_cpu_replicas_sort(new);
return new;
}
static bool replicas_has_entry(struct bch_replicas_cpu *r,
struct bch_replicas_cpu_entry search,
unsigned max_dev)
{
return max_dev < replicas_dev_slots(r) &&
eytzinger0_find(r->entries, r->nr,
r->entry_size,
memcmp, &search) < r->nr;
}
noinline
static int bch2_check_mark_super_slowpath(struct bch_fs *c,
struct bch_replicas_cpu_entry new_entry,
unsigned max_dev)
{
struct bch_replicas_cpu *old_gc, *new_gc = NULL, *old_r, *new_r = NULL;
int ret = -ENOMEM;
mutex_lock(&c->sb_lock);
old_gc = rcu_dereference_protected(c->replicas_gc,
lockdep_is_held(&c->sb_lock));
if (old_gc && !replicas_has_entry(old_gc, new_entry, max_dev)) {
new_gc = cpu_replicas_add_entry(old_gc, new_entry, max_dev);
if (!new_gc)
goto err;
}
old_r = rcu_dereference_protected(c->replicas,
lockdep_is_held(&c->sb_lock));
if (!replicas_has_entry(old_r, new_entry, max_dev)) {
new_r = cpu_replicas_add_entry(old_r, new_entry, max_dev);
if (!new_r)
goto err;
ret = bch2_cpu_replicas_to_sb_replicas(c, new_r);
if (ret)
goto err;
}
/* allocations done, now commit: */
if (new_gc) {
rcu_assign_pointer(c->replicas_gc, new_gc);
kfree_rcu(old_gc, rcu);
}
if (new_r) {
rcu_assign_pointer(c->replicas, new_r);
kfree_rcu(old_r, rcu);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
return 0;
err:
mutex_unlock(&c->sb_lock);
if (new_gc)
kfree(new_gc);
if (new_r)
kfree(new_r);
return ret;
}
static inline int __bch2_check_mark_super(struct bch_fs *c,
struct bch_replicas_cpu_entry search,
unsigned max_dev)
{
struct bch_replicas_cpu *r, *gc_r;
bool marked;
rcu_read_lock();
r = rcu_dereference(c->replicas);
gc_r = rcu_dereference(c->replicas_gc);
marked = replicas_has_entry(r, search, max_dev) &&
(!likely(gc_r) || replicas_has_entry(gc_r, search, max_dev));
rcu_read_unlock();
return likely(marked) ? 0
: bch2_check_mark_super_slowpath(c, search, max_dev);
}
int bch2_check_mark_super(struct bch_fs *c, struct bkey_s_c_extent e,
enum bch_data_type data_type)
{
struct bch_replicas_cpu_entry search;
unsigned max_dev;
if (!bkey_to_replicas(e, data_type, &search, &max_dev))
return 0;
return __bch2_check_mark_super(c, search, max_dev);
}
int bch2_check_mark_super_devlist(struct bch_fs *c,
struct bch_devs_list *devs,
enum bch_data_type data_type)
{
struct bch_replicas_cpu_entry search;
unsigned max_dev;
if (!devs->nr)
return 0;
devlist_to_replicas(*devs, data_type, &search, &max_dev);
return __bch2_check_mark_super(c, search, max_dev);
}
int bch2_replicas_gc_end(struct bch_fs *c, int err)
{
struct bch_replicas_cpu *new_r, *old_r;
int ret = 0;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
new_r = rcu_dereference_protected(c->replicas_gc,
lockdep_is_held(&c->sb_lock));
if (err) {
rcu_assign_pointer(c->replicas_gc, NULL);
kfree_rcu(new_r, rcu);
goto err;
}
if (bch2_cpu_replicas_to_sb_replicas(c, new_r)) {
ret = -ENOSPC;
goto err;
}
old_r = rcu_dereference_protected(c->replicas,
lockdep_is_held(&c->sb_lock));
rcu_assign_pointer(c->replicas, new_r);
rcu_assign_pointer(c->replicas_gc, NULL);
kfree_rcu(old_r, rcu);
bch2_write_super(c);
err:
mutex_unlock(&c->sb_lock);
return ret;
}
int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask)
{
struct bch_replicas_cpu *dst, *src;
struct bch_replicas_cpu_entry *e;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
BUG_ON(c->replicas_gc);
src = rcu_dereference_protected(c->replicas,
lockdep_is_held(&c->sb_lock));
dst = kzalloc(sizeof(struct bch_replicas_cpu) +
src->nr * src->entry_size, GFP_NOIO);
if (!dst) {
mutex_unlock(&c->sb_lock);
return -ENOMEM;
}
dst->nr = 0;
dst->entry_size = src->entry_size;
for_each_cpu_replicas_entry(src, e)
if (!((1 << e->data_type) & typemask))
memcpy(cpu_replicas_entry(dst, dst->nr++),
e, dst->entry_size);
bch2_cpu_replicas_sort(dst);
rcu_assign_pointer(c->replicas_gc, dst);
mutex_unlock(&c->sb_lock);
return 0;
}
/* Replicas tracking - superblock: */
static void bch2_sb_replicas_nr_entries(struct bch_sb_field_replicas *r,
unsigned *nr,
unsigned *bytes,
unsigned *max_dev)
{
struct bch_replicas_entry *i;
unsigned j;
*nr = 0;
*bytes = sizeof(*r);
*max_dev = 0;
if (!r)
return;
for_each_replicas_entry(r, i) {
for (j = 0; j < i->nr; j++)
*max_dev = max_t(unsigned, *max_dev, i->devs[j]);
(*nr)++;
}
*bytes = (void *) i - (void *) r;
}
static struct bch_replicas_cpu *
__bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r)
{
struct bch_replicas_cpu *cpu_r;
unsigned i, nr, bytes, max_dev, entry_size;
bch2_sb_replicas_nr_entries(sb_r, &nr, &bytes, &max_dev);
entry_size = offsetof(struct bch_replicas_cpu_entry, devs) +
DIV_ROUND_UP(max_dev + 1, 8);
cpu_r = kzalloc(sizeof(struct bch_replicas_cpu) +
nr * entry_size, GFP_NOIO);
if (!cpu_r)
return NULL;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
if (nr) {
struct bch_replicas_cpu_entry *dst =
cpu_replicas_entry(cpu_r, 0);
struct bch_replicas_entry *src = sb_r->entries;
while (dst < cpu_replicas_entry(cpu_r, nr)) {
dst->data_type = src->data_type;
for (i = 0; i < src->nr; i++)
replicas_set_dev(dst, src->devs[i]);
src = replicas_entry_next(src);
dst = (void *) dst + entry_size;
}
}
bch2_cpu_replicas_sort(cpu_r);
return cpu_r;
}
static int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c)
{
struct bch_sb_field_replicas *sb_r;
struct bch_replicas_cpu *cpu_r, *old_r;
sb_r = bch2_sb_get_replicas(c->disk_sb);
cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_r);
if (!cpu_r)
return -ENOMEM;
old_r = rcu_dereference_check(c->replicas, lockdep_is_held(&c->sb_lock));
rcu_assign_pointer(c->replicas, cpu_r);
if (old_r)
kfree_rcu(old_r, rcu);
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas *sb_r;
struct bch_replicas_entry *sb_e;
struct bch_replicas_cpu_entry *e;
size_t i, bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, e) {
bytes += sizeof(struct bch_replicas_entry);
for (i = 0; i < r->entry_size - 1; i++)
bytes += hweight8(e->devs[i]);
}
sb_r = bch2_fs_sb_resize_replicas(c,
DIV_ROUND_UP(sizeof(*sb_r) + bytes, sizeof(u64)));
if (!sb_r)
return -ENOSPC;
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
sb_e = sb_r->entries;
for_each_cpu_replicas_entry(r, e) {
sb_e->data_type = e->data_type;
for (i = 0; i < replicas_dev_slots(r); i++)
if (replicas_test_dev(e, i))
sb_e->devs[sb_e->nr++] = i;
sb_e = replicas_entry_next(sb_e);
BUG_ON((void *) sb_e > vstruct_end(&sb_r->field));
}
return 0;
}
static const char *bch2_sb_validate_replicas(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas);
struct bch_sb_field_members *mi = bch2_sb_get_members(sb);
struct bch_replicas_cpu *cpu_r = NULL;
struct bch_replicas_entry *e;
const char *err;
unsigned i;
for_each_replicas_entry(sb_r, e) {
err = "invalid replicas entry: invalid data type";
if (e->data_type >= BCH_DATA_NR)
goto err;
err = "invalid replicas entry: no devices";
if (!e->nr)
goto err;
err = "invalid replicas entry: too many devices";
if (e->nr >= BCH_REPLICAS_MAX)
goto err;
err = "invalid replicas entry: invalid device";
for (i = 0; i < e->nr; i++)
if (!bch2_dev_exists(sb, mi, e->devs[i]))
goto err;
}
err = "cannot allocate memory";
cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_r);
if (!cpu_r)
goto err;
sort_cmp_size(cpu_r->entries,
cpu_r->nr,
cpu_r->entry_size,
memcmp, NULL);
for (i = 0; i + 1 < cpu_r->nr; i++) {
struct bch_replicas_cpu_entry *l =
cpu_replicas_entry(cpu_r, i);
struct bch_replicas_cpu_entry *r =
cpu_replicas_entry(cpu_r, i + 1);
BUG_ON(memcmp(l, r, cpu_r->entry_size) > 0);
err = "duplicate replicas entry";
if (!memcmp(l, r, cpu_r->entry_size))
goto err;
}
err = NULL;
err:
kfree(cpu_r);
return err;
}
int bch2_sb_replicas_to_text(struct bch_sb_field_replicas *r, char *buf, size_t size)
{
char *out = buf, *end = out + size;
struct bch_replicas_entry *e;
bool first = true;
unsigned i;
if (!r) {
out += scnprintf(out, end - out, "(no replicas section found)");
return out - buf;
}
for_each_replicas_entry(r, e) {
if (!first)
out += scnprintf(out, end - out, " ");
first = false;
out += scnprintf(out, end - out, "%u: [", e->data_type);
for (i = 0; i < e->nr; i++)
out += scnprintf(out, end - out,
i ? " %u" : "%u", e->devs[i]);
out += scnprintf(out, end - out, "]");
}
return out - buf;
}
/* Query replicas: */
static bool __bch2_sb_has_replicas(struct bch_fs *c,
struct bch_replicas_cpu_entry search,
unsigned max_dev)
{
bool ret;
rcu_read_lock();
ret = replicas_has_entry(rcu_dereference(c->replicas),
search, max_dev);
rcu_read_unlock();
return ret;
}
bool bch2_sb_has_replicas(struct bch_fs *c, struct bkey_s_c_extent e,
enum bch_data_type data_type)
{
struct bch_replicas_cpu_entry search;
unsigned max_dev;
if (!bkey_to_replicas(e, data_type, &search, &max_dev))
return true;
return __bch2_sb_has_replicas(c, search, max_dev);
}
bool bch2_sb_has_replicas_devlist(struct bch_fs *c, struct bch_devs_list *devs,
enum bch_data_type data_type)
{
struct bch_replicas_cpu_entry search;
unsigned max_dev;
if (!devs->nr)
return true;
devlist_to_replicas(*devs, data_type, &search, &max_dev);
return __bch2_sb_has_replicas(c, search, max_dev);
}
struct replicas_status __bch2_replicas_status(struct bch_fs *c,
struct bch_devs_mask online_devs)
{
struct bch_sb_field_members *mi;
struct bch_replicas_cpu_entry *e;
struct bch_replicas_cpu *r;
unsigned i, dev, dev_slots, nr_online, nr_offline;
struct replicas_status ret;
memset(&ret, 0, sizeof(ret));
for (i = 0; i < ARRAY_SIZE(ret.replicas); i++)
ret.replicas[i].nr_online = UINT_MAX;
mi = bch2_sb_get_members(c->disk_sb);
rcu_read_lock();
r = rcu_dereference(c->replicas);
dev_slots = replicas_dev_slots(r);
for_each_cpu_replicas_entry(r, e) {
if (e->data_type >= ARRAY_SIZE(ret.replicas))
panic("e %p data_type %u\n", e, e->data_type);
nr_online = nr_offline = 0;
for (dev = 0; dev < dev_slots; dev++) {
if (!replicas_test_dev(e, dev))
continue;
BUG_ON(!bch2_dev_exists(c->disk_sb, mi, dev));
if (test_bit(dev, online_devs.d))
nr_online++;
else
nr_offline++;
}
ret.replicas[e->data_type].nr_online =
min(ret.replicas[e->data_type].nr_online,
nr_online);
ret.replicas[e->data_type].nr_offline =
max(ret.replicas[e->data_type].nr_offline,
nr_offline);
}
rcu_read_unlock();
return ret;
}
struct replicas_status bch2_replicas_status(struct bch_fs *c)
{
return __bch2_replicas_status(c, bch2_online_devs(c));
}
bool bch2_have_enough_devs(struct bch_fs *c,
struct replicas_status s,
unsigned flags)
{
if ((s.replicas[BCH_DATA_JOURNAL].nr_offline ||
s.replicas[BCH_DATA_BTREE].nr_offline) &&
!(flags & BCH_FORCE_IF_METADATA_DEGRADED))
return false;
if ((!s.replicas[BCH_DATA_JOURNAL].nr_online ||
!s.replicas[BCH_DATA_BTREE].nr_online) &&
!(flags & BCH_FORCE_IF_METADATA_LOST))
return false;
if (s.replicas[BCH_DATA_USER].nr_offline &&
!(flags & BCH_FORCE_IF_DATA_DEGRADED))
return false;
if (!s.replicas[BCH_DATA_USER].nr_online &&
!(flags & BCH_FORCE_IF_DATA_LOST))
return false;
return true;
}
unsigned bch2_replicas_online(struct bch_fs *c, bool meta)
{
struct replicas_status s = bch2_replicas_status(c);
return meta
? min(s.replicas[BCH_DATA_JOURNAL].nr_online,
s.replicas[BCH_DATA_BTREE].nr_online)
: s.replicas[BCH_DATA_USER].nr_online;
}
unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_replicas_cpu_entry *e;
struct bch_replicas_cpu *r;
unsigned ret = 0;
rcu_read_lock();
r = rcu_dereference(c->replicas);
if (ca->dev_idx >= replicas_dev_slots(r))
goto out;
for_each_cpu_replicas_entry(r, e)
if (replicas_test_dev(e, ca->dev_idx)) {
ret |= 1 << e->data_type;
break;
}
out:
rcu_read_unlock();
return ret;
}